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8.1 Baseline category logit models for nominal responses

Let Y be categorical with J levels. Let πj(x) = P(Y = j |x).

Logit models pair each response Y = j with the baseline category,
here Y = J:

log
πj(x)

πJ(x)
= αj + β′jx, for j = 1, . . . , J − 1.

The parameters are α = (α1, . . . , αJ−1) and (β1, . . . ,βJ−1). If
each βj is p − 1 dimensional, then there are
(J − 1) + (p − 1)(J − 1) = (J − 1)p parameters to estimate.

For a fixed x, the ratio of probabilities Y = a versus Y = b is
given by

πa(x)

πb(x)
= exp

{
(αa − αb) + (βa − βb)′x

}
.

This model reduces to ordinary logistic regression when J = 2.
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Alligator food!

Size Primary food choice
Lake Gender (m) Fish Invertebrate Reptile Bird Other
Hancock Male ≤ 2.3 7 1 0 0 5

> 2.3 4 0 0 1 2
Female ≤ 2.3 16 3 2 2 3

> 2.3 3 0 1 2 3
Oklawaha Male ≤ 2.3 2 2 0 0 1

> 2.3 13 7 6 0 0
Female ≤ 2.3 3 9 1 0 2

> 2.3 0 1 0 1 0
Trafford Male ≤ 2.3 3 7 1 0 1

> 2.3 8 6 6 3 5
Female ≤ 2.3 2 4 1 1 4

> 2.3 0 1 0 0 0
George Male ≤ 2.3 13 10 0 2 2

> 2.3 9 0 0 1 2
Female ≤ 2.3 3 9 1 0 1

> 2.3 8 1 0 0 1
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From n = 219 alligators caught in four Florida lakes

Let L be lake, G be gender, and S size. Each alligator will have
x = (L,G , S) as a predictor for what they primarily eat. The
probability of food source being (fish, invertebrate, reptile, bird,
other) is π = (π1, π2, π3, π4, π5), where π = π(x) according to the
baseline logit model.

data gator;

input lake gender size food count ;

datalines;

1 1 1 1 7

1 1 1 2 1

1 1 1 3 0

1 1 1 4 0

1 1 1 5 5

...

4 2 2 1 8

4 2 2 2 1

4 2 2 3 0

4 2 2 4 0

4 2 2 5 1

;

proc logistic; freq count; class lake size gender / param=ref;

model food(ref=’1’) = lake size gender lake*size size*gender lake*gender / link=glogit

aggregate scale=none selection=backward;
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Backwards elimination

We have

Summary of Backward Elimination

Effect Number Wald

Step Removed DF In Chi-Square Pr > ChiSq

1 lake*size 12 5 0.7025 1.0000

2 size*gender 4 4 1.3810 0.8475

3 lake*gender 12 3 8.0477 0.7814

4 gender 4 2 2.1850 0.7018

The final model has lake and size as additive effects; gender is
unimportant to predicting primary food source. GOF and Type III
analyses:

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 52.4785 44 1.1927 0.1784

Pearson 58.0140 44 1.3185 0.0765

Type 3 Analysis of Effects

Wald

Effect DF Chi-Square Pr > ChiSq

lake 12 35.4890 0.0004

size 4 18.7593 0.0009
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GOF statistics

Unless we specify the variables to aggregate over (e.g.
aggregate=(lake size) in the model statement), the SAS GOF
tests use all variables in the original model we worked backwards
from to determine the saturated model. The original model has
three effects: lake, gender, and size.

The saturated model has 16 sets (4 lakes × 2 genders × 2 sizes)
of 5 probabilities associated with it. Since the probabilities in each
row add to one, that implies 16× 4 = 64 parameters total in the
saturated model.

However, the reduced model from SAS only has the effects lake
and size! The number of parameters in the reduced model is 20:
12 lake effects, 4 size effects, and 4 intercepts.

Since we’ve determined that gender is not important, we should
not include gender in the saturated model when determining lack
of fit.
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L + S fit

We refit the model including only those predictors L + S in the
final model:

proc logistic; freq count; class lake size / param=ref;

model food(ref=’1’) = lake size / link=glogit aggregate scale=none;

yielding

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 17.0798 12 1.4233 0.1466

Pearson 15.0429 12 1.2536 0.2391

The df = 12 is the number of parameters in the saturated model
aggregated over only lake and gender minus the number in the
reduced regression model. The saturated model has four
parameters (five probabilities that add to one) for each level of lake
and size: 4× 4× 2 = 32 df . The regression model (still) has
p = 20 effects so there are 32− 20 = 12 df for testing model fit.

There is little replication here so the p-values are suspect.
However, 17.1 < 2× 12 and 15.0 < 2× 12, so there is no evidence
of gross LOF.
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Regression parameter estimates

Analysis of Maximum Likelihood Estimates

Standard Wald

Parameter food DF Estimate Error Chi-Square Pr > ChiSq

Intercept 2 1 -1.5490 0.4249 13.2890 0.0003

Intercept 3 1 -3.3139 1.0528 9.9081 0.0016

Intercept 4 1 -2.0931 0.6622 9.9894 0.0016

Intercept 5 1 -1.9043 0.5258 13.1150 0.0003

lake 1 2 1 -1.6583 0.6129 7.3216 0.0068

lake 1 3 1 1.2422 1.1852 1.0985 0.2946

lake 1 4 1 0.6951 0.7813 0.7916 0.3736

lake 1 5 1 0.8262 0.5575 2.1959 0.1384

lake 2 2 1 0.9372 0.4719 3.9443 0.0470

lake 2 3 1 2.4583 1.1179 4.8360 0.0279

lake 2 4 1 -0.6532 1.2021 0.2953 0.5869

lake 2 5 1 0.00565 0.7766 0.0001 0.9942

lake 3 2 1 1.1220 0.4905 5.2321 0.0222

lake 3 3 1 2.9347 1.1161 6.9131 0.0086

lake 3 4 1 1.0878 0.8417 1.6703 0.1962

lake 3 5 1 1.5164 0.6214 5.9541 0.0147

size 1 2 1 1.4582 0.3959 13.5634 0.0002

size 1 3 1 -0.3513 0.5800 0.3668 0.5448

size 1 4 1 -0.6307 0.6425 0.9635 0.3263

size 1 5 1 0.3316 0.4483 0.5471 0.4595
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Theoretical and fitted models

The theoretical model is

log

(
πI

πF

)
= α2 + β21I{L = 1}+ β22I{L = 2}+ β23I{L = 3}+ β24I{S = 1}

log

(
πR

πF

)
= α3 + β31I{L = 1}+ β32I{L = 2}+ β33I{L = 3}+ β34I{S = 1}

log

(
πB

πF

)
= α4 + β41I{L = 1}+ β42I{L = 2}+ β43I{L = 3}+ β44I{S = 1}

log

(
πO

πF

)
= α5 + β51I{L = 1}+ β52I{L = 2}+ β53I{L = 3}+ β54I{S = 1}

The estimated model is

log

(
π̂I

π̂F

)
= −1.55− 1.66I{L = 1}+ 0.94I{L = 2}+ 1.12I{L = 3}+ 1.46I{S = 1}

log

(
π̂R

π̂F

)
= −3.31 + 1.24I{L = 1}+ 2.46I{L = 2}+ 2.93I{L = 3} − 0.35I{S = 1}

log

(
π̂B

π̂F

)
= −2.09 + 0.70I{L = 1} − 0.65I{L = 2}+ 1.09I{L = 3} − 0.63I{S = 1}

log

(
π̂O

π̂F

)
= −1.90 + 0.82I{L = 1}+ 0.01I{L = 2}+ 1.52I{L = 3}+ 0.33I{S = 1}
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Interpretation

Note that eβji is how the odds of eating food in category j
(j = 2, 3, 4, 5) changes (relative to eating fish) with levels of lake
relative to George (i = 1, 2, 3) or alligator size relative to large
(i = 4).

For example eβ32 is how the odds of eating primarily reptiles
(j = 3) changes for lake Oklawaha (i = 2) versus lake George,
holding size constant. Here, we estimate e2.46 ≈ 11.7. There’s
probably proportionately more reptiles (relative to fish) in
Oklawaha than George!

Similarly, eβ44 is how the odds of eating primarily birds (j = 4)
changes for smaller alligators (i = 4), holding lake constant. We
estimate this as e−0.63 ≈ 0.53. The odds of eating primarily birds
(relative to fish) increases by e0.63 ≈ 1.88 for large alligators.
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Let’s answer some more questions

How does the odds of choosing invertebrates over fish change from
small to large alligators in a given lake? Answer:

πI
πF

(S = 1, L = l)
πI
πF

(S = 2, L = l)
= eβ24 .

From the regression coefficients we have e1.4582 = 4.298. The odds
of primarily eating invertebrates over fish are four times greater for
smaller alligators than larger alligators. Is this significant? Yes,
p = 0.0002 for H0 : β24 = 0. What about a 95% CI?

A 95% CI is part of the output automatically generated by PROC
LOGISTIC.
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Odds ratios

Odds Ratio Estimates

Point 95% Wald

Effect food Estimate Confidence Limits

lake 1 vs 4 2 0.190 0.057 0.633

lake 1 vs 4 3 3.463 0.339 35.343

lake 1 vs 4 4 2.004 0.433 9.266

lake 1 vs 4 5 2.285 0.766 6.814

lake 2 vs 4 2 2.553 1.012 6.437

lake 2 vs 4 3 11.685 1.306 104.508

lake 2 vs 4 4 0.520 0.049 5.490

lake 2 vs 4 5 1.006 0.219 4.608

lake 3 vs 4 2 3.071 1.174 8.032

lake 3 vs 4 3 18.815 2.111 167.717

lake 3 vs 4 4 2.968 0.570 15.447

lake 3 vs 4 5 4.556 1.348 15.400

size 1 vs 2 2 4.298 1.978 9.339

size 1 vs 2 3 0.704 0.226 2.194

size 1 vs 2 4 0.532 0.151 1.875

size 1 vs 2 5 1.393 0.579 3.354

So e1.4582 = 4.298 with a 95% CI of (1.98, 9.34).
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Reptiles vs. birds

How about reptiles over birds?

πR
πB

(S = 1, L = l)
πR
πB

(S = 2, L = l)
= eβ34−β44 = e−0.35−(−0.63) ≈ 1.3.

This is an exponentiated contrast, but I’d suggest simply refitting
the model with “birds” as the reference category to get a CI:

proc logistic; freq count; class lake size / param=ref;

* type 4 is birds and type 3 is reptiles;

model food(ref=’4’) = lake size / link=glogit aggregate scale=none;

and pull out

Odds Ratio Estimates

Point 95% Wald

Effect food Estimate Confidence Limits

size 1 vs 2 3 1.322 0.272 6.421

The odds of primarily eating primarily reptiles over birds are 1.3
times greater for small alligators than large ones. Does this mean
that small (or large) alligators eat more reptiles than birds? Hint:
what if the odds are 13 and 10? What if they are 0.13 and 0.10?
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In terms of probabilities...

Odds are 13 and 10:

1.3 =

[
13/14
1/14

]
[

10/11
1/11

] ,
implies more reptiles than birds for small and large alligators!

Odds are 0.13 and 0.10:

1.3 =

[
13/113

100/113

]
[

1/11
10/11

] ,
implies more birds than reptiles for small and large alligators!

Odds ratios tell you nothing about the actual probabilities
underlying the events of interest.
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Fitted multinomial probabilities

Figure 8.1, p. 297: note that the curves have to add up to one.
As the alligator gets bigger, she increasingly chooses “fish” and
“other” over “invertebrates” (worms, snails, bugs, etc.) Would
you?

Let x be a fixed covariate vector and say n observations are
sampled at x. Then n = (n1, . . . , nJ) ∼ mult(n,π(x)) where
π(x) = (π1(x), . . . , πJ(x)) and

πj(x) =
exp(αj + β′jx)

1 +
∑J−1

h=1 exp(αh + β′hx)
.

For example, each row in the alligator food table is a different
multinomial vector n = (n1, n2, n3, n4, n5) corresponding to a
unique x yielding probabilities π(x) through the baseline logit
model.
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8.2 Cumulative logit models for ordinal responses

Let Y be ordinal with J categories. The proportional odds model
stipulates

log
P(Y ≤ j |x)

P(Y > j |x)
= αj + β′x for j = 1, . . . , J − 1.

There are only (J − 1) + (p − 1) parameters to estimate rather
than p(J − 1) with the nominal model.

The odds for Y ≤ j is allowed to change with j through αj .
However, the effect of covariates x on odds Y ≤ j is independent
of j . Note that P(Y ≤ J)/(Y > J) is 1/0 and undefined.

This model reduces to ordinary logistic regression when J = 2.
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Model, restated

Restated, the odds of Y ≤ j at x1 divided by the odds of Y ≤ j at
x2 are, under the model:

log
P(Y ≤ j |x1)/P(Y > j |x1)

P(Y ≤ j |x2)/P(Y > j |x2)
= β′(x1 − x2).

This is the log cumulative odds ratio.

The odds of making response ≤ j at x1 are eβ′(x1−x2) times the
odds at x2, independent of the level j .

Note that eβj is how the odds of Y ≤ j change when increasing
the predictor xj by one.
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Mental impairment example

Y = 1, 2, 3, 4 is degree of impairment (well, mild symptom
formation, moderate symptom formation, impaired) for n = 40
randomly sampled people in Alachua County, Florida.

We wish to relate Y to L = number and severity of important life
events (new baby, new job, divorce, death in family within 3 years),
S = socioeconomic status (low=0 or high=1).

Y S L Y S L Y S L Y S L

1 1 1 1 1 9 1 1 4 1 1 3
1 0 2 1 1 0 1 0 1 1 1 3
1 1 3 1 1 7 1 0 1 1 0 2
2 1 5 2 0 6 2 1 3 2 0 1
2 1 8 2 1 2 2 0 5 2 1 5
2 1 9 2 0 3 2 1 3 2 1 1
3 0 0 3 1 4 3 0 3 3 0 9
3 1 6 3 0 4 3 0 3
4 1 8 4 1 2 4 1 7 4 0 5
4 0 4 4 0 4 4 1 8 4 0 8
4 0 9
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SAS code

data impair;

input mental ses life;

datalines;

1 1 1

1 1 9

...

4 0 8

4 0 9

;

proc logistic;

model mental = life ses / aggregate scale=none;

Output:

Response Profile

Ordered Total

Value mental Frequency

1 1 12

2 2 12

3 3 7

4 4 9

Probabilities modeled are cumulated over the lower Ordered Values.

Score Test for the Proportional Odds Assumption

Chi-Square DF Pr > ChiSq

2.3255 4 0.6761
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8.2.5 GOF test vs. more general model

The test of the proportional odds assumption tests the fitted
model against the alternative

log
P(Y ≤ j |x)

P(Y > j |x)
= αj + β′jx for j = 1, . . . , J − 1.

The proportional odds model is a special case where
β1 = β2 = · · · = βJ−1 = β. The drop in model parameters is
p(J − 2), here 2(4− 2) = 4 df . We accept that the simpler
cumulative logit model fits, and find no gross LOF from the
Pearson GOF:

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 57.6833 52 1.1093 0.2732

Pearson 57.0248 52 1.0966 0.2937

Number of unique profiles: 19

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 9.9442 2 0.0069

Score 9.1431 2 0.0103

Wald 8.5018 2 0.0143
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Parameter estimates

Analysis of Maximum Likelihood Estimates

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 1 -0.2818 0.6231 0.2045 0.6511

Intercept 2 1 1.2129 0.6511 3.4700 0.0625

Intercept 3 1 2.2095 0.7171 9.4932 0.0021

life 1 -0.3189 0.1194 7.1294 0.0076

ses 1 1.1111 0.6143 3.2719 0.0705

Odds Ratio Estimates

Point 95% Wald

Effect Estimate Confidence Limits

life 0.727 0.575 0.919

ses 3.038 0.911 10.126

The fitted model is

log

{
P(Y = 1)

P(Y = 2, 3, 4)

}
= −0.28− 0.32 life + 1.11 ses

log

{
P(Y = 1, 2)

P(Y = 3, 4)

}
= 1.21− 0.32 life + 1.11 ses

log

{
P(Y = 1, 2, 3)

P(Y = 4)

}
= 2.21− 0.32 life + 1.11 ses
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Interpretation

Note that α1 < α2 < α3 must hold because this series of odds can
only increase. The event of interest is Y ≤ j , i.e. being “less
impaired.”

The odds of being “less impaired” increases by e1.11 = 3.0 for high
socioeconomic status versus low (for fixed number of life events).
The odds of being “less impaired” decreases by a factor of
e−0.32 = 0.73 for every additional life event that occurred in the
previous 3 years (for fixed socioeconomic status).

Put another way, for high ses the odds of being more impaired is
only 1/3 that of low ses (so low ses is bad). The odds of being
more impaired increases by 1/0.727 = 1.38 for every additional life
event.

Low SES is equivalent to about 3.5 life events: [e0.3189]3.5 ≈ 3.05.

22 / 43



8.2.3 Latent variable motivation*

It is useful to think of each individual having an underlying
continuous “impairment” score Y ∗. This latent continuous
variable determines the observed level of impairment via cutoffs

Y ∗ < α1 ⇒ Y = 1
α1 < Y ∗ < α2 ⇒ Y = 2
α2 < Y ∗ < α3 ⇒ Y = 3
α3 < Y ∗ ⇒ Y = 4

The latent score has a regression model

Y ∗ = −β1 life− β2 ses + ε,

where ε is subject-to-subject error and distributed standard logistic

f (ε) =
eε

(1 + eε)2
.
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Latent variable formulation

This formulation is equivalent to the proportional odds model. To
see this, note that the CDF of the logistic distribution is
F (ε) = eε

(1+eε) . Then

P(Y = 1) = P(Y ∗ ≤ α1)

= P(−β1life− β2ses + ε ≤ α1)

= P(ε ≤ α1 + β1life + β2ses)

=
eα1+β1life+β2ses

(1 + eα1+β1life+β2ses)

yielding

log

{
P(Y = 1)

P(Y = 2, 3, 4)

}
= α1 + β1life + β2ses.

Repeat for P(Y ≤ 2) and P(Y ≤ 3).
See Figure 8.5 (p. 304).
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Generalizations

8.3 & 8.3.1 discusses other models

P(Y ≤ j |x) = F (αj + β′x),

where F is probit or complimentary log-log. These can also be
fit in PROC LOGISTIC (LINK=CPROBIT or
LINK=CCLOGLOG) and may improve fit over proportional
odds (i.e. the cumulative logit model).

8.3.8 adds covariate-specific dispersion:

P(Y ≤ j |x) = F

(
αj + β′x

exp(γ ′x)

)
.

This model can also improve model fit and can be fit with
some work in PROC NLMIXED. See Figure 8.7 (p. 313).
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8.3.6 Continuation ratio logits & discrete survival analysis

Let Y = 1, . . . , J be ordered stages that one must pass through in
order starting with the first (e.g. egg, larva or caterpillar, pupa or
chrysalis, and adult butterfly). Often the categories are time
periods (e.g. years 1, 2, 3, 4). Let

hj(x) = P(Y = j |Y ≥ j).

This probability is termed the hazard of ending up in stage Y = j .
If Y = j indicates death in time period j , then this is the risk of
dying right at j given that you’ve made it up to j .

Let P(Y = j) = πj(x). Then

hj(x) =
πj(x)

πj(x) + πj+1(x) + · · ·+ πJ(x)
.
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Hazard regression

The logit model specifies

log

{
hj(x)

1− hj(x)

}
= αj + β′x.

This is an example of a hazard regression model.

Note that

hj(x)

1− hj(x)
=

P(Y = j)/P(Y ≥ j)

P(Y > j)/P(Y ≥ j)
=

πj

πj+1 + πj+2 + · · ·+ πJ
.

This latter expression is called a continuation ratio.

The model thus specifies

log

{
πj

πj+1 + πj+2 + · · ·+ πJ

}
= αj + β′x.
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Proportional hazards

If we specify a cumulative log-log link instead,

hj(x) = 1− exp{− exp(αj + β′x)},

P(Y ≥ j) = P(Y ≥ 1,Y ≥ 2, . . . ,Y ≥ j)

= P(Y ≥ j |Y ≥ j − 1) · · ·P(Y ≥ 2|Y ≥ 1)

=
P(Y ≥ j)

P(Y ≥ j − 1)

P(Y ≥ j − 1)

P(Y ≥ j − 2)
· · · P(Y ≥ 2)

P(Y ≥ 1)

= [e−e
αj−1

]e
β′x

[e−e
αj−2

]e
β′x · · · [e−eα1 ]e

β′x

=
[
e−

∑j−1
i=1 eαi

]eβ′x

for fixed x.

Let Sx(j) = P(Y ≥ j |x). Then

Sx(j) = S0(j)eβ′x
,

where S0(j) = e−
∑j−1

i=1 eαi , the proportional hazards model.
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Generalizations

Both models are written

hj(x) = F (αj + β′x).

Generalizations:

If the affect of covariates changes with time (or stage), we
can generalize to

hj(x) = F (αj + β′jx).

This can be fit as a series of nested binomial regression
models.

If time-dependent covariates {x1, x2, . . . , xJ} are measured
(e.g. blood pressure, amount of television watched, etc.) then
we can fit

hj(x) = F (αj + β′xj).

In general, it is not straightforward to fit these models in SAS; see
http://support.sas.com/faq/045/FAQ04512.html.

29 / 43



Fitting

To form the likelihood note that

P(Y = j |x) = hj(x)

j−1∏
k=1

(1− hk(x)).

Then

L(α,β) =
n∏

i=1

P(Y = j |x).

Also note that

hJ(x) = P(Y = J|Y ≥ J) = 1.

Recall for the logit model hj(x) = e
αj +β′x

1+e
αj +β′x .

The proportional odds (cumulative logit) model for this type of
data is also applicable and provides a different type of inference.
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Example

Consider a widely-analyzed data set first presented by Feigl and
Zelen (1965) on n = 33 leukemia patients. The outcome is Y = 1
for death within the year after diagnosis, Y = 2 for death within
the second year, and Y = 3 for within 3 or more years (only one
made it to 4 years). The predictors are x1 = 0 for AG− and x1 = 1
for AG+ and x2 = log(wbc), log white blood cell count. AG+
indicates the presence of Auer rods and/or significant granulature
of leukemic bone marrow cells.

PROC NLMIXED has routines built in to maximize certain types of
likelihoods, and is especially useful when random effects are
present. We will use it to build and maximize the continuation
ratio (hazard regression) likelihood.
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SAS code

data leuk1;

input x1 x2 y @@;

datalines;

1 6.62 3 1 7.74 2 1 8.36 2 1 7.86 3 1 8.69 1 1 9.25 3

1 9.21 3 1 9.74 1 1 8.59 1 1 8.85 3 1 9.14 2 1 10.37 1

1 10.46 1 1 10.85 1 1 11.51 1 1 11.51 1 1 11.51 2 0 8.38 2

0 8.00 2 0 8.29 1 0 7.31 1 0 9.10 1 0 8.57 1 0 9.21 1

0 9.85 1 0 10.20 1 0 10.23 1 0 10.34 1 0 10.16 1 0 9.95 1

0 11.27 1 0 11.51 1 0 11.51 1

;

proc nlmixed; * effect of beta constant across stages;

parms a1=-7 a2=-6 b1=-3 b2=1; * started with a1=0 a2=1 b1=0 b2=0;

p1=exp(a1+x1*b1+x2*b2); p2=exp(a2+x1*b1+x2*b2);

if (y=1) then z=(p1/(1+p1));

if (y=2) then z=(1/(1+p1))*(p2/(1+p2));

if (y=3) then z=(1/(1+p1))*(1/(1+p2));

if (z>1e-8) then ll=log(z); else ll=-1e100;

model y ~ general(ll);

We obtain

The NLMIXED Procedure

Parameter Estimates

Standard

Parameter Estimate Error DF t Value Pr > |t| Alpha Lower Upper Gradient

a1 -6.7090 3.4093 33 -1.97 0.0575 0.05 -13.6454 0.2273 -3.67E-8

a2 -5.8987 3.2094 33 -1.84 0.0751 0.05 -12.4282 0.6309 -1.07E-8

b1 -2.6455 0.9875 33 -2.68 0.0114 0.05 -4.6545 -0.6364 -4.32E-8

b2 0.9677 0.3813 33 2.54 0.0161 0.05 0.1919 1.7436 -4.49E-7
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Interpretation

Clearly both AG factor and log(wbc) affect the probability of
moving from stage to stage. Given that a subject has made it to a
given stage, the odds of dying in that stage (instead of moving on)
are estimated to significantly decrease by a factor of
e−2.6455 = 0.071 when x1 changes from 0 to 1. The odds of dying
increase by e0.9677 = 2.63 for each unit increase in log(wbc).

Model -2 Log L AIC
Hazard regression, logistic, AG+WBC 39.2 47.2

β same across stages
Hazard regression, logistic, AG+WBC 38.2 50.2

βj changes j = 1, 2
Hazard regression, logistic, AG+WBC+AG*WBC 39.0 49.0

β same across stages
Proportional odds (cumulative logit) 39.9 47.9

AG+WBC
Proportional odds (cumulative logit) 39.7 49.7

AG+WBC+AG*WBC
Hazard regression, cumulative log-log, AG+WBC 64.3 56.3

β same across stages
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Comments

The proportional odds model is trivially fit: proc logistic;
model y=x1 x2;.

We can test the logistic continuation ratio model with the
effect of the covariates changing with stage by comparing the
decrease in -2 Log L to the increase in parameters. The
simpler model has (β1, β2) increased to (β11, β12, β21, β22), a
df = 2 parameter difference. 39.2− 38.2 = 1.0;
P(χ2

2 > 1.0) = 0.61; the simpler (constant β) model is
preferred.

This confirms the best choice from AIC: the additive logistic
hazard regression model with AG and log(wbc).
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8.5 Discrete choice models

Let Y be nominal with J levels. Associated with each level Y = j
are aspects of Y = j that might affect the probability P(Y = j).
There also might be subject-specific covariates.
Example: Choosing breakfast. Let Y = 1 indicate nothing
(breakfast is skipped), Y = 2 be cereal, and Y = 3 eggs. For each
individual i = 1, . . . , n, there are two covariates: xij is how long
choice j takes to fix and eat and zi is a crude hunger level (zi = 0
for not hungry, zi = 1 for hungry).

i xi1 xi2 xi3 zi j
1 0 15 25 1 3
2 0 10 15 0 1
3 0 5 25 0 2
4 0 15 10 1 3
5 0 5 25 1 1
6 0 20 45 1 1
7 0 10 10 1 3
8 0 10 20 0 1
9 0 15 15 1 2

10 0 10 25 1 1
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SAS data format for PROC MDC

data breakfast;

input id decision nothing cereal eggs time hungryn hungryc hungrye;

datalines;

1 0 1 0 0 0 1 0 0

1 0 0 1 0 15 0 1 0

1 1 0 0 1 15 0 0 1

2 1 1 0 0 0 0 0 0

2 0 0 1 0 10 0 0 0

2 0 0 0 1 15 0 0 0

3 0 1 0 0 0 0 0 0

3 1 0 1 0 5 0 0 0

3 0 0 0 1 25 0 0 0

4 0 1 0 0 0 1 0 0

4 0 0 1 0 15 0 1 0

4 1 0 0 1 10 0 0 1

5 1 1 0 0 0 1 0 0

5 0 0 1 0 5 0 1 0

5 0 0 0 1 25 0 0 1

6 1 1 0 0 0 1 0 0

6 0 0 1 0 20 0 1 0

6 0 0 0 1 45 0 0 1

7 0 1 0 0 0 1 0 0

7 0 0 1 0 10 0 1 0

7 1 0 0 1 10 0 0 1

8 1 1 0 0 0 0 0 0

8 0 0 1 0 10 0 0 0

8 0 0 0 1 20 0 0 0

9 0 1 0 0 0 1 0 0

9 1 0 1 0 15 0 1 0

9 0 0 0 1 15 0 0 1

10 1 1 0 0 0 1 0 0

10 0 0 1 0 20 0 1 0

10 0 0 0 1 30 0 0 1
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Discrete choice model

Let xi = (xi1, xi2, xi3) be the times for person i . Ignoring hunger, a
simple discrete choice model for these data looks like:

πj(xi ) = P(Yi = j |xi ) =
exp(βxij)∑3

h=1 exp(βxih)
.

The odds of choosing eggs over nothing for person i is function of
how much longer it takes to cook eggs for this person

π3

π1
(xi ) = eβ(xi3−xi1).

Can modify to allow the actual available choices to differ by
person! For example, some people never eat eggs; for that person
the denominator would sum only over h = 1, 2.

Note, only preparation time affects choice! One might want to also
include an overall preference, e.g. some people don’t like cereal!
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SAS code & output

proc mdc data=breakfast;

model decision=time / type=clogit nchoice=3;

id id; * clogit is conditional logit here, not cumulative as in proc logistic;

run;

The MDC Procedure

Conditional Logit Estimates

Parameter Estimates

Standard Approx

Parameter DF Estimate Error t Value Pr > |t|

time 1 -0.0684 0.0407 -1.68 0.0930

Although not significant, the odds of choosing one breakfast over
another increases by 7% for every minute less it takes to cook;
e0.0684 ≈ 1.07.

This model is much simpler than the baseline-category logit model!
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Different proportions like different breakfasts

The previous model implies that if preparation was the same for
nothing, cereal, or eggs, each would be chosen with probability
one-third. However, the three choices are likely preferred in
different proportions when time is not a factor. Consider the
model:

πj(xi ) = P(Yi = j |xi ) =
exp(β0j + β1xij)∑3
h=1 exp(β0h + βxih)

.

Need to set one ‘intercept’ equal to zero, say β01 = 0.
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SAS code & output

proc mdc data=breakfast; * nothing is baseline;

model decision=time cereal eggs / type=clogit nchoice=3;

id id;

run;

The MDC Procedure

Conditional Logit Estimates

Parameter Estimates

Standard Approx

Parameter DF Estimate Error t Value Pr > |t|

time 1 -0.2496 0.1417 -1.76 0.0783

cereal 1 1.7441 1.5853 1.10 0.2713

eggs 1 3.7103 2.2059 1.68 0.0926

Holding preparation time constant, choosing eggs is e3.71 ≈ 41
times more likely than nothing. When time is not held constant we
have for person i

π3

π1
(xi ) = eβ03−β01eβ(xi3−xi1).

The odds of choosing one breakfast over another increases by 28%
for every minute less it takes to cook; e0.2496 ≈ 1.28. Again, it
does not matter which two breakfasts we consider when discussing
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Hunger can affect breakfast choice

Finally, we can include how hungry someone is. Hunger should
affect different choices differently.

πj(xi , zi ) = P(Yi = j |xi , zi ) =
exp(β0j + β1xij + β2jzi )∑3

h=1 exp(β0h + β1xih + β2hzi )
.

Again, set β21 = 0.

The hunger effect is modeled exactly as it is in a baseline-category
logit model. Hunger affects odds of choosing one choice over
another differently, depending on the two breakfast choices we are
comparing.
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SAS code & output

proc mdc data=breakfast;

model decision=time cereal eggs hungryc hungrye / type=clogit nchoice=3;

id id;

run;

The MDC Procedure

Conditional Logit Estimates

Parameter Estimates

Standard Approx

Parameter DF Estimate Error t Value Pr > |t|

time 1 -0.2236 0.1320 -1.69 0.0902

cereal 1 1.1297 1.6483 0.69 0.4931

eggs 1 -11.1631 1386 -0.01 0.9936

hungryc 1 0.6924 1.9175 0.36 0.7180

hungrye 1 15.2171 1386 0.01 0.9912

Interpretation? Note that there are only 10 individuals here.
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Comments

Discrete choice models are appropriate when aspects of the
choices themselves affect the probability of them being chosen
(e.g. time taken, distance traveled, cost, ease of use, etc.)

Multinomial baseline-category logits are appropriate when
aspects of the choosers affect the probability of choosing
among the choices (e.g. gender, age, how hungry, etc.)

Both aspects can be incorporated into PROC MDC.

Special case is when x1 = · · · xn = x for all i . For example,
the time spent preparing cereal and eggs is the same for all
people.

The discrete-choice model has fewer parameters and simpler
interpretation than baseline-category logit models.
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