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1 Introduction

On October 3-4, 2015, Columbia, South Carolina and other areas of the state experienced

record-breaking rainfall. Over that two-day period the Columbia Metro Airport saw

10.28 inches of rain, far exceeding the previous two-day record of 7.69 inches set in 1949

(National Weather Service 2019). The result of this record rainfall was some of the

most severe flooding in South Carolina history, leading to about $12 billion in damages

across the state (Burris 2015). Among the casualties of the storm was the water gage

(United States Geological Survey 02169672) that measured the Cedar Creek stage, in

Richland County, South Carolina. At 11:00 PM, on October 4, the gage stopped reporting

stages, and the readings did not recommence until they sporadically appeared, beginning

approximately two weeks later (see Figure 1a). The goal of this project is to reconstruct

the Cedar Creek stage during the two-week window when the river stage was not recorded.

Stage is the water level above an arbitrarily chosen reference datum, typically measured in

feet (USGS 2019a). Gage heights can be used for a variety of reasons: “flood prediction,

water management and allocation, engineering design, research operation of locks and

dams, and recreation safety and enjoyment” (USGS 2019b). In this case, knowing the

height at the Cedar Creek gage allows us to see how that portion of the river was behaving

during the peak of this catastrophic flood.

[FIGURE 1 GOES AROUND HERE]

Our approach is to use the observed heights at a gage in the Congaree River to reconstruct

the river height at the missing gage location. The Congaree River gage at Congaree Na-

tional Park (USGS 02169625) remained functioning throughout the October 2015 flood.

This gage is located a few miles west of the Cedar Creek gage. Figure 2 highlights the

location for each gage (National Park Service 2019).

[FIGURE 2 GOES AROUND HERE]

During a flood, the Congaree River flows overbank and moves through the local natural

floodplain channels, through the wetlands, into Cedar Creek. Therefore, if a functional

1



relationship between river stages can be established for other similar floods in the past,

then the missing river stage at Cedar Creek can be reconstructed using the known Con-

garee River heights.

Once we have implemented our novel historical curve selection procedure, we will employ

functional data analysis (FDA), which is appropriate when the variables can naturally

be viewed as smooth curves or functions. “FDA can . . . be thought of as the statistical

analysis of samples of curves” (Kokoszka and Reimherr 2017). Therefore, FDA can

be applied to the river height data in order to establish the relationship between the

Congaree River gage values and Cedar Creek gage values to obtain the missing river

stage function.

The employment of functional regression to handle data that is best treated as func-

tional data rather than discrete observations is becoming more common in a variety of

fields. Authors such as Ramsay and Silverman (2005), Kokoszka and Reimherr (2017),

and Ramsay, Hooker, and Graves (2009) present numerous techniques used to analyze

functional data. The functional regression model was implemented by Das et al. (2018)

to create a method that improves the accuracy of total hemoglobin (SpHb) monitors; it

is a noninvasive hemoglobin monitoring tool that aids in creating better critical care pro-

tocols in trauma care. Zhang, Clayton, and Townsend (2011) used functional concurrent

linear regression for spatial images. They related information from a set of spatial images

to study forest nitrogen cycling. Wang et al. (2019) take a more robust approach to

functional regression to forecast wind speed using multiple functional variables as inputs.

FDA was also used by Ferraty, Rabhi and Vieu (2005) to regress scalar response variables

on an explanatory variable that should be treated as functional in order to obtain condi-

tional quantiles during an El Niño event in 1998. Ramsay et al. (2009) took hip and knee

angle data from a joint rotation study conducted by Olshen et al. (1989) and used FDA

to establish the relationship between hip and knee angles for children at corresponding

time points as they walk.

Moreover, FDA has been used to describe river data similar to ours. Masselot et al. (2016)
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used functional regression to forecast streamflow. Streamflow is naturally a continuous

variable with respect to time, as are the meteorological variables which influence it, and

thus functional regression models can be created to forecast streamflow. In particular,

Masselot et al. were interested in forecasting autumn streamflow and used meteorological

data such as precipitation curves. Their results indicated that functional linear models

perform better than neural networks when predicting the shape of hydrographs. Chebana,

Dabo-Niang, and Ouarda (2012) analyzed streamflow as functional data, using data from

hydrographs to adapt a model to deal with floods and droughts. While applying their

techniques to data obtained from Magpie Lake in Quebec, Canada, they concluded that

FDA can safely be applied to floods as it performs a single analysis on the whole data,

not several univariate or multivariate analyses. They do not create models for predictive

or reconstructive purposes, but they do recognize that as a potential future study, indi-

cating that FDA is a reasonable approach for predicting flood curves. Our study will use

functional regression to analyze floods; however, instead of using streamflow, we use river

stages as our variables.

Usually, the initial step in functional data analysis is to express the data through basis

expansion

Xi(t) ≈
M∑

m=1

cimBm(t), 1 ≤ i ≤ N (1)

where Bm(t), m = 1, . . . ,M are a standard collection of basis functions such as spline,

wavelets or cosine and sine functions and M is the number of basis functions used, with

cim being the corresponding coefficient. Also, i is the index for a specific curve, while N

is the total number of curves (Kokoszka and Reimherr 2017). Essentially, these M basis

functions are created to replace the raw measurements for numerous practical purposes.

When the sets of timepoints at which the data are collected differ among subjects, basis

expansion puts all of the curves into a common domain, making them easier to compare

and analyze. Additionally, M will almost always be smaller than the number of observed

timepoints, so basis expansion acts as a type of data reduction, where for each i, the

specific Xi curve is represented by the column vector ci = [ci1, ci2, . . . , ciM ]T , of dimension
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M . In this study, we will allow our functional data to be expressed via Fourier basis

functions and use an objective method to determine how many of them should be used

to represent the data.

2 Data Collection and Landmark Aligned Selection

2.1 Locating Flood Events

Functional regression models are used to predict or explain a functional response Y (t) us-

ing a functional predictor X(t). One type of functional regression model is the concurrent

model. The equation for this model is:

Yi(t) = β0(t) + β1(t)Xi(t) + εi(t), i = 1, . . . , N (2)

where the set of discretely measured functional observations can be written in matrix

form as

X =



X1(t1) . . . XN(t1)

X1(t2)
. . .

...

...
...

...

X1(tn) . . . XN(tn)


(3)

and

Y =



Y1(t1) . . . YN(t1)

Y1(t2)
. . .

...

...
...

...

Y1(tn) . . . YN(tn)


(4)

In our case study, the goal is to find the relationship between the heights of the Congaree

River and Cedar Creek during previous flood events and then to use the known Congaree

River heights during the October 2015 flood to reconstruct the corresponding Cedar Creek

stage function. In order to establish the relationship between gage values, we collect data

from prior flood events for both the Congaree River gage values and Cedar Creek gage
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values. Nearly complete stage records from January 1, 1995 to September 30, 2019 were

made available to us from members of the U.S. Geological Survey. These data can be

found on [link redacted because of double blinding]. According to the National Oceanic

and Atmospheric Administration (NOAA), the Congaree River at Congaree National

Park is at a moderate flood stage when it reaches 18 feet or more (US Department of

Commerce and NOAA). Historical data shows that this threshold has been met only

eight times, with a maximum height of 19.83 feet which happens to be during our flood

of interest in October 2015. Another of the events, on January 1, 2016, does not have

available corresponding Cedar Creek heights, and thus cannot be used in a regression

model, leaving six usable events remaining. In order to include more historic floods, we

loosened the cutoff to a crest of 17.85 feet, allowing us to use four more flood events.

Further reducing the cutoff below 17.85 results in more incomplete and unavailable data

and would permit events that may not be be considered true flood events. The list of

historic crests for the Congaree River at Congaree National Park is in Table 1.

[TABLE 1 GOES AROUND HERE]

2.2 Landmark Aligned Data Selection

After determining the dates of the peaks of interest, we need an objective method for

selecting each flood event’s starting and ending point. In the concurrent model, the

selected flood events should be aligned as closely as possible, which will enable a more

accurate prediction and narrower prediction interval for the predicted October 2015 Cedar

Creek curve. Since our particular goal is to use the Congaree stage to reconstruct the

Cedar Creek stage during the October 2015 flood, the curves for the past events used in

the model should resemble this October 2015 event as closely as possible. Additionally,

since the stages for these two locations are more strongly related when the Congaree

stage is high (when the river overflows across the floodplains into Cedar Creek), we place

more emphasis on aligning the curves at the higher stages of the events. This motivates

our novel Landmark Aligned L1 distance (LAL1) approach.
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Landmark Aligned L1 distance is based on traditional L1 distance between two curves:

d1 =
∫
|a(t)− b(t)|dt (5)

which we estimate via trapezoidal approximation, using the function trapz in the pracma

package (Borchers 2019). Here t is the index of the flood, which for our discretely observed

data, ranges over the number of measurement points of the target event’s curve b(t), and

a(t) represents one of the selected raw curves that needs to be aligned with the target

event’s curve.

A method of flood event definition that simply uses L1 distance is described in the

supplemental material; however, this L1 distance-based method is inadequate for selecting

start and end times of some of the events that have multiple peaks.

Our new LAL1 approach places more weight on aligning the highest sections of the stage

curves. This selection method starts with a single untrimmed flood event, and systemat-

ically trims the raw event to define the starting and ending points of each complete flood

event (denoted, say X(t)) in order to minimize the LAL1 distance between each event

and the target event of interest (October 2015), according to the following criterion:

LAL1 =
∫
|X(t)−X∗(t)|[X∗(t)2]dt (6)

Here, X∗(t) is the October 2015 Congaree River height ranging from October 1, 0:00 to

October 21, 19:45. The discretely measured observations are spaced 15 minutes apart,

leading to 2000 total observations. By multiplying the absolute difference by the square

of the Congaree stage at each t before approximating the integral, the LAL1 distance is

heavily influenced by the distance between X(t) and X∗(t) when X∗(t) is at its highest

points. As a result, the selected X(t) curve that minimizes this LAL1 distance will

resemble the target X∗(t) curve at the higher sections of X∗(t) much better than had we

chosen the start and end points using standard unweighted L1 distance.
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2.3 Applying Landmark Aligned Data Selection

We now describe our user-created LaL1.align R function (available at [link redacted

because of double blinding]) to define the start and end times of our flood events. In our

case study, there are 10 usable historical flood events. For each event, the date of the

Congaree River crest is known. We begin with an excessively long timeframe of stage

measurements before and after the crest of each flood event. We alternately remove one

point from the beginning of the raw event and then from the end; which of these “trims”

is used is based on which produces a smaller LAL1 distance between the trimmed curve

and the target (after interpolating to make the resulting vector the same length as the

target vector). This process of trimming from either the beginning or the end of the

event’s curve repeats until it has trimmed the entire vector for the event in question.

Then the pair of beginning and ending indices that had yielded the lowest LAL1 distance

from the target event is selected, which defines an event that best resembles the target

October 2015 event.

We now illustrate the effect of the algorithm to define our flood events’ start and end

times. The raw Congaree River stage curves for the 10 full flood events are shown in

Figure 3a. They are very dissimilar, with different patterns, maximum heights, and

lengths. These raw events are not suitable for the concurrent model. In contrast, Figure

3b displays the 10 Congaree River stage curves after defining the start and end times

of each flood event based on the LAL1 alignment approach. The similarity among the

curves that arise from this careful definition of the flood event timeframes will allow a

much better reconstruction of the October 2015 Cedar Creek curve via the concurrent

functional regression model. Once the dates and times of the best starting and ending

points of each event are established based on the Congaree heights, the corresponding

Cedar Creek stage height is observed from that start time until that end time, as seen in

Figure 1b for the February 2020 event.

[FIGURE 3 GOES AROUND HERE]

In order to implement the concurrent model, the discretized curves for all flood events
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must be the same length as each other and as the target event (the October 2015 event).

In practice, we will use interpolation within each curve to attain a common set of mea-

surement points across the set of curves. Since in reality, the flood events all have different

durations in terms of real clock time, we will define the “timepoints” of our adjusted flood

event curves in terms of fractions of the flood event duration. This is a common approach

in alignment and registration of functional data (see, for example, the “time-warping”

approach of Kokoszka and Reimherr (2017)), and it does not hinder the analysis of the

relationship between the Congaree River curves and the corresponding Cedar Creek stage

curves. Finding the best way to adjust for the variation in the durations of the functional

observations is one of the major contributions of this approach.

Again, since the Congaree River and Cedar Creek are most closely related when the

Congaree River is at its highest stage, the curves’ differences in Figure 3b towards the

beginnings and ends of the events are not troubling. In other data scenarios where every

section of the event is equally relevant, the start and end times could be selected using

standard L1 distance methods (such an alternate approach is implemented for these data

in the supplementary material).

The complete starting and ending points of these ten events are found in Table 1. These

ten “complete” flood events make up the dataset that we use to establish the functional

regression relationship between the gage heights. We note that the untrimmed February

2010 event was quite sporadic, having three local maxima in a very short period of time.

The crest of the trimmed flood event that was selected by our method is not the global

maximum, but is only 0.08 feet less than the highest peak. Also, for the November 2018

event, the flood event defined based on the true minimum LAL1 distance is only five

days long. We note that uniquely for this event, other choices of starting and ending

points led to a very similar LAL1 distance between it and the October 2015 Congaree

stages. While visually the other selection options looked more like a full flood event, we

found that replacing the five-day definition of this flood with a lengthier event definition

had virtually no impact on the final results; therefore, for the purposes of this study, we

chose to use the shorter November 2018 defined event that truly minimized the LAL1
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distance.

Once the start and end dates for the flood events were found, we input the Congaree

River stage values into the X matrix in Equation (3) and the corresponding Cedar Creek

curves into the Y matrix in Equation (4), in order to fit the concurrent model. There is a

visually clear association between the two curves, as seen in Figure 1b, which shows the

Congaree River stage values and Cedar Creek stage values for the February 2020 event,

and the notable association between the curves in this plot is evident in all ten flood

events.

We briefly note that the dataset required that three feet be added to Cedar Creek stage

values prior to October 1, 1998, because of a change in the Cedar Creek gage’s measure-

ment baseline on that date, as evidenced by an abrupt shift in gage height from 1.44 feet

to 4.44 feet on October 1, 1998 (the start of the new water year). These ten “complete”

flood events make up the datasets that we use to establish the relationship between the

gage heights.

3 Implementing FDA on the Gage Height Data Using the fRegress

function

We employ the fRegress function from the fda package (Ramsay et al. 2018) to fit the

concurrent model in R (R Core Team 2019). This function can be applied to a scalar

dependent variable model or the concurrent functional dependent variable model, the

latter of which applies to our case study.

In this model, the value of the response curve Y (t) depends on the value of the regressor

curve at the same time t (hence the name concurrent). In order to fit the concurrent

model using fRegress, the vectors representing the discretized functional observations

for all ten flood events must be the same length, as previously stated. The operation of

interpolation to attain a common set of measurement points across the flood events has a
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similar effect as time warping, (Ramsay et al. 2009), in that chronological time is adjusted

across the sampled curves to yield a time domain more convenient for the functional

data analysis. Since the goal is to establish a relationship between the Congaree River

and Cedar Creek at all the regions of the flood events’ domains, as long as the floods’

interpolated functional observations are aligned well, the concurrent model is appropriate

to use.

3.1 Parameter Selection for Functional Regression

Once the datasets have the same number of timepoints, the functional data analysis can

be implemented using the fRegress function. Obtaining estimates for the regression

coefficient functions β0(t) and β1(t) from Equation (2) is a necessary first step, and we

will use these estimates to reconstruct the missing October 2015 values for the Cedar

Creek gage (and obtain prediction intervals). To estimate β0(t) and β1(t), we must select

an appropriate smoothing parameter. Since the data are collected at discrete points, the

smoothing operation is the first step in converting the discretized functional data stored

in X and Y into functional objects. The smoothing parameter (denoted by λ) measures

the tradeoff between fit to the data and the variability of the smooth curve (Ramsay and

Silverman 2005). If the chosen λ is too small or too large, the smoothed curves will not

represent the data well; therefore, selecting the correct value of λ is an important step in

converting the raw discrete data to a functional object and estimating β0(t) and β1(t).

To select the proper value of λ, Ramsay et al. (2009) suggest generalized cross-validation

(GCV), originally developed by Craven and Wahba (1979). The best choice for λ is the

value that minimizes

GCV (λ) =

(
n

n− df(λ)

)(
SSE

n− df(λ)

)
(7)

Ramsay et al. (2009) also provide R code to produce a plot over a grid of log10(λ) to

identify the value of λ that minimizes GCV (λ).

10



Additionally, we must select the optimal number of Fourier basis functions to best rep-

resent the data as shown in Equation (1). Since our main goal is to use the concurrent

model for prediction, we used an L2-distance leave-one-out cross-validation to determine

the number of Fourier basis functions that minimizes the L2-distance (averaged over

all flood events) between the true response curve and the same event’s predicted (in a

leave-one-out manner) response curve. Each distance is calculated by using a trapezoidal

approximation of

d
(cv)
2 = N−1

N∑
i=1

∫
(Yi(t)− Ŷi(i)(t))2dt (8)

where Yi(t) is the true i-th response curve and Ŷi(i)(t) is the predicted response function

for the i-th event (predicted with a functional regression model fitted using all the events

except the i-th event).

Once we have selected the smoothing parameter and an appropriate number of Fourier

basis functions to use, we can fit the concurrent model to the river height data and obtain

estimates β̂0(t) and β̂1(t) using the fRegress function. Additionally, we obtain pointwise

95% confidence intervals for β0(t) and β1(t). The fRegress function also produces esti-

mates of the residual covariances and confidence limits for both β0(t) and β1(t). These

β0(t) and β1(t) estimates can then be used to reconstruct the October 2015 Cedar Creek

stage using the known October 2015 Congaree River stage using Equation (9):

Ŷi(t) = β̂0(t) + β̂1(t)Xi(t), i = 1, . . . , N (9)

4 Auxiliary Functions

We now describe several R functions created to quickly calculate quantities described in

the prior sections. The functions in their entirety are available via [link redacted because

of double blinding].
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4.1 LaL1.align

The LaL1.align function takes the target curve of interest and an additional event of in-

terest and determines the optimal beginning and ending points of the trimmed event that

minimize the Landmark Aligned L1 (LAL1) distance between that curve and the target

event. It then returns a vector of the trimmed additional event that is the same length as

the main curve. For maximum performance, input the timeframe of the secondary event

to be much wider than needed, with roughly equal-sized tails on each side of the expected

relevant portion of that event, and allow the algorithm to narrow the timeframe down to

the most significant portion of the secondary event based on the target event.

4.2 PredictFRegressNormTest Function

The PredictFRegressNormTest function takes a matrix of discretized explanatory func-

tional variables along with a corresponding response matrix to estimate the slope and

intercept curves in the concurrent model. Additionally, the function allows the user to

choose the number of Fourier basis functions and to specify the smoothing parameter λ.

Most importantly, we can also include an additional predictor vector (for a new functional

observation) that the function will use to create a predicted response curve for that new

functional observation and a 95% prediction interval that is calculated using paramet-

ric bootstrapping. The construction of the interval using the parametric bootstrapping

method is described in the next section.

4.3 L2Error.fRegress Function

The L2Error.fRegress function calculates the L2 distance d2 when the user inputs a

predictor matrix X, response matrix Y, a new predictor vector, and the corresponding

true response vector. This function fits the concurrent model to get a predicted response

and then calculates the L2 distance between the predicted responses and the true re-

sponses at each time point, using trapezoidal approximation to calculate the distance
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over all time points and to ensure that the data are treated as continuous rather than

discrete. This function is used in conjuction with the following L2bestEst function.

4.4 L2bestEst Function

The L2Error.fRegress function also allows the user to specify the basis type and number

of basis functions M (See Equation 1). The L2bestEst function is used to choose the

optimal number of basis functions by finding the number that yields the smallest average

L2 distance across all of the events (this is d
(cv)
2 from Equation (8)). This function takes

as its input X and Y. During each pass through a loop, one column (corresponding to

one flood event) at a time is left out and the concurrent model is fit with the remaining

columns. The L2 distance is calculated for each leave-one-column-out analysis. The

average of these distances is called average.L2diff in the function. This entire process

is repeated for a specified set of choices for M , which the user provides. Once the process

is repeated for each value of M , the L2bestEst function returns the value of the smallest

average L2 distance as well as the value of M that yields this optimal value. Once the

best M has been found, the PredictFRegressNormTest function can be used to obtain

predictions for the concurrent functional regression model.

5 Parametric Bootstrapping for Prediction Intervals

The following steps show how we use parametric bootstrapping in the PredictFRegressNormTest

function to obtain 95% pointwise prediction intervals for predicted response curves. The

general idea is to generate β∗
0(t) and β∗

1(t) 1000 times for every timepoint as well as 1000

ε∗(t)’s for each timepoint. Then, using the equation Y ∗(t) = β∗
0(t) + β∗

1(t)X(t) + ε∗(t),

1000 Y ∗(t) values are found, and the prediction interval is found by taking the 2.5% and

97.5% quantiles of the Y ∗(t) values, for each t.

1. Use the fRegress function to find ŷi(t), then plug that estimate into the formula

for MSE(t) =
∑n

i=1
(yi(t)−ŷi(t))

2

n−2
where, in our case study, n = 10 since there are ten

13



complete flood events.

2. Generate 1000 ε∗(t) from a N(0,MSE(t)) distribution, for each t.

3. Use the standard error outputted from the fRegress function to estimate the vari-

ances of β̂0(t) and β̂1(t) at each t.

4. Estimate the covariance of β̂0(t) and β̂1(t) pointwise for each t as in simple linear

regression, where Cov
(
β̂0, β̂1

)
= −XV ar

(
β̂1
)
.

5. Create a 2 × 2 variance-covariance matrix for every timepoint by combining the

results in steps 3 and 4.

6. Using the mvrnorm function from the MASS package (Venables and Ripley 2002),

generate 1000 dependent β∗
0(t) and β∗

1(t) values for each timepoint, generated from

a bivariate normal distribution with mean vector containing the point estimates

β̂0(t) and β̂1(t) obtained from the fRegress output, and variance-covariance matrix

created in step 5.

7. With 1000 β∗
0(t), β∗

1(t), and ε∗(t) generated, calculate 1000 estimates for the stage

of Cedar Creek, Y ∗(t), for each t.

8. Sort the 1000 Y ∗(t)’s at each t and take the 2.5 and 97.5 percentiles at each of these

timepoints to get a pointwise 95% prediction interval.

In order for the mvrnorm function to work in step 6, every 2 × 2 variance-covariance

matrix must be positive definite. In some cases (including at a small portion of the river

stage data), the natural noise in the data requires the matrix to be slightly modified to

become positive definite. Using the function make.positive.definite from the corpcor

package (Schafer et al. 2017), we can slightly adjust the variance-covariance matrices to

correct this problem. In our data, roughly 10% of the timepoints needed to be corrected,

and upon further examination, there is nearly no difference between the numerically non-

positive definite matrices compared to their corrected positive definite versions.

To check the assumption of normal errors implicit in our parametric bootstrap approach,
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we examined normal Q-Q plots of the residuals at each of the 2000 time points, and

tested the residuals for normality using a Shapiro-Wilk test at each of these times. Of

the 2000 Shapiro-Wilk tests, only 85 produced a p-value less than 0.05, 4.25% of the

tests, indicating the tests do not detect much departure from error normality overall.

The individual Q-Q plots did not show much marked departure from normality either.

Additionally, there is no clear pattern between the Shapiro-Wilk test p-values and the

regions of the flood event, and the 2000 p-values are evenly distributed between 0 and

1. This information indicates that using multivariate normal parametric bootstapping is

an acceptable method for producing prediction intervals for the October 2015 flood stage

reconstruction.

6 Applying Method to River Gage Height Data

Using the R functions previously described, a functional regression model can be estab-

lished to relate the stage functions at the two locations, and then we can reconstruct

the stage function for the flood event in which the Cedar Creek gage failed in October

2015. Recall that there are ten flood events for which both the Congaree River and Cedar

Creek gage have complete data, which we will use to determine the proper number of

basis functions in the regression model relating the two gage height functions.

The results of the process outlined by Ramsay et al. (2009) show that changing the

smoothing parameter λ for this problem does not have a strong impact on the resulting

estimates. For our data, the smoothing parameter can take on a wide range of values

(roughly 10−10 to 1010) without affecting the results: The slope and intercept plots look

exactly the same using any values in this range. With this in mind, we use λ = 10−1

for the remainder of the study. The code used to find λ can be found on [link redacted

because of double blinding], and the resulting graph is available in the supplementary

material.

Next, we determine the optimal number of Fourier basis functions using the aforemen-
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tioned L2bestEst function. After comparing the average error for a wide grid of basis

values of Fourier basis, the smallest error occurs with M = 11 Fourier basis functions.

Therefore, the rest of the analysis will be done using 11 Fourier basis functions.

6.1 Putting it all together: Producing Final Predictions

Now, using the optimized basis type and number, we produce estimates for β0(t) and β1(t),

whose graphs are shown in Figure 4a and Figure 4b. Regression function 1 represents the

estimated intercept function β̂0(t) throughout the flood event, and Regression function 2

is the slope function β̂1(t). This is the default output from the plotbeta command from

the fda package.

[FIGURE 4 GOES HERE]

Both the β̂0(t) and the β̂1(t) attain their largest magnitude at the peak portion of the

flood event (around the time labeled 500). This could be because of the transition in

Cedar Creek’s flow from a base flow, at the lower stages, to a flow that is dominated

by the flooding from the rising Congaree River. The key takeaway from these graphs

is that all of the values in the β̂1(t) (Regression Function 2) graph are positive. This

indicates that no matter the time within the flood event, when the stage of the Congaree

River increases, so does the predicted stage of Cedar Creek. Another observation is that

near the peak of the flood event, an increase in the stage of the Congaree River causes

a substantially greater increase in the predicted stage of Cedar Creek. This is consistent

with the known relationship between these two locations, as the Congaree River only

feeds into Cedar Creek once it gets high enough to flow through the floodplains in the

national park (see Figure 2).

The key is that for each specific flood, the relationship between the Congaree River and

Cedar Creek stages follows a similar pattern, and that pattern is what the concurrent

functional model captures. The model establishes a relationship between the two river

stages at each portion of the flood event that can then be used to reconstruct the Cedar
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Creek (response) gage height based on the time within the flood event and the height

of the Congaree River at that point. Figure 1b gives an example (for the February

2020 event) of the strong association between the respective stages of the two locations,

which gives credence to the appropriateness of the concurrent regression model for these

data.

6.2 Application: Reconstructing Cedar Creek Stage for October 2015 Flood

Event

Once the relationship between the two locations during a flood event has been established,

the β̂0(t) and β̂1(t) estimates as well as the known 2015 Congaree River stage can be

plugged into Equation (2), the concurrent model, to reconstruct the Cedar Creek stage

during this flood event.

[FIGURE 5 GOES HERE]

The graph in Figure 5 shows the resulting full October 2015 Cedar Creek stage prediction

and estimates how high Cedar Creek rose once the gage stopped producing data. The

prediction follows the available Cedar Creek data at the beginning and end of the flood

event (dotted curve) quite well despite the fact that the available stages were not used

in the reconstruction. The 95% prediction interval obtained from the aforementioned

parametric bootstrapping is also very encouraging, as it is relatively the same width all

the way through the flood event, most notably at the crest of the event. The predicted

maximum Cedar Creek stage is 17.59 feet. Since the focal point of the selection of the

flood event timeframes was to correctly capture the behavior at the peak, it is appropriate

to investigate the validity of this predicted maximum.

The highest Cedar Creek stage on record is 16.02 feet during the February 2020 flood.

The second highest recorded Congaree River stage occured during the February 2020

flood, with the highest crest occuring during the October 2015 flood of interest, so it

makes sense that the October 2015 Cedar Creek prediction would yield a maximum value
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higher than 16.02 feet. While 17.59 feet might seem a little bit higher than expected, note

that the October 2015 flood is unique. The Congaree River experienced at least a 25-

year flood in October 2015 and all its tributaries flowing through Congaree National Park

recorded historically high flows. On top of that, local dams failed, exacerbating already

extreme flood conditions, leading to much of the damage and destruction discussed in

the introduction. As a result, a predicted maximum height of 17.59 is very reasonable for

this historic flood event. That, along with how well the model reconstructs the known

portions of the 2015 Cedar Creek stages, is further confirmation of the validity of the

results and therefore the method as a whole.

7 Discussion

Overall, the results of our method are promising. The LAL1 difference method used to

select the start and end times of our flood events performs well and leads to a reliable

reconstruction of the missing 2015 Cedar Creek stage. It is important to note that in

some classical functional data sets that arise from planned experiments, such as the hip

and knee angle data of Olshen et al. (1989), the start and end times of each functional

observation are known, being decided by the experimenter. However, in certain observa-

tional data sets such as our river stage data, the functional observations are sections of

longer time series of data, and the start and end times of the functions are not obvious.

Our investigation has shown that selecting the start and end times of the functions (i.e.,

defining the timeframes of the flood events, in our data example) has a sizable impact

on the quality of the regression results. In particular, for the functional regression prob-

lem, selecting the start and end points of the observed functions so that they resemble (in

whatever aspect is most relevant) the explanatory function corresponding to the unknown

response function to be predicted is crucial.

This suggests that in other situations where the explanatory and response variables can

be treated as concurrently related functional data objects, not only can the functional
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regression produce estimates for the β0(t) and β1(t) curves, but our method will also

do well at reconstructing missing response data as long as the timeframes defining the

explanatory curves have been appropriately selected. We note that implementation of

functional data analysis for prediction (or reconstruction) of unknown response curves is

something that has rarely been done in the statistical literature; many previous uses of

functional regression have primarily focused on explaining the association between two

functional data processes, rather than primarily aiming to use an observed explanatory

function to predict an unobserved response function. This fact makes this study an

innovative application of functional data analysis.
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8 Figures and Graphs

Table 1: Historic Congaree River Crests

Rank Max Stage (ft.) Date of Crest Start Date and Time End Date and Time

1 19.83* 10/05/2015 10/01/15 00:00 10/21/15 19:45
2 19.54 02/10/2020 01/31/20 11:30 03/13/20 13:00
3 18.65 03/23/2003 03/20/03 12:45 04/01/03 12:45
4 18.28* 01/01/2016 Not Used Not Used
5 18.27 08/31/1995 08/26/95 12:00 09/07/95 00:00
6 18.20 02/06/1998 02/02/98 10:00 02/18/98 02:00
7 18.16 05/09/2013 05/05/13 03:30 05/15/13 22:30
8 18.16 09/11/2004 09/07/04 08:45 09/18/04 00:45
9 17.95 03/05/2007 02/28/07 18:15 03/16/07 23:30
10 17.90 11/18/2018 11/17/18 22:45 11/22/18 07:30
11 17.85 02/08/2010 01/24/10 05:00 02/06/10 00:00
12 17.85 05/25/2003 05/21/03 23:15 06/03/03 00:15

Maximum historic crests for the Congaree River gage at Congaree National Park, 1995-
2020 and complete dates of observed flood records used in concurrent model

* Indicates no available corresponding Cedar Creek heights
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Figure 1

(a) Observed river stages for the Congaree River and Cedar Creek during the major October 2015 flood
event in Columbia SC: Note the missing portion of the Cedar Creek height

(b) Full, known stages for Congaree River and Cedar Creek during the February 2020 flood event
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Figure 2

Map of Congaree National Park along with the approximate location of both of the gages
used in this study
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Figure 3

(a) Raw Congaree curves for all ten of the available flood events prior to using the selection method

(b) All 10 LAL1 selected Congaree River curves aligned with the target October 2015 Congaree River
event
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Figure 4

(a) β0(t) (Regression Function 1 = Intercept) Estimate using optimized LAL1 distance selected data,
optimized number of Fourier basis functions and pointwise 95% confidence limits

(b) β1(t) (Regression Function 2 = Slope) Estimate using optimized LAL1 distance selected data, opti-
mized number of Fourier basis functions and pointwise 95% confidence limits
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Figure 5

Predicted Cedar Creek stage for October 2015 flood event when the gage fails, accom-
panied by 95% pointwise confidence intervals and available true gage heights for Cedar
Creek during the flood event.
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