
STAT 770, Spring 2017: Homework 5

1. Analyze the data of 6.15 (p. 245) using exact logistic regression; note that SAS reports
separation in the data. Specifically, fit the additive model (homogeneous association)
and test whether cure is independent of delay given penicillin level at the 5% level.
Use the score test with the exact p-value. Interpret the estimated odds ratio and
95% CI for delay. Repeat the analysis using a Bayesian approach suitable for small
samples. In particular, to assess how delay affects odds, exponentiate the endpoints
of the equal-tailed interval for the delay parameter and compare to the conditional
logistic regression approach.

data cure;

input level$ delay$ cured died @@;

total=cured+died;

datalines;

’1/8’ none 0 6 ’1/8’ ’1.5h’ 0 5

’1/4’ none 3 3 ’1/4’ ’1.5h’ 0 6

’1/2’ none 6 0 ’1/2’ ’1.5h’ 2 4

’1’ none 5 1 ’1’ ’1.5h’ 6 0

’4’ none 2 0 ’4’ ’1.5h’ 5 0

;

proc logistic data=cure; class level delay / param=ref;

model cured/total=level delay;

exact delay / estimate=both;

proc genmod; class level delay / param=ref;

model cured/total=level delay / link=logit dist=bin;

bayes coeffprior=jeffreys;

2. Problem 6.27.

3. Consider the kyphosis data of problem 5.8 (p. 199).

(a) Fit the simple logistic regression model log{πi/(1− πi)} = β0 + β1ai, where ai is
age and πi is the probability that kyphosis is present in child i. Plot ri vs. ai and
superimpose a loess smooth. Comment. Does the H-L test show lack-of-fit?

(b) Fit the kyphosis data using a generalized additive model and formally test whether
a “wiggly” part is needed on top of the linear trend.

(c) Finally, add a quadratic term to the model and test whether it is significant.

(d) Going from (a) to (b) to (c) the alternative (for H-L, deviance test in generalized
additive model, and test of dropping quadratic term) becomes more and more
focused. What happens to the p-value when we finally look “in the right place?”
This illustrates why H-L can have low power to detect lousy models.
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data kyphosis;

input age k @@;

datalines;

12 1 15 1 42 1 52 1 59 1 73 1 82 1 91 1 96 1 105 1 114 1 120 1 121 1 128 1

130 1 139 1 139 1 157 1 1 0 1 0 2 0 8 0 11 0 18 0 22 0 31 0 37 0 61 0

72 0 81 0 97 0 112 0 118 0 127 0 131 0 140 0 151 0 159 0 177 0 206 0

;

proc logistic data=kyphosis;

model k(event=’1’)=age / lackfit;

output out=out stdreschi=r;

proc sgscatter data=out;

plot r*age / loess;

proc gam data=kyphosis;

model k(event=’1’)=spline(age) / dist=bin link=logit;

proc logistic data=kyphosis;

model k(event=’1’)=age age*age;

4. Consider the data of Problem 8.4 (p. 331). Table 8.17 is actually wrong, the correct
data are listed below.

(a) Fit a baseline-category generalized logit model to these data with gender and
length as predictors. Test at the 5% level whether you can drop gender with a
Type 3 test.

(b) In a model that includes only length, summarize how the odds of choosing fish
over invertebrates changes when length is increased by one meter. Include and
interpret a 95% CI.

(c) Produce and interpret a plot that shows how the probabilities of (F, I, O) change
with length.

(d) Set the equations for the probabilities of fish or invertebrate as functions of length
equal to each other, i.e. πF (L) = πI(L) and solve for L to find the length at which
the probabilities cross.
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data alligator;

input gender$ length food$ @@;

datalines;

M 1.30 I M 1.32 F M 1.32 F M 1.40 F M 1.42 I M 1.42 F M 1.47 I M 1.47 F

M 1.50 I M 1.52 I M 1.63 I M 1.65 O M 1.65 O M 1.65 I M 1.65 F M 1.68 F

M 1.70 I M 1.73 O M 1.78 F M 1.78 O M 1.80 F M 1.85 F M 1.93 I M 1.93 F

M 1.98 I M 2.03 F M 2.03 F M 2.31 F M 2.36 F M 2.46 F M 3.25 O M 3.28 O

M 3.33 F M 3.56 F M 3.58 F M 3.66 F M 3.68 O M 3.71 F M 3.89 F F 1.24 I

F 1.30 I F 1.45 I F 1.45 O F 1.55 I F 1.60 I F 1.60 I F 1.65 F F 1.78 I

F 1.78 O F 1.80 I F 1.88 I F 2.16 F F 2.26 F F 2.31 F F 2.36 F F 2.39 F

F 2.41 F F 2.44 F F 2.56 O F 2.67 F F 2.72 I F 2.79 F F 2.84 F

;

proc logistic data=alligator; class food gender;

model food=length / link=glogit;

output out=out p=p;

proc sort data=out; by _level_ length;

proc sgplot data=out;

title "Predicted probabilities";

series x=length y=p / group=_level_;

yaxis min=0 max=1;

5. Consider the data of Problem 8.10. Fit a proportional odds (cumulative logit) model
with treatment and gender as predictors. Carefully interpret the treatment and gender
effects in terms of odds ratios; include interpretation of 95% CIs.
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data lung;

input therapy$ gender$ response count @@;

datalines;

s m 1 28 s m 2 45 s m 3 29 s m 4 26

s f 1 4 s f 2 12 s f 3 5 s f 4 2

a m 1 41 a m 2 44 a m 3 20 a m 4 20

a f 1 12 a f 2 7 a f 3 3 a f 4 1

;

proc logistic data=lung;

class therapy gender;

weight count;

model response=therapy gender;
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