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Chapter 5 – Logistic Regression II

Alcohol consumption and malformation example continued:

Let’s use X = 1 as the reference level. Then the model is

logit π(X ) = β0+β1I{X = 2}+β2I{X = 3}+β3I{X = 4}+β4I{X = 5}.

We may be interested in the how the odds of malformation
changes when dropping from 3-4 drinks per week (X = 4) to less
than one drink per week (X = 2), given by eβ3−β1 .

A contrast is a linear combination
c′β = c1β1 + c2β2 + · · ·+ cp−1βp−1. We are specifically interested
in H0 : β3 = β1, or equivalently, H0 : β3 − β1 = 0, as well as
estimating eβ3−β1 .

proc logistic; class cons / param=ref ref=first; model present/total = cons;

contrast "beta3-beta1" cons -1 0 1 0;

contrast "exp(beta3-beta1)" cons -1 0 1 0 / estimate=exp;

contrast "beta3-beta1" cons -1 0 1 0 / estimate;
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SAS output

Analysis of Maximum Likelihood Estimates

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -5.8736 0.1445 1651.3399 <.0001

cons 2 1 -0.0682 0.2174 0.0984 0.7538

cons 3 1 0.8136 0.4713 2.9795 0.0843

cons 4 1 1.0374 1.0143 1.0460 0.3064

cons 5 1 2.2632 1.0235 4.8900 0.0270

Odds Ratio Estimates

Point 95% Wald

Effect Estimate Confidence Limits

cons 2 vs 1 0.934 0.610 1.430

cons 3 vs 1 2.256 0.896 5.683

cons 4 vs 1 2.822 0.386 20.602

cons 5 vs 1 9.614 1.293 71.460

Let θij be the odds ratio for malformation when going from level

X = i to X = j . We automatically get θ̂21 = e−0.068 = 0.934,
θ̂31 = e0.814 = 2.26, etc. Since θ42 = θ41/θ21 we can estimate
θ̂42 = 2.822/0.934 = 3.02, or else directly from the dummy
variable coefficients, e1.037−(−0.068) = 3.02.
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Contrast statement

The CONTRAST command allows us to further test H0 : β3 = β1

and to get a 95% CI for the odds ratio θ42 = eβ3−β1 .

Contrast Test Results

Wald

Contrast DF Chi-Square Pr > ChiSq

beta3-beta1 1 1.1817 0.2770

exp(beta3-beta1) 1 1.1817 0.2770

beta3-beta1 1 1.1817 0.2770

Contrast Rows Estimation and Testing Results

Standard Wald

Contrast Type Row Estimate Error Alpha Confidence Limits Chi-Square Pr > ChiSq

exp(beta3-beta1) EXP 1 3.0209 3.0723 0.05 0.4116 22.1728 1.1817 0.277

beta3-beta1 PARM 1 1.1056 1.0170 0.05 -0.8878 3.0989 1.1817 0.277

We are allowed linear contrasts or the exponential of linear
contrasts. To get, for example, the relative risk of malformation,

h(β) =
P(Y = 1|X = 4)

P(Y = 1|X = 2)
=

eβ0+β3/[1 + eβ0+β3 ]

eβ0+β1/[1 + eβ0+β1 ]
,

takes more work.
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5.3.4–5.3.6 I × 2 tables

Let X = 1, 2, . . . , I be an ordinal predictor. If the log odds
increases linearly with category X = i we have

logit π(i) = α + βi .

If the probability increases linearly we have

π(i) = α + βi .

If we replace X = 1, 2, . . . , I by scores u1 ≤ u2 ≤ · · · ≤ uI we get

logit π(i) = α + βui ,

and
π(i) = α + βui .
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Cochran-Armitage trend test

In any of these models testing H0 : β = 0 is a test of X ⊥ Y
versus a particular monotone alternative. The last of the four is
called the Cochran-Armitage trend test (p. 178). These can all be
fit in GENMOD.

proc genmod; model present/total = cons / dist=bin link=logit;

proc genmod; model present/total = cons / dist=bin link=identity;

proc genmod; model present/total = score / dist=bin link=logit;

proc genmod; model present/total = score / dist=bin link=identity;

For alcohol consumption/malformation data, the p-values are
respectively 0.17, 0.28, 0.01, 0.13. The first two use
X = 1, 2, 3, 4, 5 and the last two use X = 0.0, 0.5, 1.5, 4.0, 7.0.
The Pearson X 2 = 2.05 with p = 0.56 for the logit model with
scores and X 2 = 5.68 with p = 0.13 for using 1, 2, 3, 4, 5. The
model using scores fits better and from this model we reject
H0 : β = 0 with p = 0.01.

Does this analysis make you uneasy for any reason?
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5.3.7 Better living through models

Consider an I × 2 table where X is categorical and Y is binary.
When the probability of Y = 2 is the same for each level of X = i ,
π(i) = P(Y = 2|X = i) = π, we have X ⊥ Y . In terms of
log-odds this is

logit π(i) = α.

If X is nominal, allowing a separate probability for each level
of X gives

logit π(i) = α + βi ,

for i = 1, . . . , I ; the saturated model.

When X is ordinal, we can use the above alternative model, or
instead use scores u1 ≤ u2 ≤ · · · ≤ uI in place of X and fit the
model

logit π(i) = α + βui .
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Power can increase or decrease...

In the first case a test of H0 : β1 = · · · = βI = 0 is a test of
H0 : X ⊥ Y versus the most general possible alternative. The test
statistic (score, Wald, or LRT) has a χ2

I−1 distribution under H0.
In the second case a test of H0 : β = 0 tests X ⊥ Y versus a
focused, linear alternative. The test statistic has a χ2

1 distribution
under H0.

If X is ordinal and the logistic regression model treating X as
continuous fits okay, you can increase your power to reject
H0 : X ⊥ Y by looking in one particular direction (linear
log-odds of scores).

If the model does not fit then you can lose power by looking
in only one place to the exclusion of other alternatives.

For nominal X we pretty much can only test the saturated
model to the intercept model.
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5.4 Multiple predictors

Now we have p − 1 predictors xi = (1, xi1, . . . , xi ,p−1) and fit

Yi ∼ bin

(
ni ,

exp(β0 + β1xi1 + · · ·+ βp−1xi ,p−1)

1 + exp(β0 + β1xi1 + · · ·+ βp−1xi ,p−1)

)
.

Many of these predictors may be sets of dummy variables
associated with categorical predictors.

eβj is now termed the adjusted odds ratio. This is how the
odds of the event occurring changes when xj increases by one
unit keeping the remaining predictors constant.

This interpretation may not make sense if two predictors are
highly related. Examples?
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H0 : logit π(x) = β0

An overall test of H0 : logit π(x) = β0 versus H1 : logit π(x) = x′β
is generated in PROC LOGISTIC three different ways: LRT, score,
and Wald versions. This checks whether some subset of variables
in the model is important.
Recall the crab data covariates:

C = color (1,2,3,4=light medium, medium, dark medium,
dark).

S = spine condition (1,2,3=both good, one worn or broken,
both worn or broken).

W = carapace width (cm).

Wt = weight (kg).

We’ll take C = 4 and S = 3 as baseline categories.
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Full additive model

There are two categorical predictors, C and S , and two continuous
predictors W and Wt. Let Y = 1 if a randomly drawn crab has
one or more satellites and x = (C ,S ,W ,Wt) be her covariates.
An additive model including all four covariates would look like

logit π(x) = β0 + β1I{C = 1}+ β2I{C = 2}+ β3I{C = 3}
+β4I{S = 1}+ β5I{S = 2}+ β6W + β7Wt

This model is fit via

proc logistic data=crabs1 descending;

class color spine / param=ref;

model y = color spine width weight / lackfit;

The H-L GOF statistic yields p = 0.88 so there’s no evidence of
gross lack of fit. The parameter estimates are:
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SAS output

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -9.2734 3.8378 5.8386 0.0157

color 1 1 1.6087 0.9355 2.9567 0.0855

color 2 1 1.5058 0.5667 7.0607 0.0079

color 3 1 1.1198 0.5933 3.5624 0.0591

spine 1 1 -0.4003 0.5027 0.6340 0.4259

spine 2 1 -0.4963 0.6292 0.6222 0.4302

width 1 0.2631 0.1953 1.8152 0.1779

weight 1 0.8258 0.7038 1.3765 0.2407

Color seems to be important. Plugging in β̂ for β,

logit π̂(x) = −9.27 + 1.61I{C = 1}+ 1.51I{C = 2}+ 1.11I{C = 3}
−0.40I{S = 1} − 0.50I{S = 2}+ 0.26W + 0.83Wt

Overall checks that one or more predictors are important:

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 40.5565 7 <.0001

Score 36.3068 7 <.0001

Wald 29.4763 7 0.0001
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Type III tests for dropping effects

Type III tests are (1) H0 : β1 = β2 = β3 = 0, color not needed to
explain whether a female has satellite(s), (2) H0 : β4 = β5 = 0,
spine not needed, (3) H0 : β6 = 0, width not needed, and (4)
H0 : β7 = 0, weight not needed:

Type 3 Analysis of Effects

Wald

Effect DF Chi-Square Pr > ChiSq

color 3 7.1610 0.0669

spine 2 1.0105 0.6034

width 1 1.8152 0.1779

weight 1 1.3765 0.2407

The largest p-value is 0.6 for dropping spine condition from the
model. When refitting the model without spine condition, we still
strongly reject H0 : β1 = β2 = β3 = β4 = β5 = β6 = 0, and the
H-L shows no evidence of lack of fit. We have:

Type 3 Analysis of Effects

Wald

Effect DF Chi-Square Pr > ChiSq

color 3 6.3143 0.0973

width 1 2.3355 0.1265

weight 1 1.2263 0.2681
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Drop weight too

We do not reject that we can drop weight from the model, and so
we do:

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 38.3015 4 <.0001

Score 34.3384 4 <.0001

Wald 27.6788 4 <.0001

Type 3 Analysis of Effects

Wald

Effect DF Chi-Square Pr > ChiSq

color 3 6.6246 0.0849

width 1 19.6573 <.0001

Analysis of Maximum Likelihood Estimates

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -12.7151 2.7618 21.1965 <.0001

color 1 1 1.3299 0.8525 2.4335 0.1188

color 2 1 1.4023 0.5484 6.5380 0.0106

color 3 1 1.1061 0.5921 3.4901 0.0617

width 1 0.4680 0.1055 19.6573 <.0001
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Model with color and width

The new model is

logit π(x) = β0 + β1I{C = 1}+ β2I{C = 2}β3I{C = 3}+ β4W .

We do not reject that color can be dropped from the model
H0 : β1 = β2 = β3, but we do reject that the dummy for C = 2
can be dropped, H0 : β2 = 0. Maybe unnecessary levels in color are
clouding its importance.
Let’s see what happens when we try to combine levels of C .

proc logistic data=crabs1 descending;

class color spine / param=ref;

model y = color width / lackfit;

contrast ’1 vs 2’ color 1 -1 0;

contrast ’1 vs 3’ color 1 0 -1;

contrast ’1 vs 4’ color 1 0 0;

contrast ’2 vs 3’ color 0 1 -1;

contrast ’2 vs 4’ color 0 1 0;

contrast ’3 vs 4’ color 0 0 1;
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p-values for combining levels:

Contrast Test Results

Wald

Contrast DF Chi-Square Pr > ChiSq

1 vs 2 1 0.0096 0.9220

1 vs 3 1 0.0829 0.7733

1 vs 4 1 2.4335 0.1188

2 vs 3 1 0.5031 0.4781

2 vs 4 1 6.5380 0.0106

3 vs 4 1 3.4901 0.0617

We reject that we can combine levels C = 2 and C = 4, and
almost reject combining C = 3 and C = 4. Let’s combine
C = 1, 2, 3 into one category D = 1 “not dark” and C = 4 is
D = 2, “dark.” See also Figure 5.7 (p. 188).

proc logistic data=crabs1 descending;

class dark / param=ref ref=first;

model y = dark width / lackfit;

We include dark=1; if color=4 then dark=2; in the DATA
step.
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Annotated output

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 37.8006 2 <.0001

Type 3 Analysis of Effects

Wald

Effect DF Chi-Square Pr > ChiSq

dark 1 6.1162 0.0134

width 1 21.0841 <.0001

Analysis of Maximum Likelihood Estimates

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -11.6790 2.6925 18.8143 <.0001

dark 2 1 -1.3005 0.5259 6.1162 0.0134

width 1 0.4782 0.1041 21.0841 <.0001

Odds Ratio Estimates

Point 95% Wald

Effect Estimate Confidence Limits

dark 2 vs 1 0.272 0.097 0.764

width 1.613 1.315 1.979

Hosmer and Lemeshow Goodness-of-Fit Test

Chi-Square DF Pr > ChiSq

5.5744 8 0.6948
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Comments

The odds of having satellite(s) significantly decreases by a
little less than a third, 0.27, for dark crabs regardless of width.

The odds of having satellite(s) significantly increases by a
factor of 1.6 for every cm increase in carapice width regardless
of color.

Lighter, wider crabs tend to have satellite(s) more often.

The H-L GOF test shows no gross LOF.

We didn’t check for interactions. If an interaction between
color and width existed, then the odds ratio of satellite(s) for
dark versus not dark crabs would change with how wide she is.
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Interactions and quadratic effects

An additive model is easily interpreted because an odds ratio from
changing values of one predictor does not change with levels of
another predictor. However, often this incorrect and we may
introduce additional terms into the model such as interactions.

An interaction between two predictors allows the odds ratio for
increasing one predictor to change with levels of another. For
example, in the last model fit the odds of having satellite(s)
decreases by 0.27 for dark crabs vs. not dark regardless of carapace
width.

A two-way interaction is defined by multiplying the variables
together; if one or both variables are categorical then all possible
pairings of dummy variables are considered.

19 / 26



Two categorical predictors

Example: Say we have two categorical predictors, X = 1, 2, 3 and
Z = 1, 2, 3, 4. An additive model is

logit π(X ,Z ) = β0 + β1I{X = 1}+ β2I{X = 2}
+β3I{Z = 1}+ β4I{Z = 2}+ β5I{Z = 3}.

The model that includes an interaction between X and Z adds
(3− 1)(4− 1) = 6 additional dummy variables accounting for all
possible ways, i.e. all levels of Z , the log odds can change between
from X = i to X = j . The new model is rather cumbersome:

logit π(X ,Z ) = β0 + β1I{X = 1}+ β2I{X = 2}
+β3I{Z = 1}+ β4I{Z = 2}+ β5I{Z = 3}
+β6I{X = 1}I{Z = 1}+ β7I{X = 1}I{Z = 2}
+β8I{X = 1}I{Z = 3}+ β9I{X = 2}I{Z = 1}
+β10I{X = 2}I{Z = 2}+ β11I{X = 2}I{Z = 3}.
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SAS’s CLASS statement for categorical predictors

In PROC GENMOD and PROC LOGISTIC, categorical variables
are defined through the CLASS statement and all dummy variables
are created and handled internally.

The Type III table provides a test that the interaction can be
dropped; the table of regression coefficients tell you whether
individual dummies can be dropped.

Let’s consider the crab data again, but consider an interaction
between categorical D and continuous W :

proc logistic data=crabs1 descending;

class dark / param=ref ref=first;

model y = dark width dark*width / lackfit;

Type 3 Analysis of Effects

Wald

Effect DF Chi-Square Pr > ChiSq

dark 1 0.9039 0.3417

width 1 20.7562 <.0001

width*dark 1 1.2686 0.2600

We accept that the interaction is not needed.
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Consider the interaction model anyway, for illustration

Analysis of Maximum Likelihood Estimates

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -12.8116 2.9577 18.7629 <.0001

dark 2 1 6.9578 7.3182 0.9039 0.3417

width 1 0.5222 0.1146 20.7562 <.0001

width*dark 2 1 -0.3217 0.2857 1.2686 0.2600

The model is:

logit π(D,W ) = −12.81+6.96I{D = 2}+0.52W−0.32I{D = 2}W .

The odds ratio for the probability of satellite(s) going from D = 2
to D = 1 is estimated

P(Y = 1|D = 2,W )/P(Y = 0|D = 2,W )

P(Y = 1|D = 1,W )/P(Y = 0|D = 1,W )
=

e−12.81+6.96+0.52W−0.32W

e−12.81+0.52W

= e6.96−0.32W .

How about the odds ratio going from W to W + 1?
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Model interpretation

For a categorical predictor X with I levels, adding I − 1 dummy
variables allows for a different event probability at each level of X .

For a continuous predictor Z , the model assumes that the log-odds
of the event increases linearly with Z . This may or may not be a
reasonable assumption, but can be checked by adding nonlinear
terms, the simplest being Z 2.

Consider a simple model with continuous Z :

logit π(Z ) = β0 + β1Z .

LOF from this model can manifest itself in rejecting a GOF test
(Pearson, deviance, or H-L) or a residual plot that shows curvature
(Chapter 6).
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Polynomial predictors

Adding a quadratic term

logit π(Z ) = β0 + β1Z + β2Z
2,

may improve fit and allows testing the adequacy of the simpler
model via H0 : β2 = 0. Higher order powers can be added, but the
model can become unstable with, say, higher than cubic powers. A
better approach might be to fit a generalized additive model
(GAM):

logit π(Z ) = f (Z ),

where f (·) is estimated from the data, often using splines. Coming
up in Chapter 7.

Adding a simple quadratic term can be done, e.g.,
proc logistic; model y/n = z z*z;
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5.5 Fitting logistic regression models

The data are (xi ,Yi ) for i = 1, . . . ,N.

The model is

Yi ∼ bin

(
ni ,

eβ′xi

1 + eβ′xi

)
.

The pmf of Yi in terms of β is

p(yi ; β) =

(
ni

yi

)[
eβ′xi

1 + eβ′xi

]yi
[

1− eβ′xi

1 + eβ′xi

]ni−yi

.

The likelihood is the product of all N of these and the
log-likelihood simplifies to

L(β) =

p∑
j=1

βj

N∑
i=1

yixij−
N∑

i=1

log

1 + exp

 p∑
j=1

βjxij

+constant.
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Likelihood equations

The likelihood (or score) equations are obtained by taking partial
derivatives of L(β) with respect to elements of β and setting equal
to zero. Newton-Raphson is used to get β̂, see 5.5.4 if interested.

The inverse of the covariance of β̂ has ij th element

−∂
2L(β)

∂βi∂βj
=

N∑
s=1

xsixsjnsπs(1− πs),

where πs = eβ′xs

1+eβ′xs . The estimated covariance matrix ĉov(β̂) is

obtained by replacing β with β̂. This can be rewritten

ĉov(β̂) = {X′diag[ni π̂i (1− π̂i )]X}−1.
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