Sections 5.1, 5.2, 5.3

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 770: Categorical Data Analysis

Chapter 5 - Logistic Regression I

The logistic regression model is
$Y_{i} \sim \operatorname{bin}\left(n_{i}, \pi_{i}\right), \quad \pi_{i}=\frac{\exp \left(\beta_{0}+\beta_{1} x_{i 1}+\cdots+\beta_{p-1} x_{i, p-1}\right)}{1+\exp \left(\beta_{0}+\beta_{1} x_{i 1}+\cdots+\beta_{p-1} x_{i, p-1}\right)}$.

- $\mathbf{x}_{i}=\left(1, x_{i 1}, \ldots, x_{i, p-1}\right)$ is a p-dimensional vector of explanatory variables including a place holder for the intercept.
- $\boldsymbol{\beta}=\left(\beta_{0}, \ldots, \beta_{p-1}\right)$ is the p-dimensional vector of regression coefficients. These are the unknown population parameters.
- $\eta_{i}=\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}$ is called the linear predictor.
- Page 163: many, many uses including credit scoring, genetics, disease modeling, etc, etc...
- Many generalizations: ordinal data, complex random effects models, discrete choice models, etc.

5.1.1 Model interpretation

Lets start with simple logistic regression:

$$
Y_{i} \sim \operatorname{bin}\left(n_{i}, \frac{e^{\alpha+\beta x_{i}}}{1+e^{\alpha+\beta x_{i}}}\right) .
$$

An odds ratio: let's look at how the odds of success changes when we increase x by one unit:

$$
\begin{aligned}
\frac{\pi(x+1) /[1-\pi(x+1)]}{\pi(x) /[1-\pi(x)]} & =\frac{\left[\frac{e^{\alpha+\beta x+\beta}}{1+e^{\alpha+\beta x+\beta}}\right] /\left[\frac{1}{1+e^{\alpha+\beta x+\beta}}\right]}{\left[\frac{e^{\alpha+\beta x}}{1+e^{\alpha+\beta x}}\right] /\left[\frac{1}{1+e^{\alpha+\beta x}}\right]} \\
& =\frac{e^{\alpha+\beta x+\beta}}{e^{\alpha+\beta x}}=e^{\beta} .
\end{aligned}
$$

When we increase x by one unit, the odds of an event occurring increases by a factor of e^{β}, regardless of the value of x.

Another interpretation for β

So e^{β} is an odds ratio.
We also have

$$
\frac{\partial \pi(x)}{\partial x}=\beta \pi(x)[1-\pi(x)]
$$

Note that $\pi(x)$ changes more when $\pi(x)$ is away from zero or one than when $\pi(x)$ is near 0.5.

This gives us approximately how $\pi(x)$ changes when x increases by a unit. This increase depends on x, unlike the odds ratio.
See Figure 5.1, p. 164.

5.1.3 Horseshoe crab data

Let's look at $Y_{i}=1$ if a female crab has one or more satellites, and $Y_{i}=0$ if not. So

$$
\pi(x)=\frac{e^{\alpha+\beta x}}{1+e^{\alpha+\beta x}}
$$

is the probability of a female having more than her nest-mate around as a function of her width x.

```
data crabs;
input color spine width satell weight @@; weight=weight/1000; color=color-1;
y=0; if satell>0 then y=1;
datalines;
...DATA HERE...
```

;
proc logistic;
model $y=w i d t h ;$

3	3	28.3	8	3050	4	3	22.5	0	1550	2	1	26.0	9	2300	4	3	24.8	0	2100	4	3	26.0	4	2600
3	3	23.8	0	2100	2	1	26.5	0	2350	4	2	24.7	0	1900	3	1	23.7	0	1950	4	3	25.6	0	2150
4	3	24.3	0	2150	3	3	25.8	0	2650	3	3	28.2	11	3050	5	2	21.0	0	1850	3	1	26.0	14	2300
2	1	27.1	8	2950	3	3	25.2	1	2000	3	3	29.0	1	3000	5	3	24.7	0	2200	3	3	27.4	5	2700
3	2	23.2	4	1950	2	2	25.0	3	2300	3	1	22.5	1	1600	4	3	26.7	2	2600	5	3	25.8	3	2000
5	3	26.2	0	1300	3	3	28.7	3	3150	3	1	26.8	5	2700	5	3	27.5	0	2600	3	3	24.9	0	2100
2	1	29.3	4	3200	2	3	25.8	0	2600	3	2	25.7	0	2000	3	1	25.7	8	2000	3	1	26.7	5	2700
5	3	23.7	0	1850	3	3	26.8	0	2650	3	3	27.5	6	3150	5	3	23.4	0	1900	3	3	27.9	6	2800
4	3	27.5	3	3100	2	1	26.1	5	2800	2	1	27.7	6	2500	3	1	30.0	5	3300	4	1	28.5	9	3250
4	3	28.9	4	2800	3	3	28.2	6	2600	3	3	25.0	4	2100	3	3	28.5	3	3000	3	1	30.3	3	3600
5	3	24.7	5	2100	3	3	27.7	5	2900	2	1	27.4	6	2700	3	3	22.9	4	1600	3	1	25.7	5	2000
3	3	28.3	15	3000	3	3	27.2	3	2700	4	3	26.2	3	2300	3	1	27.8	0	2750	5	3	25.5	0	2250
4	3	27.1	0	2550	4	3	24.5	5	2050	4	1	27.0	3	2450	3	3	26.0	5	2150	3	3	28.0	1	2800
3	3	30.0	8	3050	3	3	29.0	10	3200	3	3	26.2	0	2400	3	1	26.5	0	1300	3	3	26.2	3	2400
4	3	25.6	7	2800	4	3	23.0	1	1650	4	3	23.0	0	1800	3	3	25.4	6	2250	4	3	24.2	0	1900
3	2	22.9	0	1600	4	2	26.0	3	2200	3	3	25.4	4	2250	4	3	25.7	0	1200	3	3	25.1	5	2100
4	2	24.5	0	2250	5	3	27.5	0	2900	4	3	23.1	0	1650	4	1	25.9	4	2550	3	3	25.8	0	2300
5	3	27.0	3	2250	3	3	28.5	0	3050	5	1	25.5	0	2750	5	3	23.5	0	1900	3	2	24.0	0	1700
3	1	29.7	5	3850	3	1	26.8	0	2550	5	3	26.7	0	2450	3	1	28.7	0	3200	4	3	23.1	0	1550
3	1	29.0	1	2800	4	3	25.5	0	2250	4	3	26.5	1	1967	4	3	24.5	1	2200	4	3	28.5	1	3000
3	3	28.2	1	2867	3	3	24.5	1	1600	3	3	27.5	1	2550	3	2	24.7	4	2550	3	1	25.2	1	2000
4	3	27.3	1	2900	3	3	26.3	1	2400	3	3	29.0	1	3100	3	3	25.3	2	1900	3	3	26.5	4	2300
3	3	27.8	3	3250	3	3	27.0	6	2500	4	3	25.7	0	2100	3	3	25.0	2	2100	3	3	31.9	2	3325
5	3	23.7	0	1800	5	3	29.3	12	3225	4	3	22.0	0	1400	3	3	25.0	5	2400	4	3	27.0	6	2500
4	3	23.8	6	1800	2	1	30.2	2	3275	4	3	26.2	0	2225	3	3	24.2	2	1650	3	3	27.4	3	2900
3	2	25.4	0	2300	4	3	28.4	3	3200	5	3	22.5	4	1475	3	3	26.2	2	2025	3	1	24.9	6	2300
2	2	24.5	6	1950	3	3	25.1	0	1800	3	1	28.0	4	2900	5	3	25.8	10	2250	3	3	27.9	7	3050
3	3	24.9	0	2200	3	1	28.4	5	3100	4	3	27.2	5	2400	3	2	25.0	6	2250	3	3	27.5	6	2625
3	1	33.5	7	5200	3	3	30.5	3	3325	4	3	29.0	3	2925	3	1	24.3	0	2000	3	3	25.8	0	2400
5	3	25.0	8	2100	3	1	31.7	4	3725	3	3	29.5	4	3025	4	3	24.0	10	1900	3	3	30.0	9	3000
3	3	27.6	4	2850	3	3	26.2	0	2300	3	1	23.1	0	2000	3	1	22.9	0	1600	5	3	24.5	0	1900
3	3	24.7	4	1950	3	3	28.3	0	3200	3	3	23.9	2	1850	4	3	23.8	0	1800	4	2	29.8	4	3500
3	3	26.5	4	2350	3	3	26.0	3	2275	3	3	28.2	8	3050	5	3	25.7	0	2150	3	3	26.5	7	2750
3	3	25.8	0	2200	4	3	24.1	0	1800	4	3	26.2	2	2175	4	3	26.1	3	2750	4	3	29.0	4	3275
2	1	28.0	0	2625	5	3	27.0	0	2625	3	2	24.5	0	2000										

Fit of $\log i t\left(\pi_{i}\right)=\alpha+\beta x_{i}$ where x_{i} is width

We estimate the probability of a satellite as

$$
\hat{\pi}(x)=\frac{e^{-12.35+0.50 x}}{1+e^{-12.35+0.50 x}}
$$

The odds of having a satellite increases by a factor between 1.3 and 2.0 times for every cm increase in carapace width.

The coefficient table houses estimates $\hat{\beta}_{j}$, $\operatorname{se}\left(\widehat{\beta}_{j}\right)$, and the Wald statistic $z_{j}^{2}=\left\{\hat{\beta}_{j} / \operatorname{se}\left(\hat{\beta}_{j}\right)\right\}^{2}$ and p-value for testing $H_{0}: \beta_{j}=0$. What do we conclude here?

5.1.2 Looking at data

With a single predictor x, can plot $p_{i}=y_{i} / n_{i}$ versus x_{i}. This approach works well when $n_{i} \neq 1$. The plot should look like a "lazy s." Alternatively, the sample logits
$\log p_{i} /\left(1-p_{i}\right)=\log y_{i} /\left(n_{i}-y_{i}\right)$ versus x_{i} should be approximately straight. If some categories have all successes or failures, an ad hoc adjustment is $\log \left\{\left(y_{i}+0.5\right) /\left(n_{i}-y_{i}+0.5\right)\right\}$.
When many n_{i} are small, you can group the data yourself into, say, 10-20 like categories and plot them. For the horseshoe crab data let's use the categories defined in Chapter 4. A new variable w is created that is the midpoint of the width categories:

```
data crab1; input color spine width satell weight;
    weight=weight/1000; color=color-1;
    y=0; n=1; if satell>0 then y=1; w=22.75;
    if width>23.25 then w=23.75;
    if width>24.25 then w=24.75;
    if width>25.25 then w=25.75;
    if width>26.25 then w=26.75;
    if width>27.25 then w=27.75;
    if width>28.25 then w=28.75;
    if width>29.25 then w=29.75;
```


Plot of sample logits vs. width windows

```
proc sort data=crab1; by w;
proc means data=crab1 noprint; by w; var y n; output out=crabs2 sum=sumy sumn;
data crabs3; set crabs2; p=sumy/sumn;
logit=log((sumy+0.5)/(sumn-sumy+0.5));
proc gplot;
    plot p*w; plot logit*w;
```


Figure: Sample logits versus width; is this "straight?"

Another option is to use loess

- loess (Cleveland, 1979) stands for locally weighted scatterplot smoothing.
- For data $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$, a weighted regression is fit at each x_{0}, where x-values further away from x_{0} are given less weight.
- Essentially fits a nonparametric mean function $\mu(x)=E(y \mid x)$ to $\left\{\left(x_{i}, y_{u}\right)\right\}_{i=1}^{n}$.
- Useful for (a) exploratory visualization of data, e.g. "is the mean approximately a line?" and (b) residual plots for models where the response is binary or a count.
- However, loess does not restrict the mean to be between zero and one!
proc sgscatter;
plot y*width / loess;

5.1.4 Retrospective sampling \& logistic regression

In case-control studies the number of cases and the number of controls are set ahead of time. It is not possible to estimate the probability of being a case from the general population for these types of data, but just as with a 2×2 table, we can still estimate an odds ratio e^{β}.

Let Z indicate whether a subject is sampled $(1=y e s, 0=n o)$. Let $\rho_{1}=P(Z=1 \mid y=1)$ be the probability that a case is sampled and let $\rho_{0}=P(Z=1 \mid y=0)$ be the probability that a control is sampled.

In a simple random sample, $\rho_{1}=P(Y=1)$ and
$\rho_{0}=P(Y=0)=1-\rho_{1}$.
Assume the logistic regression model

$$
\pi(x)=P\left(Y_{i}=1 \mid x\right)=\frac{e^{\alpha+\beta x}}{1+e^{\alpha+\beta x}}
$$

Case-control studies, cont.

Assume that the probability of choosing a case is independent of x, $P(Z=1 \mid y=1, x)=P(Z=1 \mid y=1)$ and the same for a control $P(Z=1 \mid y=0, x)=P(Z=1 \mid y=0)$. This is the case, for instance, when a fixed number of cases and controls are sampled retrospectively, regardless of their x values.

Bayes' rule gives us

$$
\begin{aligned}
P(Y=1 \mid z=1, x) & =\frac{\rho_{1} \pi(x)}{\rho_{1} \pi(x)+\rho_{0}(1-\pi(x))} \\
& =\frac{e^{\alpha^{*}+\beta x}}{1+e^{\alpha^{*}+\beta x}}
\end{aligned}
$$

where $\alpha^{*}=\alpha+\log \left(\rho_{1} / \rho_{0}\right)$.
The parameter β has the same interpretation in terms of odds ratios as with simple random sampling.

Comments

- This is very powerful \& another reason why logistic regression is widely used.
- Other links (e.g. identity, probit) do not have this property.
- Matched case/controls studies require more thought; Chapter 11.
- 5.1.5 relates directly to ROC analysis where x is a diagnostic test score (e.g. ELISA) and Y indicates presence/absence of disease.

5.2.1 Inferences for regression effects

Consider the full model

$$
\operatorname{logit}\{\pi(\mathbf{x})\}=\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{p-1} x_{p-1}=\mathbf{x}^{\prime} \boldsymbol{\beta}
$$

Most types of inferences are functions of $\boldsymbol{\beta}$, say $g(\boldsymbol{\beta})$. Some examples:

- $g(\boldsymbol{\beta})=\beta_{j}, j^{\text {th }}$ regression coefficient.
- $g(\boldsymbol{\beta})=e^{\beta_{j}}, j^{\text {th }}$ odds ratio.
- $g(\boldsymbol{\beta})=e^{\mathrm{x}^{\prime} \boldsymbol{\beta}} /\left(1+e^{\mathrm{x}^{\prime} \boldsymbol{\beta}}\right)$, probability $\pi(\mathbf{x})$.

If $\hat{\boldsymbol{\beta}}$ is the MLE of $\boldsymbol{\beta}$, then $g(\hat{\boldsymbol{\beta}})$ is the MLE of $g(\boldsymbol{\beta})$. This provides an estimate.

The delta method is an all-purpose method for obtaining a standard error for $g(\hat{\boldsymbol{\beta}})$.

Delta method

We know

$$
\hat{\boldsymbol{\beta}} \dot{\sim} N_{p}(\boldsymbol{\beta}, \widehat{\operatorname{cov}}(\hat{\boldsymbol{\beta}}))
$$

Let $g(\boldsymbol{\beta})$ be a function from \mathbb{R}^{p} to \mathbb{R}. Taylor's theorem implies, as long as the MLE $\hat{\boldsymbol{\beta}}$ is somewhat close to the true value $\boldsymbol{\beta}$, that

$$
g(\boldsymbol{\beta}) \approx g(\hat{\boldsymbol{\beta}})+[D g(\hat{\boldsymbol{\beta}})](\boldsymbol{\beta}-\hat{\boldsymbol{\beta}})
$$

where $[\operatorname{Dg}(\boldsymbol{\beta})]$ is the vector of first partial derivatives

$$
D g(\boldsymbol{\beta})=\left[\begin{array}{c}
\frac{\partial g(\boldsymbol{\beta})}{\partial \beta_{1}} \\
\frac{\partial g(\boldsymbol{\beta})}{\partial \beta_{2}} \\
\vdots \\
\frac{\partial g(\boldsymbol{\beta})}{\partial \beta_{p}}
\end{array}\right]
$$

Delta method

Then

$$
(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \dot{\sim} N_{p}(\mathbf{0}, \widehat{\operatorname{cov}}(\hat{\boldsymbol{\beta}})),
$$

implies

$$
[D g(\boldsymbol{\beta})]^{\prime}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \dot{\sim} N\left(0,[D g(\boldsymbol{\beta})]^{\prime} \widehat{\operatorname{cov}}(\hat{\boldsymbol{\beta}})[D g(\boldsymbol{\beta})]\right)
$$

and finally

$$
g(\hat{\boldsymbol{\beta}}) \dot{\sim} N\left(g(\boldsymbol{\beta}),[D g(\hat{\boldsymbol{\beta}})]^{\prime} \widehat{\operatorname{cov}}(\hat{\boldsymbol{\beta}})[D g(\hat{\boldsymbol{\beta}})]\right)
$$

So

$$
\operatorname{se}\{g(\hat{\boldsymbol{\beta}})\}=\sqrt{[D g(\hat{\boldsymbol{\beta}})]^{\prime} \widehat{\operatorname{cov}}(\hat{\boldsymbol{\beta}})[D g(\hat{\boldsymbol{\beta}})]}
$$

This can be used to get confidence intervals for probabilities, etc.

Pointwise Cls for probability of success

```
proc logistic data=crabs1 descending;
    model y = width; output out=crabs2 pred=p lower=1 upper=u;
proc sort data=crabs2; by width;
proc gplot data=crabs2;
    title "Estimated probabilities with pointwise 95% CI's";
    symbol1 i=join color=black; symbol2 i=join color=red line=3;
    symbol3 i=join color=black; axis1 label=('');
    plot (l p u)*width / overlay vaxis=axis1;
```

Estimated probabilities with pointwise 95\% Cl's

5.2.3, 5.2.4 \& 5.2.5 Goodness of fit and grouping

The deviance GOF statistic is defined to be

$$
D=2 \sum_{i=1}^{N}\left\{y_{i} \log \left(\frac{y_{i}}{n_{i} \hat{\pi}_{i}}\right)+\left(n_{i}-y_{i}\right) \log \left(\frac{n_{i}-y_{i}}{n_{i}-n_{i} \hat{\pi}_{i}}\right)\right\},
$$

where $\hat{\pi}_{i}=\frac{e^{x_{i}^{\prime} \hat{\beta}}}{1+e^{x_{i}^{\prime} \hat{\beta}}}$ are fitted values.
Pearson's GOF statistic is

$$
X^{2}=\sum_{i=1}^{N} \frac{\left(y_{i}-n_{i} \hat{\pi}_{i}\right)^{2}}{n_{i} \hat{\pi}_{i}\left(1-\hat{\pi}_{i}\right)}
$$

Both statistics are approximately χ_{N-p}^{2} in large samples assuming that the number of trials $n=\sum_{i=1}^{N} n_{i}$ increases in such a way that each n_{i} increases.

Group your data

Binomial data is often recorded as individual (Bernoulli) records:

i	y_{i}	n_{i}	x_{i}
1	0	1	9
2	0	1	14
3	1	1	14
4	0	1	17
5	1	1	17
6	1	1	17
7	1	1	20

Grouping the data yields an identical model:

i	y_{i}	n_{i}	x_{i}
1	0	1	9
2	1	2	14
3	2	3	17
4	1	1	20

- $\hat{\boldsymbol{\beta}}, \operatorname{se}\left(\hat{\beta}_{j}\right)$, and $L(\hat{\boldsymbol{\beta}})$ don't care if data are grouped.
- The quality of residuals and GOF statistics depend on how data are grouped. D and Pearson's X^{2} will change!

Comments

- In PROC LOGISTIC type AGGREGATE and SCALE=NONE after the MODEL statement to get D and X^{2} based on grouped data. This option does not compute residuals based on the grouped data. You can aggregate over all variables or a subset, e.g. AGGREGATE=(width).
- The Hosmer and Lemeshow test statistic orders observations (\mathbf{x}_{i}, Y_{i}) by fitted probabilities $\hat{\pi}\left(\mathbf{x}_{i}\right)$ from smallest to largest and divides them into (typically) $g=10$ groups of roughly the same size. A Pearson test statistic is computed from these g groups.

Comments

- The statistic would have a χ_{g-p}^{2} distribution if each group had exactly the same predictor \mathbf{x} for all observations. In general, the null distribution is approximately χ_{g-2}^{2} (see text). Termed a "near-replicate GOF test." The LACKFIT option in PROC LOGISTIC gives this statistic.
- Can also test logit $\{\pi(x)\}=\beta_{0}+\beta_{1} x$ versus more general model $\operatorname{logit}\{\pi(x)\}=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}$ via $H_{0}: \beta_{2}=0$.

Raw (Bernoulli) data with aggregate scale=none lackfit;

- There are 66 distinct widths $\left\{\mathbf{x}_{i}\right\}$ out of $N=173$ crabs. For χ_{66-2}^{2} to hold, we must keep sampling crabs that only have one of the 66 fixed number of widths! Does that make sense here?
- The Hosmer and Lemeshow test gives a p-value of 0.73 based on $g=10$ groups. Are assumptions going into this p-value met?
- None of the GOF tests have assumptions that are met in practice for continuous predictors. Are they still useful?
- The raw statistics do not tell you where lack of fit occurs. Deviance and Pearson residuals do tell you this (later). Also, the table provided by the H-L tells you which groups are ill-fit should you reject H_{0} : logistic model holds.
- GOF tests are meant to detect gross deviations from model assumptions. No model ever truly fits data except hypothetically.

5.3 Categorical predictors

Let's say we wish to include variable X, a categorical variable that takes on values $x \in\{1,2, \ldots, I\}$. We need to allow each level of $X=x$ to affect $\pi(x)$ differently. This is accomplished by the use of dummy variables. This is typically done one of two ways.

Define $z_{1}, z_{2}, \ldots, z_{I-1}$ as follows:

$$
z_{j}=\left\{\begin{array}{cc}
1 & X=j \\
-1 & X \neq j
\end{array}\right.
$$

This is the default in PROC LOGISTIC with a CLASS X statement. Say $I=3$, then the model is

$$
\operatorname{logit} \pi(x)=\beta_{0}+\beta_{1} z_{1}+\beta_{2} z_{2}
$$

which gives

$$
\begin{array}{lll}
\text { logit } \pi(x)=\beta_{0}+\beta_{1}-\beta_{2} & \text { when } & X=1 \\
\text { logit } \pi(x)=\beta_{0}-\beta_{1}+\beta_{2} & \text { when } & X=2 \\
\text { logit } \pi(x)=\beta_{0}-\beta_{1}-\beta_{2} & \text { when } & X=3
\end{array}
$$

Zero/One dummy variables

At alternative method uses "zero/one" dummies instead:

$$
z_{j}= \begin{cases}1 & X=j \\ 0 & X \neq j\end{cases}
$$

This is the default if PROC GENMOD with a CLASS X statement. This can also be obtained in PROC LOGISTIC with the PARAM $=$ REF option. This sets class $X=I$ as baseline. Say $I=3$, then the model is

$$
\operatorname{logit} \pi(x)=\beta_{0}+\beta_{1} z_{1}+\beta_{2} z_{2}
$$

which gives

$$
\begin{array}{lll}
\text { logit } \pi(x)=\beta_{0}+\beta_{1} & \text { when } & X=1 \\
\text { logit } \pi(x)=\beta_{0}+\beta_{2} & \text { when } & X=2 \\
\text { logit } \pi(x)=\beta_{0} & \text { when } & X=3
\end{array}
$$

SAS example

I prefer the latter method because it's easier to think about for me. You can choose a different baseline category with REF=FIRST next to the variable name in the CLASS statement. Table 3.8 (p. 89):

```
data mal;
    input cons present absent @@;
    total=present+absent;
    datalines;
    148417066}223814464 3 5 788441126 5 1 37
;
proc logistic;
    class cons / param=ref;
    model present/total = cons;
```


SAS output

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	6.2020	4	0.1846
Score	12.0821	4	0.0168
Wald	9.2811	4	0.0544

Type 3 Analysis of Effects

	Wald		
Effect	DF	Chi-Square	Pr $>$ ChiSq
cons	4	9.2811	0.0544

Analysis of Maximum Likelihood Estimates

				Standard	Wald	
Parameter		DF	Estimate	Error	Chi-Square	Pr $>$ ChiSq
Intercept		1	-3.6109	1.0134	12.6956	0.0004
cons	1	1	-2.2627	1.0237	4.8858	0.0271
cons	2	1	-2.3309	1.0264	5.1577	0.0231
cons	3	1	-1.4491	1.1083	1.7097	0.1910
cons	4	1	-1.2251	1.4264	0.7377	0.3904

Odds Ratio Estimates

		Point	95% Wald	
Effect		Estimate	Confidence Limits	
cons 1 vs 5	0.104	0.014	0.774	
cons 2 vs 5	0.097	0.013	0.727	
cons 3 vs 5	0.235	0.027	2.061	
cons 4 vs 5	0.294	0.018	4.810	

Interpretation

The model is
$\operatorname{logit} \pi(X)=\beta_{0}+\beta_{1} I\{X=1\}+\beta_{2} I\{X=2\}+\beta_{3} I\{X=3\}+\beta_{4} I\{X=4\}$
where X denotes alcohol consumption $X=1,2,3,4,5$.

- Type 3 analyses test whether all dummy variables associated with a categorical predictor are simultaneously zero, here $H_{0}: \beta_{1}=\beta_{2}=\beta_{3}=\beta_{4}=0$. If we accept this then the categorical predictor is not needed in the model.
- PROC LOGISTIC gives estimates and Cls for $e^{\beta_{j}}$ for $j=1,2,3,4$. Here, these are interpreted as the odds of developing malformation when $X=1,2,3$, or 4 versus the odds when $X=5$.
- We are not as interested in the individual Wald tests $H_{0}: \beta_{j}=0$ for a categorical predictor. Why is that? Because they only compare a level $X=1,2,3,4$ to baseline $X=5$, not to each other.
- The Testing Global Null Hypothesis: BETA=0 are three tests that no predictor is needed; $\boldsymbol{H}_{0}: \operatorname{logit}\{\pi(x)\}=\beta_{0}$ versus $H_{1}: \operatorname{logit}\{\pi(x)\}=\mathbf{x}^{\prime} \boldsymbol{\beta}$. Anything wrong here? We'll talk about exact tests later.
- Note that the Wald test for $H_{0}: \boldsymbol{\beta}=0$ is the same as the Type III test that consumption is not important. Why is that?
- Let $Y=1$ denote malformation for a randomly sampled individual. To get an odds ratio for malformation from increasing from, say, $X=2$ to $X=4$, note that

$$
\frac{P(Y=1 \mid X=2) / P(Y=0 \mid X=2)}{P(Y=1 \mid X=4) / P(Y=0 \mid X=4)}=e^{\beta_{2}-\beta_{4}}
$$

This is estimated with the CONTRAST command.

