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Abstract

We examine the effect of pre-smoothing functional data on estimat-
ing the dissimilarities among objects in a data set, with applications
to cluster analysis and other distance methods such as multidimen-

sional scaling and statistical matching. We prove that a shrinkage
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method of smoothing results in a better estimator of the dissimilar-
ities among a set of noisy curves. For a model having independent
noise structure, the smoothed-data dissimilarity estimator dominates
the observed-data estimator. For a dependent-error model—often ap-
plicable when the functional data are measured nearly continuously
over some domain—an asymptotic domination result is given for the
smoothed-data estimator. A simulation study indicates the magnitude
of improvement provided by the shrinkage estimator and examines its
behavior for heavy-tailed noise structure.

The shrinkage estimator presented here combines Stein estimation
and basis function-based linear smoothers in a novel manner. Statis-
ticians increasingly analyze sizable sets of functional data, and the
results in this paper are a useful contribution to the theory of the
effect of pre-smoothing on functional data analysis.

KEY WORDS: Distance methods; Dissimilarity measures; Cluster
analysis; Multidimensional scaling; Smoothing; Statistical matching;

Stein estimation; Shrinkage estimation.

1 Introduction

Measures of dissimilarity, or distance, among objects in a data set are funda-
mental to a number of statistical methods. Primary among these is cluster
analysis (Everitt, Landau and Leese 2001; Kaufman and Rousseeuw 1990),
but other methods such as multidimensional scaling (Young and Hamer 1987)
and statistical matching (Rodgers 1988) are typically based on pairwise dis-
similarities among data (Johnson and Wichern 1998, chap. 12).



If the measurements on the objects are multivariate and continuous, Eu-
clidean distance is a popular dissimilarity metric, while other types of data re-
quire specialized dissimilarity measures. In general, the dissimilarities among
N objects can be summarized with an N X N symmetric dissimilarity matrix,
whose (i, 7) entry is the dissimilarity between object 7 and object j.

If the observed data have random variation, and hence the measurements
on the objects contain error, then the distances between pairs of objects will
have error. Consider the problem of clustering objects in a data set using
some standard algorithm. If we want our algorithm to produce a cluster-
ing result that is close to the underlying structure, it seems desirable that
the dissimilarity matrix for the data we use reflect as closely as possible the
(unknown) pairwise dissimilarities between the underlying systematic com-
ponents of the data. A small simulation illustrates the intuitive notion that
if the dissimilarities in the observed distance matrix are near the “truth,”
then the resulting clustering structure should be near the true structure.

We generate a sample of 60 3-dimensional normal random variables (with
covariance matrix I) such that 15 observations have mean vector (1,3,1)’, 15
have mean (10,6,4)’, 15 have mean (1,10,2)’, and 15 have mean (5,1,10) .
These means are well-separated enough that the data naturally form four
clusters, and the true clustering is obvious. Then for 100 iterations we per-
turb the data with random N(0,0?) noise having varying values of o. For
each iteration, we compute the dissimilarities and input the dissimilarity
matrix of the perturbed data into the K-medoids clustering algorithm (see
Kaufman and Rousseeuw 1987) and obtain a resulting clustering.

Figure 1 plots, for each perturbed data set, the mean (across elements)
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Figure 1: Proportion of pairs of objects correctly grouped vs. MSE of dis-

similarities.



squared discrepancy from the true dissimilarity matrix against the proportion
of all possible pairs of objects that are correctly matched in the clustering re-
sulting from the perturbed matrix. (A correct match for two objects means
correctly putting the two objects in the same cluster or correctly putting
the two objects in different clusters, depending on the “truth.”) This pro-
portion serves as a measure of concordance between the clustering of the
perturbed data set and the underlying clustering structure. We expect that
as mean squared discrepancy among dissimilarities increases, the proportion
of pairs correctly clustered will decrease, and the plot indicates this negative
association. This indicates that a better estimate of the pairwise dissimilar-
ities among the data tends to yield a better estimate of the true clustering
structure.

We propose that, when encountering noisy data, it is advantageous to
use not the observed data, but rather a pre-smoothed version of the data, to
estimate the dissimilarities. We focus in particular on the case of functional
data, in which the underlying process generating the data is a smooth, con-
tinuous curve. We propose a natural dissimilarity measure for data sets of
(discretized) curves, and we show that a James-Stein-type smoothing method
can yield a dissimilarity estimator that dominates the usual estimator based
on no smoothing.

The paper is organized as follows. In Section 2, we discuss two possible
models, and a dissimilarity measure, for noisy functional data. Section 3.1
contains a domination result for the James-Stein dissimilarity estimator un-
der a “discrete noise” model, which is extended in Section 3.2. In Section 4,

we give an asymptotic domination result for a “functional noise” model. In



Section 5, we present a simulation study which indicates the magnitude of
improvement provided by the James-Stein estimator and examines its be-
havior for heavy-tailed noise structure. Section 6 is a discussion, and various

proofs and technical details are stated in the appendices.

2 A Dissimilarity Measure for Functional Data

Frequently, the measurements on each observation are connected by being
part of a single underlying continuous process (often, but not always, a time
process). One example of such data are the growth records of Swiss boys
(Falkner 1960), discussed by Ramsay and Silverman (1997, p. 2), in which
the measurements are the heights of the boys at 29 different ages. Ramsay
and Silverman (1997) generally label such data as functional data, since the
underlying data are thought to be intrinsically smooth, continuous curves
having domain 7, which without loss of generality we take to be [0,7]. The
observed data vector y is merely a discretized representation of the functional
observation y(t). Typically, in functional data analysis (a term attributed to
Ramsay and Dalzell (1991)), the primary goal is to discover something about
the smooth curves that underlie the functional observations, and to analyze
the entire set of functional data (consisting of many curves).

When scientists observe data containing random noise, they typically de-
sire to remove the random variation to better understand the underlying
process of interest. Often, when functional data are analyzed, the vector
of measurements is converted to a curve via a smoothing procedure which

reduces the random variation in the function. Scatterplot smoothing, or non-



parametric regression, may be used generally for paired data (¢;, y;) for which
some underlying regression function E[y;] = f(t;) is assumed. But smoothing
is particularly appropriate for functional data, for which a functional rela-
tionship y(t) between the response and the process on 7T is inherent in the
data.

We denote the “observed” noisy curves by yi(t),...,yn(t), and their un-

derlying signal curves by py(t),..., un(t). In reality we observe these curves
at a grid of n points, t,...,t,, so that we observe N independent vectors,
eachn x 1: y1,...,¥yn.

A possible model for our noisy data is the discrete noise model:
yZJ:/'I’l(t])+€1]aZ:157N7.]:1aan (1)

Here, for each i = 1,..., N, €;; may be considered independent for differ-
ent measurement points, having a normal distribution with mean zero and
constant variance o?.

Another possible model for our noisy curves is the functional noise model:

yz(tj) = Mz(t]) —{—éi(tj),’i = 1, N ,N,j = 1, L., n, (2)

where ¢;(t) is, for example, a stationary Ornstein-Uhlenbeck process with
“pull” parameter 8 > 0 and variability parameter o2. This choice of model
implies that the errors for the ¢th discretized curve have variance-covariance
matrix X; = 07Q where Qy,,, = (28) ' exp(—8|t; — tm|) (Taylor, Cumber-
land and Sy 1994). Note that in this case, the noise process is functional—
specifically Ornstein-Uhlenbeck—but we still assume the response data col-

lected is discretized, and is thus a vector at the level of analysis. Concep-



tually, however, the noise process is smooth and continuous in (2), as is the
signal process in either model (1) or (2).

Depending on the data and sampling scheme, either (1) or (2) may be an
appropriate model. If the randomness in the data arises from measurement
error that is independent from one measurement to the next, (1) is more
appropriate. Ramsay and Silverman (1997, p. 42) suggest a discrete noise
model for the Swiss growth data, in which heights of boys are measured at 29
separate ages, and in which some small measuring error (independent across
measurements) is likely to be present in the recorded data.

In the case that the variation of the observed data from the underlying
curve is due to an essentially continuous random process, model (2) may be
appropriate. Data that are measured frequently and almost continuously—
for example, via sophisticated monitoring equipment—may be more likely to
follow model (2), since data measured closely across time (or another domain)
may more likely be correlated. We will examine both situations.

In practice, we apply a smoothing matrix S to the observed noisy data

to obtain a smooth, called linear when the smooth fi; can be written as
ﬂz:SYzaZ: 17"'7N

where S does not depend on y; (Buja, Hastie and Tibshirani 1989). Let j;(¢)
be the smooth corresponding to the signal curve y;(t), for i = 1,...,n, and
then fi; = (f;(t1), ..., f1:(ts)) . Note that as n — oo, the vector fi; begins to
closely resemble the curve fi;(t) on [0, 7.

(Here and subsequently, when writing “limit as n — 00,” we assume
t1,...,t, € [0,T]; that is, the collection of points is becoming denser within

[0, T, with the maximum gap between any pair of adjacent points t;_1,t;,7 =
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2,...,n, tending to 0. Stein (1995) calls this method of taking the limit
“fixed-domain asymptotics,” while Cressie (1993) calls it “infill asymptotics.”)
Many popular smoothing methods (kernel smoothers, local polynomial re-
gression, smoothing splines) are linear. Note that if a bandwidth or smooth-
ing parameter for these methods is chosen via a data-driven method, then
technically, these smoothers become nonlinear (Buja et al. 1989).

We will focus primarily on basis function smoothing methods, in which
the smoothing matrix S is an orthogonal projection (i.e., symmetric and
idempotent). For a linear basis function smoother that is fitted via least
squares, S will be symmetric and idempotent as long as the n points at which
f1; is evaluated are identical to the points at which y; is observed (Ramsay
and Silverman 1997, p. 44). These methods seek to express the signal curve
as a linear combination of k (< n) specified basis functions. Assuming the
matrix of these basis functions evaluated at tq,...,¢, has full column rank,
the rank of S is k. Examples of such smoothers are regression splines (in
particular, B-splines), some wavelet bases, and Fourier series bases (Ramsay
and Silverman 1997). Regression splines and B-spline bases are discussed in
detail by de Boor (1978) and Eubank (1988, chap. 7).

If we choose squared L, distance as our dissimilarity metric, then denote
the dissimilarities between the true, observed, and smoothed curves 7 and j,

respectively, as follows:

5 = / t) — s (£ dt, 3)

5, = / wilt) — (O dt, (4)



T
lamoott) _ / [5(t) — A5 (O] dt. (5)

Define 6;; = p; — p; where p; = (pi(t1), ..., i(ta)); 055 = yi — ¥
and note Séij = f1; — ft;. Then, if the data follow the discrete noise model,
6;; ~ N (6i5,051) where of; = (07 4 03). If the data follow the functional

noise model, 8;; ~ N(8;;,%;;) where X;; = 02 and 0% = (02 + 02).

i j

If we observe the response at points ti,...,t, in [0,7], then we may

approximate (3)-(5) by

T 3 T A A 7(smooth) T s i
dij = goijoz’j, dij = 59 05, d; = —0,,5 56;;.

ij 1] n

j(smooth)

The question of interest is: When, for large n, is a better estimator

of d;; than is a?ij?
(Note: In the following sections, since the pair of curves i and j is ar-
(7] and X

bitrary, we shall suppress the ¢5 subscript on éij, ijs U?j, ij, Writing
instead 0, 0, o2, and X, understanding that we are concerned with any

particular pair 7,5 € {1,...,N},i # j.)

3 Case I: Data Following the Discrete Noise
Model

First we will consider functional data following model (1). Recall that we

assume the response is measured at n discrete points in [0, 7).
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3.1 Dissimilarity Estimation for Known o2

We assume that S is symmetric and idempotent and projects the observed
data onto a lower-dimensional space (of dimension k < n), and thus r(S) =
tr(S) = k, where r(-) denotes rank and ¢r(-) denotes trace. Note that S
is a shrinking smoother, since all its singular values are in [0, 1] (Buja et
al. 1989). Recall that according to the discrete noise model for the data,
6 ~ N(0,0°I), with o> assumed known in this section. Without loss of
generality, let 021 = I. (Otherwise, we can let, for example, j = 016 and
1 = 0 16 and work with 7 and 1 instead.)

Recall that %é'é represents the approximate L, distance between ob-
served curves y;(t) and y;(t) and %é'S'Sé = %é'Sé represents the approxi-
mate L, distance between smoothed curves f;(t) and f;(¢).

We may determine when the “smoothed-data dissimilarity” better es-
timates the true dissimilarity d;; between curves p;(t) and p;(t) than the
observed-data dissimilarity by comparing the risks of the two estimators.
(Recall that the risk of an estimator 7 for 7, given by R(7,7) = E[L(T,7)]
is, for the familiar case of squared error loss L(T,7) = (7 — 7)?, simply the
mean squared error (MSE) of the estimator.) Hence, we propose to compare
the MSEs of two competing estimators and choose the one with the smaller
MSE.

First, consider the case in which @ lies in the linear subspace that S
projects onto, i.e., SO = 6. Note that if two arbitrary (discretized) signal
curves p; and p; are in this linear subspace, then the corresponding @ is also

in the subspace, since in this case
0 = pi — pj = Spi — Spj = S(ps — pj) = S6.

11



In this idealized situation, a straightforward comparison of MSEs shows that
the smoothed-data estimator improves on the observed-data estimator.

If the smooth SO # 0, it can be shown that some shrinkage smoothing of
the observed curves makes the dissimilarity estimator better, but too much
shrinkage leads to a forfeiture of that advantage. The disadvantage of the
linear smoother is that it cannot “learn” from the data how much to shrink
6. To improve the smoother, we can employ a James-Stein-type adjustment
to S, so that the data can determine the amount of shrinkage.

What is now known as “shrinkage estimation” or “Stein estimation” orig-
inated with the work of Stein in the context of estimating a multivariate
normal mean. In subsequent years, many results have been derived about
shrinkage estimation in a variety of contexts. As part of a detailed discus-
sion of shrinkage estimation, Lehmann and Casella (1998, p. 367) discuss
shrinking an estimator toward a linear subspace of the parameter space. For
example, Casella and Hwang (1987) propose such shrinkage estimators in
the context of confidence sets for a multivariate normal mean. Green and
Strawderman (1991), also in the context of estimating a multivariate mean,
discuss how shrinking an unbiased estimator toward a possibly biased esti-
mator using a James-Stein form can result in a risk improvement.

In our case, we believe that @ is near SO, so we shrink 0 toward Sé,
obtaining a James-Stein estimator of € (see Lehmann and Casella, 1998,

p. 367):

0V =86+ [1- ") (6-sb 6
6 _s0|? ( ) (6)
where a is a constant and || - || is the usual Euclidean norm. In practice, to

avoid the problem of the shrinkage factor possibly being negative for small
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|0 — S8)||2, we would use the positive-part James-Stein estimator

90U —Sf+ <1 . L) CIY) (7)
16 -6l

where . = zI(z > 0).

The shrinkage estimator involves the data by giving more weight to 6
when ||@ — SO||? is large and more weight to SO when ||§ — S@|[? is small.
In fact, if the smoother is at all well-chosen, Sé is often close enough to 0
that the shrinkage factor in (7) is very often zero. The shrinkage factor is
actually merely a safeguard against oversmoothing, in case S smooths the
curves beyond what, in reality, it should.

Let us consider an appropriate shrinkage estimator of d;; = %0'0, namely:

le(;_fs) _ Zé(JS)’é(JS) (8)
n

where 8(75) is given by (6).

Theorem 1 Suppose the observed 6 ~ N(0,0%1). Let S be a symmetric
and idempotent linear smoothing matriz of rank k. If n — k > 4, then there
exists a positive real number r such that for 0 < a < r, the risk difference is
negative and the smoothed-data dissimilarity estimator dAEjJS) has smaller risk

than cfij .

Proof of Theorem 1: The risk difference between the James-Stein smoothed

dissimilarity cigs) and the observed dissimilarity d\ij is:

T2 T e a T ,\° Tas T\
D=k <—0(JS)0(JS>——00> _E (—00——00)]. (9)
n n n

n n

13



Since we are interested in when the risk difference is negative, we can ignore

the positive constant multiplier 72 /n?.

From (9),
A = E[(0V9'§UU5))2 _ (§'6) — 20'0(079'HU7S) — §')].

Let 0U75) = @ — $(6)0, where

o a a
$(0) ||9_80||2( ) 0(1—5)0( )
Then routine calculations show that §¢75) §(7S) — §'@ can be written as:
2
Al AN A ~j AN/ N A a
—20 $(0) 0 + 0 ¢(0 0)0 =—-2a+———>.
#(6) 0+ 8'6(6) 6(0) Gosi

Hence the (scaled) risk difference is
NN (12 2 1A ’ (12
<00—2a—|—ﬁ> —(6'6)*> — 20 0(—2a+ﬁ> .
|6 — S| |6 — S|
Note that ' = 6'(1—S)0 +6'SO and 6’0 = 6'(I— S)0 + 0'S. Define
the following quadratic forms: ¢ = 6’ (I- S)é, Go=0'S0, ¢ =6’ (I-9)6,
and ¢, = 0'S6.

A=F

Note that ¢ ~ x2_,(q1), G2 ~ xi(g2) and they are independent (since
6 ~ N(0,1), S is idempotent, and (I — S)S = 0). Now write A as:

WA a2\? a?
A = FE ([fh + ¢o] —2a + cj_> —[G1 + @) — 2(q1 + ¢2) (—Za + 4_)}
L 1 1

r a? a2 2 a?
= E|2 <—2a + T) [G1 + d2] + (—2a + T) +4a(qs + @) — — (¢ + QZ):|
L q1 q1 q1
i o a®\?  4a8
= E|—4ald: + §a] + 4a® + (T) — — +4a(q1 + q2)
L q1 q1
2¢® .
+(§ (G1+d—a—q)|-
1

14



Since E[¢1 + ¢2] = n + ¢1 + go,

a2\? 4a® 2%,
— | -+ @ +h—a—q)|
q1 q1 q1

A= —4an+4a2+E{<
Since ¢; and ¢, are independent, we can take the expectation of ¢, in the last
term. Since E|[gs] = k + ¢,

4 2%k 2
A:4a2—4an+E{(f—2+ ° +2a2<1— “T‘hﬂ.
q1 q1 q1

By Jensen’s Inequality, E(1/41) > 1/E(g1), and since E(§;) =n—k+ ¢1, we

can bound the last term above:

Bl2a2 (1= 0| < gg2(1- 200 ) _gp n_k+q1_2a_‘-’1>
a1 - n—k+aq n—k+aq

ofn—k—2a ofn—k—2a 9 2a
= ——— ) <2 ———— | =2a°| 1 — .
2a (n—k—l—ql)_ a( n—k ¢ n—k

Hence

4 2
A§4a2—4an+E[‘f—2]+E{2‘fﬂ+2a2<1— 20 ) (10)
a1 41 n—k

The numerators of the terms in the expected values in (10) are positive.
The random variable §; is a noncentral x> , with noncentrality parameter
q1, and this distribution is stochastically increasing in ¢;. This implies that

for m > 0, E[(¢1)~™] is decreasing in ¢;. So

El(g1) ™ < El(xa )™

where x2_, is a central x? with n — k degrees of freedom. So by replacing g

with x2_, in (10), we obtain an upper bound Ay for A:

at 20’k 2a
Ay =4a® — 4 E|l— |+ E|=—| +242(1- . 11
U a an + |:(X721—k)2:| + [Xi—k] + 2a < n—k) ( )

15



Note that E[(x2_,)"'] = 1/(n — k —2) and E[(x2_,) %] = 1/(n — k —
2)(n — k —4). So taking expectations and writing the upper bound as a

function of a:

1 4 2k
A _ 4_ 3 _ 4k 2_4
v(9) (n—k—2)(n—k—4)a n—ka+<n—k—2+6>a na

We seek values of a that make Ay negative. The fourth-degree equation
Ay(a) = 0 can be solved analytically. (Two of the roots are imaginary.)
One real root is clearly 0; call the second real root r. Write Ay(a) = 0 as
caa® 4 c3a® + coa® + cra = 0, where ¢y, c3, 2, 1 are the respective coefficients
of Ay(a). It is clear that if n — k > 4, then ¢4 > 0,c3 < 0,¢5 > 0,¢1 < 0.
Note that r also solves the cubic equation f.(a) = cqa®+cza®+coa+c; = 0.

Since its leading coefficient ¢4 > 0,
lim f.(a) = —o0, lim f.(a) = oco.
— a—00

Since f.(a) has only one real root, it crosses the a-axis only once. Since its
vertical intercept ¢; < 0, its horizontal intercept r > 0.

And since Ay(a) has leading coefficient ¢4 > 0,

lim Agy(a) = oco.

a—+oo

Since it tends to oo at its endpoints, Ay (a) must be negative between its
two real roots 0 and r. Therefore A <OforO<a<r. O

Using a symbolic algebra software program (such as Maple or Mathemat-
ica), one can easily obtain the formula for the second real root for general n
and k and verify that the other two roots are imaginary.

Figure 2 shows Ay plotted as a function of a for varying n and k£ = 5.

For various choices of n (and k = 5) Table 1 provides values of r, as well as

16



Upper bound for various n and k=5
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Figure 2: Plot of Ay against a for varying n and for k = 5.
Solid line: n = 20. Dashed line: n = 50. Dotted line: n = 100.
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Table 1: Choices of a for various n and k.

n k minimizer ¢* root r

20 5 9.3 19.0
o0 5 31.9 72.2
100 5 71.3 169.1
200 5 153.2 367.5

the value of a that minimizes the upper bound for A. For 0 < a < r, the
risk difference is assured of being negative. For a*, Ay is minimized.

Since Ay provides an upper bound for the (scaled) risk difference, it
may be valuable to ascertain the size of the discrepancy between Ay and A.
We can estimate this discrepancy via Monte Carlo simulation. We generate
a large number of random variables having the distribution of ¢; (namely
X2 _.(q1)) and get an estimate of A using a Monte Carlo mean. For various
values of ¢, Figure 3 shows A plotted alongside Ay .

3.2 Extension to Unknown o2

2 was assumed to be known. We now examine the

In the previous section, o
situation in which  ~ N (@, 0I) with ¢® unknown. We suppose there exists
a random variable S2, independent of @, such that S?/02 ~ x2. Then let
62 =52/v.

Consider the following definition of the James-Stein estimator which ac-

counts for o2:

18
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Comparing upper bound to simulated scaled risk difference
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Figure 3: Plot of simulated A and Ay against a for n = 20, k = 5.
Solid line: Upper bound Ay. Dashed line: simulated A, ¢; = 0. Dotted
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3(JS) j ac’ 2
0 =80+ (1-———=—](I-9)6. (12)
16 — S0
Note that the James-Stein estimator from Section 3 (when we assumed a
known covariance matrix I) is simply (12) with ¢% = 1.

Now, replacing o2 with the estimate 62, define

~2
699 — 36 + (1 . %) (I—9),
1

where G; = 6’ (I — S)@ as in Section 3.1. Define the James-Stein smoothed-

data dissimilarity estimator based on égjs) to be:

g9 L

2 _0"((}JS ’éc(?JS).
’ n

Theorem 2 Suppose that @ ~ N (0,0°1) with 0? unknown and that there
exists a random variable S%, independent of é, such that S? /% ~ X2, and
let 62 = S?/v. If n — k > 4, then there exists a positive real v such that for
0 < a < r, the risk difference is negative and the smoothed-data dissimilarity

estimator c?fjf) has smaller risk than dAZ]

Proof of Theorem 2: Calculations similar to those at the beginning of the

proof of Theorem 1 allow us to write the scaled risk difference as:

o a2\ aa L, a?et ?
A; =FE|-2(2a6°— —— ) (00 —080)+ |2a6° — — ) (13)
a1 a1

Since 6 and 0 are independent,

E[—4a6%(0'0 — 6'0)] = E[—4a6°|E[0'0 — 0'0] = E[—4a6%0?n

20



and

A

244
E|:20, o (é/é_ole)]
q1

2a%6%
= E{ g (Q1+Q2—Q1—Q2)}
1

. j 2a%6* .
— E[24°6YE {%} + E[ ; (@1 —q1 — QQ):| (14)
1 1

by the independence of & and @ (and thus & and §,).
Since ¢; and g, are independent, and E[§s] = g2 + 02k, we may write (14)

as:

2 2,4
Y9 ] (15)

E[2a%6%(qz + 0?k)E[1/41] + E[ i (G — a1 — q2)
1
Now, since a?64/§; is decreasing in ¢; and §; — q; — ¢y is increasing in ¢,
these quantities have covariance < 0. Hence

R . 20264 .
(15) < E[2a%6*)(q2 + o*k)E[1/q] + E[ ; ]E[q1 —q1 — ¢
1

= E[2a°6%](q2 + oK) E[1/@] + E[2a°6*|E[1/q1](0*(n — k) — ¢2)

= E[2a°6"E[1/¢]0’n.

So, from (13),

A

G a
Note that E[a6?] = ao?, E[a®6*] = a*c*v(v+2)/1v?, E[a®6®] = a®ov(v+

2)(v +4)/v3, Ela*6®] = a*c®v(v + 2)(v + 4)(v + 6)/v*. Since 62 and §; are

1
A; < E[-4a6%0°n + E[2a*6*|E {—} o’n+ E {4&&4 —

4a365 a4&8]
q1

independent, taking expectations:

2 1 2
As; < —dac*n + 24%05n M E|=| + 4a%c* M
v? a1 v?

_4a306(u(u+2)(u+4))EF} +a408<u(l/+2)(u+4)(y—|—6)>E[ 1}

- )
7 q1 vt q
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Define §¢ = ¢1/0> = (0/0) (I — S)(0/0). Since § ~ N(0,0%1), (6/0) ~
N(¢,I) where ¢ = 0/0. Then the risk difference is a function of ¢, and the
distribution of ¢7 is a function of ¢ and does not involve ¢ alone. Now we

may divide the inequality through by 0% > 0 to obtain

2s < —4an+2a2n<M>E{1}+4a2<M)

v 2 ™ 2

4 (y(y + i)s(uy—l— 4)>E [Zl;] g (y(u l-/l— 2)(1/1/—: 4)(v + 6)>E {é] .

Now, since (I — S)I is idempotent, §; is noncentral 2 , (¢ (I—S)¢). Recall
that the noncentral x? distribution is stochastically increasing in its noncen-
trality parameter, so we may replace this parameter by zero and obtain the
upper bound

El(G)™™] < E[(xa—p) "m =1,2.

Hence
% <Ay = —dan+ 2a2n(W> B2 ) + 4a? (W)
add (1/(1/ + ?3(” + 4)>E[(X3_k)‘1]

R ) L
Ifn—k >4, then E[(x2 ;)" =1/(n—k—2) and E[(x2 ;) ?] =1/(n—
k —2)(n — k —4). So taking expectations and collecting terms with powers
of a:
As B viv+2)(v+4)(v+6) \ , Avv+2)(v+4)) ,
o1 S Aule) = <V4(n—k—2)(n—k—4))a — v3(n—k—2) )

(wiz(iﬁ)m * 41/(1,/,; 2)>a2 — 4na
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Note that if Ay (which does not involve o) is less than 0, then A; < 0, which
is what we wish to prove.

Finally, note that Ay(a) = 0 may be written as cya*+cza®+cea®+cra = 0,
with ¢4 > 0,c3 < 0,c2 > 0,¢; < 0. The proof then follows exactly as the
proof of Theorem 1 in Section 3.1. Since Ay(a) must be negative between

its two real roots 0 and r, then A < OforO0<a<r. O

4 Case 1I: Data Following the Functional Noise
Model

Now we will consider functional data following model (2). Again, we assume
the response is measured at n discrete points in [0, T'], but here we assume a
dependence among errors measured at different points.

As with Case I, we assume our linear smoothing matrix S is symmetric
and idempotent, with r(S) = tr(S) = k. Recall that according to the func-
tional noise model for the data, § ~ N (0,X) where the covariance matrix 3
corresponds to a stationary continuous-time process. In this section, we will
assume a Gaussian error process whose covariance structure allows for the
possibility of dependence at different measurement points.

As with model (1), under model (2), when @ lies in the linear subspace
that S projects onto, %é'Sé dominates %é'é in estimating %0'0, as can
be seen with a straightforward comparison of MSEs. So let us consider
functional data following model (2), without assuming 6 lies in the subspace
projected onto by S.

In Section 3, we obtained an exact upper bound for the difference in risks
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between the smoothed-data estimator and observed-data estimator for a fixed
value of n. In this section we will show that an asymptotic (large n) upper
bound exists for this difference of risks. The upper bound is asymptotic here
in the sense that the bound is valid for sufficiently large n, not necessarily that
the expression for the bound converges to a meaningful limiting expression
for infinite n.

Note that as the number of measurement points n grows (within a fixed
domain), assuming a certain dependence across measurement points (e.g., a
correlation structure like that of a stationary Ornstein-Uhlenbeck process),
the observed data yi,...,yn closely resemble the pure observed functions
y1(t),...,yn(t) on [0,T]. Therefore this result will be most appropriate for
situations with a large number of measurements taken on a functional pro-
cess, so that the observed data vector is “nearly” a pure function.

We consider the same James-Stein estimator of 8 as in Section 3, namely
69 given by (6)—in practice, again, we use the positive-part estimator

0*5:15) given by (7)—and the same James-Stein dissimilarity estimator.

Theorem 3 Let 6 have known, positive definite covariance matriz ¥ cor-
responding to a Gaussian error process. If n — k > 4, then there exists a
positive real r such that for 0 < a < r, and for sufficiently large n, the risk
difference is negative and the smoothed-data dissimilarity estimator cigjjs) has

smaller risk than afm

Proof of Theorem, 8: Recall from Section 3 the notation: g, = 8’ (I—S)8,
Go=0'S0,q, =0 (1-5)0, ¢, = 0'S6.

Unlike in Section 3 when we assumed an independent error structure,
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under the functional noise model, §; and g, do not have noncentral y? dis-
tributions, nor are they independent in general.

In this same way as in Section 3, we may write A as:

) R a2 2 a3

A = E [—4a[q1 + Ga] + 4a® + (—) — — +4a(q + )
q1 q1

(12

+

- (@1'1'@2—(11—(12)]-
a1
Since E[¢1 + ¢o] = 1 +tr[(I— S)X] + q2 + tr[SXE] = ¢1 + g2 + tr(X),

a2\? 4a® 24,
w) +—@h+G—qa—q)l|.
1

g q
E[@] _ E{ﬂ}
G 6(I-9S)6

Lieberman (1994) gives a Laplace approximation for E[(x Fx/x Gx)*],

A = —4atr(Z) + 4a® + E{(

Consider

k > 1, where F is symmetric and G positive definite:
E[(&)] - Bl Fx)’]
x' Gx [E(x'Gx)]F

In our case, (I—S) is merely positive semidefinite, but with a simple regularity
condition, the result will hold (see Appendix A). It can be shown that in
this situation the error of the Laplace approximation is O(1) as n — oo (see
Appendix A).

Hence for large n
E[@} . E[ _0's0 } < B8O | wti(SD)

Q1 0'1-S)8] ~ EB'(I1-S)6) q1 +tr[(I—S)X]

for some constant c.

+c

Hence we have a large n approximation, or asymptotic expression, for A:

at g2 + tr(SX) 20+ q1 + ¢o
A < —datr(T +4a2+E{T+2a2(1+c+ - E ﬂ
(%) G q + tr[(I—S)X] G
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Since by Jensen’s Inequality, E(1/§:) > 1/E(g1), we can bound the last term

above:

@ +tr(S¥) 2a+q1+q2)}
Q1+ tT[(I - S)E] G
g2 + tT(SE) 1+ g2+ 2a )

< 2a? <1 +c+ ¢ + tr[(I—S)%] B g +tr[(I—S)X]

- (e D)

< 2a2<c+m—_s)2;]).

E{2a2<1+c+

Assume ¢ > 0 (if ¢ < 0 then it can be ignored without consequence). Then
we have the asymptotic upper bound for A:
a* tr(X) — 2a
4a® — 4atr(X) + E [é_%} + 2a® <c + —tr[EI z S)E]) :
Using standard eigenvalue properties and distribution theory for quadratic
forms (detailed in Appendix B), we have the following asymptotic upper
bound for A:

2tr(X)

Ay = Mza® — m“g (W

+4+ 20) a® — 4tr(X)a,

where My = E[(3.1, e;x3) 2], the second inverse moment of a linear combi-
nation of independent x? variates, with ey, . .., e, the eigenvalues of (I—S)X.

We see that if n — k > 4, then M, exists and is positive since

1 1\ 1 1\
ol() =l () )
Wrmax Xn—k Wmin Xn—k

where wp;, is the smallest and wy,,, the largest of the n — k nonzero eigen-

values of (I — S)X.
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As was the case in the discrete noise situation, Aj;(a) = 0 is a fourth-
degree equation with one nonzero real root r.

Since X is positive definite, tr(X) is positive. Since My > 0, we may write
Ay (a) = 0 as cua* +cza® + caa® +c1a = 0, where ¢y > 0,¢3 < 0,¢9 > 0,¢; < 0.
The proof then follows exactly from the proof of Theorem 1 in Section 3.1.
Since A} (a) must be negative between its two real roots 0 and 7, then A < 0
for 0 < a < r for sufficiently large n. O

One can easily verify that two of the roots are imaginary and can de-
termine the nontrivial real root in terms of Ms, tr[(I — S)X], tr(X), and
c. Though the genuine asymptotic upper bound cannot be calculated since
the asymptotic Laplace approximation error ¢ is unknown, its existence is
guaranteed. Furthermore, for large n, empirical evidence indicates that the
Laplace approximation is quite good, and c is likely to be small. In practice,
one may calculate an approximation to the asymptotic upper bound by let-
ting ¢ = 0. The resulting fourth-degree function of a, while not guaranteed
to be an upper bound for A, will probably be close to the true upper bound
and at least could be useful in guiding a proper choice of a in the James-Stein
estimator.

As an example, let us consider a situation in which we observe functional
data yi,...,yny measured at 30 equally spaced points ti,...,%39, one unit
apart. Here, let us assume the observations are discretized versions of func-
tions yi(t),...,yn(t) that contain (possibly different) signal functions, plus
a noise function arising from an Ornstein-Uhlenbeck (O-U) process. We can
then calculate the covariance matrix of each y; and the covariance matrix X
of . Under the O-U model, tr(X) = 2> n always, since each diagonal element

=5
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of ¥ is %

For example, suppose the O-U process has 02> = 2 and 8 = 1. Then in
this example, tr(X) = 30. Suppose we choose S be the smoothing matrix
corresponding to a B-spline basis smoother with 6 knots, dispersed evenly
within the data. Then we can easily calculate the eigenvalues of (I — S)X,
which are eq,...,e,, and via numerical or Monte Carlo integration, we find
that My = 0.00758 in this case.

Substituting these values into Aj;(a), we see, in Figure 4, the approx-
imation to the asymptotic upper bound plotted as a function of a. Also
plotted is a simulated true A for a variety of values (n-vectors) of 6: 0 x 1,
(0,1,0,1,0,...,0,1), and (—1,0,1,—1,0,1,...,—1,0,1)", where 1 is a n-
vector of ones. It should be noted that when @ is the zero vector, it lies in
the subspace projected onto by S, since SO = 0 in that case. The other two
values of @ shown in this plot do not lie in the subspace. In this example,
choosing the a that minimizes the approximate upper bound ensures that
dng) has smaller risk than cf”

We now extend the asymptotic result to the case of 8 having covariance
matrix of the foorm V = ¢2X, where ¢? is unknown and X is a known
symmetric, positive definite matrix. This encompasses the functional noise
model (2) in which the errors follow an Ornstein-Uhlenbeck process with
unknown o2 and known . (Of course, this also includes the discrete noise
model (1), in which V = ¢2I, but this case was dealt with in Section 3.2, in

which an exact domination result was shown.)

Theorem 4 Suppose the same conditions as Theorem 2, except generalize

the covariance matriz of @ to be 02X, 0% unknown and X known, symmetric,
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Approximation to upper bound for O-U example (n = 30)
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Figure 4: Plot of approximation to asymptotic upper bound, and simulated
A’s, for Ornstein-Uhlenbeck-type data (n = 30).

Solid line: plot of approximate Ay against a for above O-U pro-
cess. Dashed line: simulated A, @€ = 0 x 1. Dotted line: simu-
lated A, 8 = (0,1,0,1,0,...,0,1)". Dot-dashed line: simulated A, 8 =

_ _ _ !
(-1,0,1,-1,0,1,...,—1,0,1)". 09



and positive definite. If n—k > 4, then there exists a positive real r such that
for 0 < a <r, and for sufficiently large n, the risk difference is negative and

the smoothed-data dissimilarity estimator cZz(JJf) has smaller risk than a?”

Since much of the proof of Theorem 4 repeats material found in the proofs

of Theorem 2 and Theorem 3, we give it in Appendix C.

5 Simulation Study

While the previous theorems guarantee (for a variety of situations) that the
James-Stein smoothed dissimilarity estimator has smaller risk than the usual
estimator, it may be instructive to study empirically the magnitude of the
risk improvement. We can also determine how much the risk improvement is
affected if certain assumptions are not met (for example, if the error process
is not normal). In this section we summarize a simulation study to help

answer these questions. Consider the four signal curves:

p(t) = —sin(10t) In(t +0.5),¢ € [0, 1]

() = cos(108) In(t + 0.5), ¢ € [0, 1]

ps(t) = 0.25sin(106)v/5¢1/2 + 0.5,¢ € [0, 1]

pa(t) = 0.254 cos(10t)In(t + 0.5) /vt + 0.5,¢ € [0,1]

From these signal curves we generate noisy functional data (observed at n =
30 points in [0, 1]), by adding one of three types of random noise: independent
N(0,0?) with varying o; Ornstein-Uhlenbeck with varying o and 3 = 1; or

heavy-tailed noise (independent ¢ with varying degrees of freedom). (Note
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that the values of o2 are not directly comparable between the independent
and Ornstein-Uhlenbeck models.) We smooth the resulting 6 values with a
B-spline-based smoother having 6 knots interspersed evenly though the data
(implying k = 10). The James-Stein adjustment is made with a = 20 (based
on n = 30,k = 10) for the independent error data and appropriate values of
a for the respective choices of ¥ for the dependent error data.

These four curves define six pairwise dissimilarities d;;, (Z,5) € {1,2, 3, 4},
i < j, which may be estimated by Ji]- or JE;S) Define A = M—S’E(affjs)) —
MSE(d;;), where MSE(di;) = (1/6) Y., .(di; — di;)®. So A is the differ-
as).

i<
ence of the empirical risks (averaged over 50,000 iterations) of ciz-j and
Shown in Table 2 are values of A (with Monte Carlo standard deviations
for A in parentheses) for the various noise distributions and magnitudes of
error variability. Negative values of A in the table indicate the James-Stein
estimator has smaller risk. The values in braces indicating the percentage
risk improvement from using the James-Stein estimator are more meaningful
than the raw A values, which vary greatly depending on how noisy the data
are.

The results show that the James-Stein estimator has, on average, smaller
empirical risk in every case examined except the ¢ (2 df) case. The amount
of risk improvement varies according to the magnitude and type of noise,
mostly ranging from around 50 to 85 % improvement (an exception being
the Ornstein-Uhlenbeck model with o = 0.5, in which the noise in the data
is minimal). It appears that, in the normal cases, the improvement increases
as the error variability grows. The risk improvement appears to hold for the

t errors, only breaking down for the extremely heavy-tailed case of 2 degrees
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Table 2: Empirical risk differences between James-Stein dissimilarity estima-

tor and observed-data dissimilarity estimator.

Independent Normal Errors

o> =05 o?=1 o =2 o’ =4
-2.74 (0.73) -2.42 (0.63)  -2.40 (0.61)  -2.42 (0.61)
{56.4%} {65.1%} {66.7%} {66.8%}
Ornstein-Uhlenbeck Errors
o> =05 ol=1 o =2 o’ =14
-1.6x107° (0.0001) -0.002 (0.002) -0.05 (0.02)  -0.87 (0.30)
{4.8%} {58.3%} {81.3%} {85.8%}
Independent ¢t Errors
df. =20 df. =10 df. =5 df =2
-0.23 (0.08) -0.29 (0.12)  -0.55 (0.36) 11131 (2x109%)
{87.5%} {87.1%} {82.8%} {-1.8%}

NOTE: Monte Carlo s.d. is in parentheses; percentage risk improvement for

James-Stein estimator is in braces.

of freedom.

6 Discussion

This paper has addressed the problem of estimating dissimilarities for func-
tional observations. The dissimilarities among objects in a data set are at
the heart of distance-based statistical methods such as cluster analysis, mul-

tidimensional scaling and statistical matching.
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We have proposed a model for the functional observations and hence for
the dissimilarities among them. When the data are smoothed using a basis
function method (such as regression splines, for example), we have shown
that a James-Stein shrinkage dissimilarity estimator dominates the observed-
data estimator under an independent error model. With dependent errors,
an asymptotic (for n large within a fixed domain) domination result was
given. (Note that the asymptotic situation of the theorem corresponds to
data that are nearly pure functions, measured nearly continuously across
some domain.)

A simulation study has indicated the magnitude of the risk improvement
and suggested that the results hold for moderately heavy-tailed non-normal
errors. The shrinkage estimator is a novel way to unite linear smoothers
and Stein estimation to derive a useful, data-informed smoothing method.
It is hoped that these results contribute to resolving the increasing need for

methods of analyzing large functional data sets.

A Notes about Laplace Approximation

Recall the Laplace approximation given by Lieberman (1994) for the expec-
tation of a ratio of quadratic forms:
B (x’ﬁ) ~ E(x'Fx)
x' Gx Ex'Gx)’
Lieberman (1994) denotes the joint moment generating function of x Fx and
x Gx by
M (wy,ws) = Elexp(wix Fx + wyx Gx)].
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and assumes a positive definite G. In that case, E(x Gx) > 0. Lieberman
uses the positive definiteness of G to show that the derivative of the cumulant

generating function of x' Gx is greater than zero. That is,

d d -
—log M = —M M
oM O) = o M(O,6) | M(0,1)

— [ Gxexplunx @x) ) x| [ expf G ) dx

> 0.

The positive derivative ensures the maximum of log M (0, w,) is attained at
the boundary point (where wy = 0).

For positive semidefinite G, we need the additional regularity condition
that P(x Gx > 0) > 0, i.e., the support of x Gx is not degenerate at zero.
This will ensure that E(x Gx) > 0, i.e., that ﬁM (0,ws) > 0. Therefore
both of the integrals in the above expression are positive and the Laplace
approximation will hold.

In stating the order of the error of the Laplace approximation, we refer
to Lieberman’s (1994) sufficient conditions for the error to be O(n™"). We
assume (reasonably, thanks to the smoothness properties of S and the fact

that (7/n)@'SO approximates an L, distance) that as n — oo,

T
—0'S0 — ¢,
n

where c¢; is some constant.
Note that tr(SX) < tr(SXZ) + tr(I — S)X) = tr(X) = 0?n/3 under the

Ornstein-Uhlenbeck model. Hence as n — oo,

E[6'S8) 0'SB+tr(SE)
n N n n
0'se

IN

— +0%/B = /T +0%/B=cy
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where ¢, is a constant. Thus E[@'SO] = O(n). Following similarly are
the orders of higher moments, e.g., E[(§'S8)*] = O(n*),k > 1. On the
other hand, since E['S8] = O(n) and similarly E[6'(I — S)8] = O(n),
then cov[@'SE, 0’ (I — S)8) = O(n?), rather than O(n) as Lieberman’s third
condition requires. This implies the Laplace approximation has an error of

O(1) rather than O(n~') had all three of Lieberman’s conditions been met.

B Additional Details of Proof of Theorem 3

Denote the eigenvalues of XY/%(I — S)XY2 by ey,...,e,. Since (I —S) is
positive semidefinite, it is clear that ey, ..., e, are all nonnegative. Note that
€1,...,en are also the eigenvalues of (I — S)X, since V(I — S)®1/? =
TVAHI - 8)EX Y2 and (I — S)X are similar matrices. Note that since
r[ZVAHI - 8)2Y?] = r(I—8) = n — k, ZY2(1 — )XY has n — k nonzero
eigenvalues, and so does (I — S)X.

It is well known (see, e.g., Baldessari 1967; Tan 1977) that ify ~ N(u, V)
for positive definite, nonsingular V, then for symmetric A, y Ay is dis-
tributed as a linear combination of independent noncentral x? random vari-
ables, the coeflicients of which are the eigenvalues of AV.

Specifically, since §; = ' (I—S8)8, and (I—S)X has eigenvalues ey, . . . , e,,
then

qi ~ Z eixi(07)
i=1

for some noncentrality parameter 6? > 0 that is zero when @ = 0.

Under @ = 0, then, ¢ ~ Y ., €;x], and since a noncentral x3 random
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variable stochastically dominates a central x?, for any §2 > 0,
P[x3(87) > 2] > P[x} > z] Yz >0.
We know that for each 62 >0,i=1,...,n,
P[x1(67) > 2] > P[xi > z] Yz >0.
Since ey,...,e, > 0, letting z; = e;xz, 1 =1,...,n,
Pleix3(07) > 2] > Plesxd > zi] ¥V 2 > 0.

(If e; = 0, the inequality trivially holds.) Now, since f(x1,...,2z,) = z1 +
...+ x, is an increasing function, and since the n noncentral chi-squares are
independent and the n central chi-squares are independent, we apply a result

given in Ross (1996, p. 410, ex. 9.2(A)) to conclude:
Pleixi(67) + -+ +enxi(d) > 2] > Pleaxi + - +enxi 2 2] V 2>0. O

Hence for all z > 0, Ppxo[¢1 > z] > Polg1 > z], i.e., the distribution of ¢;
with @ # 0 stochastically dominates the distribution of §; with @ = 0. Then

Eo0[(d1)™™] < Eo[(d1)™™]

form=1,2,....

C Proof of Theorem 4

Assume 6 ~ N(0,V), with V = 623. Suppose, as in Section 3.2, that there
exists a random variable S, independent of @, such that $2/0® ~ x2. Then

let 62 = S?/v.
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As shown in Section 3.2, we may write

o @2\ A o at\’
Ay =FE|-2(2a6°"———)(00—-00)+ |2a6° — — :

q1 q1

Since & and @ are independent, recall
E[—4a6°(6'0 — 6'0)] = E[—4a6°%c%tr(X)

and recall from Section 3.2,

A

)1
) ] 2a%64
= E[2a204]E {%] + E{ 7 (G1 —q1 — %)} . (16)
1 1

244
EFG 76— 0'0)}

We use the (large n) approximation to E[§>/d1| obtained in Section 4 to
obtain an asymptotic upper bound for (16):

g2 + o%tr(SX)
g1+ o?tr[(I—S)X]

E[2a%6%] ( + c) +E {2‘1?&4(@1 —q = Qz)] . (17)

0
Now, since a?64/§; is decreasing in ¢; and §; — q; — ¢y is increasing in ¢,

these quantities have covariance < 0. Hence

2tr(SX) 20264

1 < E 9 2-4 q2 +o E A .

( 7) = [ ao ]<Q1 + O_Qt,r[(]: _ S)E] +tc)+ qu E[Ql q1 QQ]
otr(SX)

= E[2a%"¢ + E[2d%5"]

1 1
Ea] H o+ o1 8)%)

2,4
+E {220 ]a2tr[(1 — 8)X] + E[2a°6%c
1
tr(SY) 24654
< E[24%6* 2 _ 2.4
< FE[2a°6 ]tr[(I —S5)5] +E{ 0 o’tr[(I — S)X] + E[2a°6"]c,

Using the fact that 1/E[§:] — E[1/¢:1] < 0. Our asymptotic upper bound for
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a’6t

A

tr(SX)

2
A% = E|—4a6%c?tr(X _—
U ac‘o tr( )+ tr[(I— S)E] +C>

o*tr[(I—-S)X] + 2a2&4<

+ 40’6 —

4a35° a4&8}
a1 g3

Recall that E[a6?] = ao?, Ela’6%] = a®c*v(v + 2)/v?, E[a®6%] = a3c®v(v +
2)(v +4)/v3, E[a*6®] = a*c®v(v +2)(v + 4)(v + 6) /v*.

Since 6% and §, are independent, taking expectations:

ALy = —daotr(S) + 20%° (#) E [ﬂ o2tr](1 — )3
+ 24%0% (V(”; 2)> (tr[ﬁ(figz] + c) + 4a0* (V(UV_: 2)>
B 4a306<v(’/ + ?3(” + 4)>E{q—11] N a408<y(y + 2)(;/;lr 4) (v + 6))4%} |

As in Section 3.2, define @ = G;/0? = (6/0) (I — S)(8/0). Here, since
6 ~ N(0,0°%), (8/0) ~ N({, %) where ¢ = 0/0. Then the risk difference
is a function of ¢, and the distribution of ¢} is a function of ¢. Then (again

dividing the inequality through by o > 0)

*
A&U
4

= —datr(%) + 22 <”(Vyj 2))15 [ﬂ tr[(1—S)3]

+ o EVEUVJ; zj() (tz[%(s?sglzj] +c><+(4a2 (2’;((1’;:() 6)) [ 1 ]
. Y AN viv+2)(r+4) v+ El—

g

3 A%k 4 ~%2 |
v a1 v 4

As shown in Section 4, for all > 0, Pgxo[¢1 > | > Po[¢1 > z]. Note
that this is equivalent to: For all > 0, Pro[d} > z] > Fo[d; > z]. Then

E¢z0l(41)™™] < Eol(41)™™]
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form=1,2.
Let M} = Eo[(¢}) '] and My = Fy[(g;) ?]. Then, collecting terms with
powers of a,
A;iU < (1/(1/ +2)(v —4|— 4)(v + 6)>M2*a4 B 4<1/(1/ + 2)3(1/ + 4))Mfa3
o v v
2tr(SX)
tr[(I—S)X]

V2

+ <M(2Ml"tr[(1 —S)%] + +2¢c+ 4)) a® — 4tr(X)a.

Note that if this last expression (which does not involve o and which we

*
G

denote simply as Ay(a)) is less than 0, then A%, < 0, which is what we wish
to prove.

We may repeat the argument from Section 4 in which we showed that
when 6 = 0, ¢ ~ >, e;x3, replacing ¢; with g}, 6 with /0, and 6 with
¢. Thus we conclude that when ¢ = 0, ¢; ~ Y7 | v;x], where vy,..., v, are
the eigenvalues of (I — S)X. Again, if n — k > 4, then M and M; exist and
are positive, as was shown in Section 4.

Again, Ay(a) = 0 is a fourth-degree equation with one nonzero real
root r. Since X is positive definite, tr(X) is positive. Since My > 0 and
Mj; > 0, we may write Ay(a) = 0 as cua® + c3a® + c2a® + cia = 0, where
cg > 0,c3 < 0,c9 > 0,c; < 0. The proof follows exactly as the proof of

Theorem 3 in Section 4. Since Ay(a) must be negative between its two real

roots 0 and r, then A < 0 for 0 < a < r for sufficiently large n. O

References

[1] Baldessari, B. (1967), “The Distribution of a Quadratic Form of Normal
Random Variables,” The Annals of Mathematical Statistics, 38, 1700—

39



1704.

[2] Buja, A., Hastie, T., and Tibshirani, R. (1989), “Linear Smoothers and

Additive Models,” The Annals of Statistics, 17, 453-510.

[3] Casella, G., and Hwang, J. T. (1987), “Employing Vague Prior Infor-

[4]

[5]

[6]

[7]

8]

[9]

[10]

mation in the Construction of Confidence Sets,” Journal of Multivariate

Analysis, 21, 79-104.

Cressie, N. A. C. (1993), Statistics for Spatial Data, New York: John
Wiley and Sons.

de Boor, C. (1978), A Practical Guide to Splines, Redwood City, CA:
Addison-Wesley.

Eubank, R. L. (1988), Spline Smoothing and Nonparametric Regression,
New York: Marcel Dekker Inc.

Everitt, B., Landau, S., and Leese, M. (2001), Cluster Analysis, London:
Edward Arnold Publishers Ltd.

Falkner, F. (ed.) (1960), Child Development: An International Method
of Study, Basel: Karger.

Green, E. J., and Strawderman, W. E. (1991), “A James-Stein Type
Estimator for Combining Unbiased and Possibly Biased Estimators,”

Journal of the American Statistical Association, 86, 1001-1006.

Johnson, R. A., and Wichern, D. W. (1998), Applied Multivariate Sta-
tistical Analysis, Upper Saddle River, NJ: Prentice Hall Inc.

40



[11] Kaufman, L., and Rousseeuw, P. J. (1987), “Clustering by Means of
Medoids,” in Statistical Data Analysis Based on the Ly Norm, pp. 405—
416.

[12] Kaufman, L., and Rousseeuw, P. J. (1990), Finding Groups in Data: An
Introduction to Cluster Analysis, New York: John Wiley and Sons.

[13] Lehmann, E. L., and Casella, G. (1998), Theory of Point Estimation,
New York: Springer-Verlag Inc.

[14] Lieberman, O. (1994), “A Laplace Approximation to the Moments of a
Ratio of Quadratic Forms,” Biometrika, 81, 681-690.

[15] Ramsay, J. O. and Dalzell, C. J. (1991), “Some Tools for Functional Data
Analysis,” Journal of the Royal Statistical Society, Series B, Methodolog-
ical, 53, 539-561.

[16] Ramsay, J. O., and Silverman, B. W. (1997), Functional Data Analysis,
New York: Springer-Verlag Inc.

[17] Rodgers, W. L. (1988), “Statistical Matching,” in Encyclopedia of Sta-
tistical Sciences (9 Vols. Plus Supplement), Volume 8, pp. 663—664.

[18] Ross, S. M. (1996), Stochastic Processes, New York: John Wiley and

Sons.

[19] Stein, M. L. (1995), “Locally Lattice Sampling Designs for Isotropic
Random Fields,” The Annals of Statistics, 23, 1991-2012.

[20] Tan, W.Y. (1977), “On the Distribution of Quadratic Forms in Normal
Random Variables,” The Canadian Journal of Statistics, 5, 241-250.

41



[21] Taylor, J. M. G., Cumberland, W. G., and Sy, J. P. (1994), “A Stochastic
Model for Analysis of Longitudinal AIDS Data,” Journal of the Ameri-
can Statistical Association, 89, T27-736.

[22] Young, F. W., and Hamer, R. M. (1987), Multidimensional Scaling:
History, Theory, and Applications, Hillsdale, NJ: Lawrence Erlbaum

Associates.

42



