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6.4 2× 2× K tables

Clinical trial w/ 8 centers, two creams compared to cure infection
(p. 226).

Response Y

Center Z = k Treatment X Success Failure θ̂XY (k)

1 Drug 11 25 1.2
Control 10 27

2 Drug 16 4 1.8
Control 22 10

3 Drug 14 5 4.8
Control 7 12

4 Drug 2 14 2.3
Control 1 16

5 Drug 6 11 ∞
Control 0 12

6 Drug 1 10 ∞
Control 0 10

7 Drug 1 4 2.0
Control 1 8

8 Drug 4 2 0.3
Control 6 1
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6.4.1 Same setup as Section 2.3

Have:

Y binary outcome (e.g. success/failure of treatment).

X binary predictor (e.g. treatment).

Stratum Z (e.g. treatment center).

Want to test X ⊥ Y |Z versus an alternative. Let
πik = P(Y = 1|X = i ,Z = k) and

θXY (k) =
P(Y = 1|X = 1,Z = k)/P(Y = 2|X = 1,Z = k)

P(Y = 1|X = 2,Z = k)/P(Y = 2|X = 2,Z = k)
.

Recall X ⊥ Y |Z when θXY (k) = 1. This happens under the model

logit πik = α + βZ
k .

This is an ANOVA-type specification where instead of listing K − 1
dummy variables, we concisely include a subscript on Z ’s effect βZ

k .
So there are K effects for Z , βZ

1 , β
Z
2 , . . . , β

Z
K and they sum to zero.
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Two models

An additive alternative model specifies

logit πik = α + βI{i = 1}+ βZ
k .

Under this model θXY (k) = eβ for all k. The odds ratios are the
same across strata, but the strata-specific probabilities of success
change with Z = k. X ⊥ Y |Z if we accept H0 : β = 0.

The most general alternative is

logit πik = α + βI{i = 1}+ βZ
k + βXZ

k I{i = 1}.

This is a saturated model and allows
θXY (1) 6= θXY (2) 6= · · · 6= θXY (K). X ⊥ Y |Z if we accept

H0 : β = 0, βXZ
k = 0 for k = 1, . . . ,K .

Both of these alternatives allow testing H0 : X ⊥ Y |Z in PROC
LOGISTIC with a Wald test.
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6.4.2 Cochran-Mantel-Haenszel statistic

CMH =

[∑K
k=1(n11k − µ̂11k)

]2
∑K

k=1 var(n11k)
,

where µ̂11k = n1+kn+1k/n++k and
var(n11k) = n1+kn2+kn+1kn+2k/n

2
++k(n++k−1).

Motivated by retrospective studies, e.g. case-control, so
response (column) totals are assumed fixed. Then row
(treatment) totals are sufficient and conditioned on. Leaves
only one free parameter in each table, say n11k which is
hypergeometric under H0:

Null hypothesis is H0 : X ⊥ Y |Z .

µ̂11k = E (n11k) and var(n11k) are under H0.

When H0 true, CMH
•∼ χ2

1.
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A bit more detail why n11k are hypergeometric...

Y = 1 Y = 2
X = 1 n11k n12k n1+k

X = 2 n21k n22k n2+k

n+1k n+2k n++k

There are n1+k “red balls” X = 1 and n2+k “green balls”
X = 2.

We choose n+1k balls (controls Y = 1) from the urn. Under
independence one cannot tell the difference between a case
and a control. The number n11k out of n+1k that are “red,”
i.e. exposures X = 1, is hypergeometric (under H0).

See page 91, (3.17) in Section 3.5.1.
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Back to logistic regression formulation...

The additive alternative looks in a certain direction for deviations
from conditional independence X ⊥ Y |Z . It can be more powerful
when the additive model truly holds.

The interaction, saturated model can be more powerful when the
additive alternative does not hold.
The CMH test is equivalent to a score test for testing H0 : β = 0
in the additive model; see your book (p. 227). This test can be
carried out in PROC FREQ.
data cmh;

input center $ treat response count;

datalines;

a 1 1 11

a 1 2 25

a 2 1 10

a 2 2 27

b 1 1 16

b 1 2 4

...

h 1 1 4

h 1 2 2

h 2 1 6

h 2 2 1

;

proc freq; weight count; tables center*treat*response / cmh;
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Partial output

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

---------------------------------------------------------------

1 Nonzero Correlation 1 6.3841 0.0115

2 Row Mean Scores Differ 1 6.3841 0.0115

3 General Association 1 6.3841 0.0115

Estimates of the Common Relative Risk (Row1/Row2)

Type of Study Method Value 95% Confidence Limits

-------------------------------------------------------------------------

Case-Control Mantel-Haenszel 2.1345 1.1776 3.8692

(Odds Ratio) Logit ** 1.9497 1.0574 3.5949

Cohort Mantel-Haenszel 1.4245 1.0786 1.8812

(Col1 Risk) Logit ** 1.2194 0.9572 1.5536

Cohort Mantel-Haenszel 0.8129 0.6914 0.9557

(Col2 Risk) Logit 0.8730 0.7783 0.9792

** These logit estimators use a correction of 0.5 in every cell

of those tables that contain a zero.

We see CMH= 6.384 with p = 0.0115 and so we reject that
X ⊥ Y |Z in favor of a common odds ratio estimated as
θ̂XY = 2.13 (1.18, 3.87).
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Testing through logistic regression

Alternatively, we can fit the three logit models:

data cmh2;

input center $ treat y n; treat=abs(treat-2);

datalines;

a 1 11 36

a 2 10 37

b 1 16 20

b 2 22 32

...

h 1 4 6

h 2 6 7

;

proc logistic data=cmh2; class center; model y/n = center;

proc logistic data=cmh2; class center; model y/n = treat center;

proc logistic data=cmh2; class center; model y/n = treat center treat*center;

Label the models (1), (2), and (3) respectively. The fit of (2)
corresponds to the alternative in the CMH test:

Type 3 Analysis of Effects

Wald

Effect DF Chi-Square Pr > ChiSq

treat 1 6.4174 0.0113

center 7 58.4897 <.0001
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Testing through logistic regression

Analysis of Maximum Likelihood Estimates

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -1.2554 0.2692 21.7413 <.0001

treat 1 0.7769 0.3067 6.4174 0.0113

center a 1 -0.0667 0.3133 0.0453 0.8315

center b 1 1.9888 0.3556 31.2789 <.0001

center c 1 1.0862 0.3596 9.1236 0.0025

center d 1 -1.4851 0.5707 6.7711 0.0093

center e 1 -0.5866 0.4582 1.6390 0.2005

center f 1 -2.2136 0.9171 5.8260 0.0158

center g 1 -0.8644 0.7016 1.5178 0.2180

We reject H0 : β = 0 (p = 0.0113) and thus reject X ⊥ Y |Z . We
estimate the common odds ratio to be e−0.777 = 2.18 (1.19, 3.97)
(from excised output).

By adding / aggregate scale=none; to the MODEL
statement, we find the Pearson GOF X 2 = 8.03 on
df = 16− (1 + 1 + 7) = 7 with p = 0.33. The additive model does
not show gross LOF.

Let’s examine the full interaction (saturated) model anyway...
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Testing through logistic regression

The -2 Log L from (1) is 283.689 (under Model Fit
Statistics) and from (3) is 267.274. The number of parameters
added to (1) to get (3) is 8. The p-value is
P(χ2

8 > 16.415) = 0.0368.

We reject that H0 : β = 0, βXY
k = 0 in the saturated model (3) and

hence also reject X ⊥ Y |Z . Notice the p-value is about 3 times
larger though; we lost some power by considering a very general
alternative.
By accepting this more complex alternative we have lost
interpretability as well, the estimated odds ratio θ̂XY (k) changes
with center k . From (3)’s fit Type 3 Analysis of Effects:

Wald

Effect DF Chi-Square Pr > ChiSq

treat 1 0.0064 0.9362

center 7 24.2036 0.0010

treat*center 7 4.0996 0.7682

The Type III effects table shows we can drop the treat*center from
the model and so we go with the analysis and results from the
CMH analysis and/or logit analysis on the previous slide.
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6.5 Existence of finite β̂

Estimates β̂ exist except when data are perfectly separated.

Complete separation happens when a linear combination of
predictors perfectly predicts the outcome. See Figure 6.5 (p. 234).
Here, there are an infinite number of perfect fitting curves that
have α =∞. Essentially, there is a value of x that perfectly
separates the 0’s and 1’s. In two-dimensions there would be a line
separating the 0’1 and 1’s.

Quasi-complete separation happens when there’s a line that
separates 0’s and 1’s but there’s some 0’s and 1’s on the line.
We’ll look at some pictures.

The end result is that the model will appear to fit but the standard
errors will be absurdly large. This is the opposite of what’s really
happening, that the data can be perfectly predicted.

A (Bayesian!) fix is hiding in Section 7.4.7 (p. 275). Add FIRTH
to the MODEL statement, and quasi and complete separation
issues vanish!
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6.6: Power and sample size*

Recall: α = P(reject H0|H0 true) and β = P(accept H0|H1 true).

Power is 1− β = P(reject H0|H1 true). Often we want to find an
overall sample size n such that, for example, 1− β = 0.9 while
capping off α = 0.05.

One sample proportion

Say we want to test H0 : π = π0 for Y ∼ bin(n, π). The score test
statistic is Z0 = π̂−π0

σ0
where π̂ = Y /n and σ0 =

√
π0(1− π0)/n.

Under H0 : π = π0, Z
•∼ N(0, 1); this determines zα/2. The power

1− β is a function of the hypothesized π0, the true π1, and the
sample size through σ0 and σ1

√
π1(1− π1)/n.
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Computing the power

1− β = P(reject H0|H1 true)

= P(|Z0| > zα/2|π = π1)

= 1− P(−zα/2 ≤ Z0 ≤ zα/2|π = π1)

= 1− P(−zα/2σ0 + π0 ≤ π̂ ≤ zα/2σ0 + π0|π = π1)

= 1− P

(−zα/2σ0 + π0 − π1

σ1
≤ π̂ − π1

σ1
≤

zα/2σ0 + π0 − π1

σ1

)
= 1− P

(−zα/2σ0 + π0 − π1

σ1
≤ Z ≤

zα/2σ0 + π0 − π1

σ1

)
= 1−

[
Φ

(
zα/2σ0 + π0 − π1

σ1

)
− Φ

(−zα/2σ0 + π0 − π1

σ1

)]
.

For a given β, α, π0, and π1, we can solve this equation for the
sample size n. Check out
http://www.cs.uiowa.edu/∼rlenth/Power/
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6.6.1 Testing H0 : π1 = π2 from two samples

Recall the two-sample proportion problem. Assume the same
number of observations n will be collected in each group X = 1
and X = 2.

Y1 ∼ bin(n1, π1) ⊥ Y2 ∼ bin(n2, π2).

Let π̂1 = Y1/n and π̂2 = Y2/n. The CLT gives us

π̂1
•∼ N

(
π1,

π1(1− π1)

n1

)
⊥ π̂2

•∼ N

(
π2,

π2(1− π2)

n2

)
,

and so

π̂1 − π̂2
•∼ N

(
π1 − π2,

π1(1− π1)

n1
+
π2(1− π2)

n2

)
.

Under H0 : π1 = π2 and n1 = n2 the test statistic is

Z =
π̂1 − π̂2√

2π̂(1− π̂)/n
,

where π̂ = (Y1 + Y2)/(2n) is pooled estimator, i.e. MLE under H0.
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Testing H0 : π1 = π2 from two samples

Similar computations as in the one-sample case leads to

n1 = n2 = (zα/2 + zβ)2π1(1− π1) + π2(1− π2)

(π1 − π2)2
.

Note that for α = 0.05 and β = 0.1 we have z0.025 = 1.960 and
z0.1 = 1.282. 1− β = 0.99 yields z0.01 = 2.326.
What happens when π1 ≈ π2?
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6.6.2 Sample size for simple logistic regression*

Let
logit π(x) = α + βX ,

where X ∼ N(µ, σ2) and

τ = log

{
π(µ+ σ)/[1− π(µ+ σ)]

π(µ)/[1− π(µ)]

}
,

the log of the ratio of event odds when x = µ+ σ and x = µ.
Then to test H0 : β ≤ 0 versus H0 : β > 0 (or the other direction)
at significance α and power 1− β we need sample size

n = [zα + zβe
−τ2/4]2[1 + 2π(µ)δ]/[π(µ)τ2],

where
δ = [1 + (1 + τ2)e5τ2/4]/[1 + e−τ

2/4].
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Cholesterol and heart disease, p. 239

X is cholesterol level, Y indicates “severe heart disease.”

Know π(µ) = 0.08. Want to be able to detect a 50% increase
in probability for a standard deviation increase in cholesterol.
50% increase in probability is 1.5× 0.08 = 0.12.

π(µ)/[1− π(µ)] = 0.08/0.92 = 0.087.

π(µ+ σ)/[1− π(µ+ σ)] = 0.12/0.88 = 0.136. So the odds
ratio is 0.136/0.087 = 1.57, and τ = log(1.57) = 0.45.

Then for α = 0.05, 1− β = 0.9, we have δ = 1.306 and
n = 612.

Note: didn’t need to know µ and σ, but rather π(µ) and
π(µ+ σ).
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6.5.3 Sample size for one effect in multiple logistic
regression*

Say now that we’re interested in X1 but there’s p − 2 more more
predictors X2, . . . ,Xp−1. Let R denote the multiple correlation
between X and the remaining predictors:

R = max
||a||=1

{corr(X1, a2X2 + · · ·+ ap−1Xp−1)}.

Let π(µ) = π(µ1, µ2, . . . , µp−1) be the probability at the mean of
all p − 1 variables.

τ is the now the log odds ratio comparing
π(µ1 + σ1, µ2, . . . , µp−1) to π(µ1, µ2, . . . , µp−1).

n = [zα + zβe
−τ2/4]2[1 + 2π(µ)δ]/[π(µ)τ2(1− R2)].
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Heart disease example (continued):

Say we have another variable X2 is blood pressure and
R = corr(X1,X2) = 0.4.

Then n = 612/(1− 0.42) = 729.

What happens when corr(X1,X2) ≈ 1. Is this problematic?
Hint: think about the interpretation of β1.

6.6.4, 6.6.5, & 6.6.6 Misc. power and sample size
considerations

Read over if interested.
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