Sections 5.1, 5.2, 5.3

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 770: Categorical Data Analysis

Chapter 5 – Logistic Regression I

The logistic regression model is

$$Y_i \sim bin(n_i, \pi_i), \ \ \pi_i = rac{exp(eta_0 + eta_1 x_{i1} + \dots + eta_{p-1} x_{i,p-1})}{1 + exp(eta_0 + eta_1 x_{i1} + \dots + eta_{p-1} x_{i,p-1})}.$$

- x_i = (1, x_{i1},..., x_{i,p-1}) is a p-dimensional vector of explanatory variables including a place holder for the intercept.
- β = (β₀,..., β_{p-1}) is the p-dimensional vector of regression coefficients. These are the unknown population parameters.
- $\eta_i = \mathbf{x}'_i \boldsymbol{\beta}$ is called the linear predictor.
- Page 163: many, many uses including credit scoring, genetics, disease modeling, etc, etc...
- Many generalizations: ordinal data, complex random effects models, discrete choice models, etc.

5.1.1 Model interpretation

Lets start with simple logistic regression:

$$Y_i \sim bin\left(n_i, rac{e^{lpha + eta x_i}}{1 + e^{lpha + eta x_i}}
ight)$$

An odds ratio: let's look at how the odds of success changes when we increase x by one unit:

$$\frac{\pi(x+1)/[1-\pi(x+1)]}{\pi(x)/[1-\pi(x)]} = \frac{\left\lfloor \frac{e^{\alpha+\beta x+\beta}}{1+e^{\alpha+\beta x+\beta}} \right\rfloor / \left\lfloor \frac{1}{1+e^{\alpha+\beta x+\beta}} \right\rfloor}{\left\lfloor \frac{e^{\alpha+\beta x}}{1+e^{\alpha+\beta x}} \right\rfloor / \left\lfloor \frac{1}{1+e^{\alpha+\beta x}} \right\rfloor}$$
$$= \frac{e^{\alpha+\beta x+\beta}}{e^{\alpha+\beta x}} = e^{\beta}.$$

When we increase x by one unit, the odds of an event occurring increases by a factor of e^{β} , regardless of the value of x.

So e^{β} is an odds ratio.

We also have

$$rac{\partial \pi(x)}{\partial x} = eta \pi(x) [1 - \pi(x)].$$

Note that $\pi(x)$ changes more when $\pi(x)$ is away from zero or one than when $\pi(x)$ is near 0.5.

This gives us *approximately* how $\pi(x)$ changes when x increases by a unit. This increase depends on x, unlike the odds ratio.

See Figure 5.1, p. 164.

5.1.3 Horseshoe crab data

Let's look at $Y_i = 1$ if a female crab has one or more satellites, and $Y_i = 0$ if not. So

$$\pi(x) = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}},$$

is the probability of a female having more than her nest-mate around as a function of her width x.

```
data crabs;
input color spine width satell weight @@; weight=weight/1000; color=color-1;
y=0; if satell>0 then y=1;
datalines;
...DATA HERE...
;
proc logistic;
model y=width;
```

Crab data

3	3	28.3	8	3050	4	3	22.5	0	1550	2	1	26.0	9	2300	4	3	24.8	0	2100	4	3	26.0	4	2600
3	3	23.8	0	2100		1	26.5	0	2350		2	24.7	0	1900	3	1	23.7	0	1950	4	3	25.6	0	2150
4	3	24.3	0	2150		3	25.8	0	2650		3	28.2	11			2	21.0	0	1850		1	26.0	14	
2	1	27.1	8	2950	3	3	25.2	1	2000	3	3	29.0	1	3000	5	3	24.7	0	2200	3	3	27.4	5	2700
3	2	23.2	4	1950	2	2	25.0	3	2300	3	1	22.5	1	1600 -	4	3	26.7	2	2600	5	3	25.8	3	2000
5	3	26.2	0	1300	3	3	28.7	3	3150	3	1	26.8	5	2700	5	3	27.5	0	2600	3	3	24.9	0	2100
2	1	29.3	4	3200	2	3	25.8	0	2600	3	2	25.7	0	2000	3	1	25.7	8	2000	3	1	26.7	5	2700
5	3	23.7	0	1850	3	3	26.8	0	2650	3	3	27.5	6	3150	5	3	23.4	0	1900	3	3	27.9	6	2800
4	3	27.5	3	3100	2	1	26.1	5	2800		1	27.7	6	2500		1	30.0	5	3300		1	28.5	9	3250
4	3	28.9	4	2800	3	3	28.2	6	2600	3	3	25.0	4	2100	3	3	28.5	3	3000	3	1	30.3	3	3600
5	3	24.7	5	2100	3	3	27.7	5	2900	2	1	27.4	6	2700	3	3	22.9	4	1600	3	1	25.7	5	2000
3	3	28.3	15	3000	3	3	27.2	3	2700	4	3	26.2	3	2300	3	1	27.8	0	2750	5	3	25.5	0	2250
4	3	27.1	0	2550	4	3	24.5	5	2050	4	1	27.0	3	2450	3	3	26.0	5	2150	3	3	28.0	1	2800
3	3	30.0	8	3050	3	3	29.0	10	3200	3	3	26.2	0	2400	3	1	26.5	0	1300	3	3	26.2	3	2400
4	3	25.6	7	2800	4	3	23.0	1	1650	4	3	23.0	0	1800	3	3	25.4	6	2250	4	3	24.2	0	1900
3	2	22.9	0	1600	4	2	26.0	3	2200	3	3	25.4	4	2250	4	3	25.7	0	1200	3	3	25.1	5	2100
4	2	24.5	0	2250	5	3	27.5	0	2900	4	3	23.1	0	1650	4	1	25.9	4	2550	3	3	25.8	0	2300
5	3	27.0	3	2250	3	3	28.5	0	3050	5	1	25.5	0	2750	5	3	23.5	0	1900	3	2	24.0	0	1700
3	1	29.7	5	3850	3	1	26.8	0	2550	5	3	26.7	0	2450	3	1	28.7	0	3200	4	3	23.1	0	1550
3	1	29.0	1	2800	4	3	25.5	0	2250	4	3	26.5	1	1967	4	3	24.5	1	2200	4	3	28.5	1	3000
3	3	28.2	1	2867	3	3	24.5	1	1600	3	3	27.5	1	2550	3	2	24.7	4	2550	3	1	25.2	1	2000
4	3	27.3	1	2900	3	3	26.3	1	2400	3	3	29.0	1	3100	3	3	25.3	2	1900	3	3	26.5	4	2300
3	3	27.8	3	3250	3	3	27.0	6	2500	4	3	25.7	0	2100	3	3	25.0	2	2100	3	3	31.9	2	3325
5	3	23.7	0	1800	5	3	29.3	12	3225	4	3	22.0	0	1400	3	3	25.0	5	2400	4	3	27.0	6	2500
4	3	23.8	6	1800	2	1	30.2	2	3275	4	3	26.2	0	2225	3	3	24.2	2	1650	3	3	27.4	3	2900
3	2	25.4	0	2300	4	3	28.4	3	3200	5	3	22.5	4	1475	3	3	26.2	2	2025	3	1	24.9	6	2300
2	2	24.5	6	1950	3	3	25.1	0	1800	3	1	28.0	4	2900	5	3	25.8	10	2250	3	3	27.9	7	3050
3	3	24.9	0	2200	3	1	28.4	5	3100	4	3	27.2	5	2400	3	2	25.0	6	2250	3	3	27.5	6	2625
3	1	33.5	7	5200	3	3	30.5	3	3325	4	3	29.0	3	2925	3	1	24.3	0	2000	3	3	25.8	0	2400
5	3	25.0	8	2100	3	1	31.7	4	3725	3	3	29.5	4	3025	4	3	24.0	10	1900	3	3	30.0	9	3000
3	3	27.6	4	2850	3	3	26.2	0	2300	3	1	23.1	0	2000	3	1	22.9	0	1600	5	3	24.5	0	1900
3	3	24.7	4	1950	3	3	28.3	0	3200	3	3	23.9	2	1850	4	3	23.8	0	1800	4	2	29.8	4	3500
3	3	26.5	4	2350	3	3	26.0	3	2275	3	3	28.2	8	3050	5	3	25.7	0	2150	3	3	26.5	7	2750
3	3	25.8	0	2200	4	3	24.1	0	1800	4	3	26.2	2	2175	4	3	26.1	3	2750	4	3	29.0	4	3275
2	1	28.0	0	2625	5	3	27.0	0	2625	3	2	24.5	0	2000										6

6 / 29

Fit of $logit(\pi_i) = \alpha + \beta x_i$ where x_i is width

			Standard	Wald	
Parameter	DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept	1	-12.3508	2.6287	22.0749	<.0001
width	1	0.4972	0.1017	23.8872	<.0001

Odds Ratio Estimates

	Point	95% Wald	
Effect	Estimate	Confidence Limi	its
width	1.644	1.347 2.	.007

We estimate the probability of a satellite as

$$\hat{\pi}(x) = rac{e^{-12.35+0.50x}}{1+e^{-12.35+0.50x}}.$$

The odds of having a satellite increases by a factor between 1.3 and 2.0 times for every *cm* increase in carapace width.

The coefficient table houses estimates $\hat{\beta}_j$, se $(\hat{\beta}_j)$, and the Wald statistic $z_j^2 = {\{\hat{\beta}_j / \text{se}(\hat{\beta}_j)\}}^2$ and *p*-value for testing $H_0 : \beta_j = 0$. What do we conclude here?

5.1.2 Looking at data

With a single predictor x, can plot $p_i = y_i/n_i$ versus x_i . This approach works well when $n_i \neq 1$. The plot should look like a "lazy s." Alternatively, the sample logits $\log p_i/(1 - p_i) = \log y_i/(n_i - y_i)$ versus x_i should be approximately

straight. If some categories have all successes or failures, an ad hoc adjustment is $\log\{(y_i + 0.5)/(n_i - y_i + 0.5)\}$.

When many n_i are small, you can group the data yourself into, say, 10-20 like categories and plot them. For the horseshoe crab data let's use the categories defined in Chapter 4. A new variable w is created that is the midpoint of the width categories:

```
data crab1; input color spine width satell weight;
weight=weight/1000; color=color-1;
y=0; n=1; if satell>0 then y=1; w=22.75;
if width>23.25 then w=23.75;
if width>24.25 then w=24.75;
if width>25.25 then w=25.75;
if width>26.25 then w=26.75;
if width>28.25 then w=27.75;
if width>28.25 then w=28.75;
if width>29.75;
```

Plot of sample logits vs. width windows

```
proc sort data=crab1; by w;
proc means data=crab1 noprint; by w; var y n; output out=crabs2 sum=sumy sumn;
data crabs3; set crabs2; p=sumy/sumn;
logit=log((sumy+0.5)/(sumn-sumy+0.5));
proc gplot;
plot p*w; plot logit*w;
```


Figure: Sample logits versus width; is this "straight?"

- loess (Cleveland, 1979) stands for *locally weighted scatterplot smoothing*.
- For data {(x_i, y_i)}ⁿ_{i=1}, a weighted regression is fit at each x₀, where x-values further away from x₀ are given less weight.
- Essentially fits a nonparametric mean function μ(x) = E(y|x) to {(x_i, y_u)}ⁿ_{i=1}.
- Useful for (a) exploratory visualization of data, e.g. "is the mean approximately a line?" and (b) residual plots for models where the response is binary or a count.
- However, loess does not restrict the mean to be between zero and one!

```
proc sgscatter;
plot y*width / loess;
```

5.1.4 Retrospective sampling & logistic regression

In case-control studies the number of cases and the number of controls are set ahead of time. It is not possible to estimate the probability of being a case *from the general population* for these types of data, but just as with a 2×2 table, we *can still estimate an odds ratio* e^{β} .

Let Z indicate whether a subject is sampled (1=yes,0=no). Let $\rho_1 = P(Z = 1|y = 1)$ be the probability that a case is sampled and let $\rho_0 = P(Z = 1|y = 0)$ be the probability that a control is sampled.

In a simple random sample, $\rho_1 = P(Y = 1)$ and $\rho_0 = P(Y = 0) = 1 - \rho_1$.

Assume the logistic regression model

$$\pi(x) = P(Y_i = 1|x) = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}.$$

Case-control studies, cont.

Assume that the probability of choosing a case is independent of x, P(Z = 1|y = 1, x) = P(Z = 1|y = 1) and the same for a control P(Z = 1|y = 0, x) = P(Z = 1|y = 0). This is the case, for instance, when a fixed number of cases and controls are sampled retrospectively, regardless of their x values.

Bayes' rule gives us

$$P(Y = 1 | z = 1, x) = \frac{\rho_1 \pi(x)}{\rho_1 \pi(x) + \rho_0 (1 - \pi(x))} \\ = \frac{e^{\alpha^* + \beta x}}{1 + e^{\alpha^* + \beta x}},$$

where $\alpha^* = \alpha + \log(\rho_1/\rho_0)$.

The parameter β has the same interpretation in terms of odds ratios as with simple random sampling.

- This is very powerful & another reason why logistic regression is widely used.
- Other links (e.g. identity, probit) do not have this property.
- *Matched* case/controls studies require more thought; Chapter 11.
- 5.1.5 relates directly to ROC analysis where x is a diagnostic test score (e.g. ELISA) and Y indicates presence/absence of disease.

5.2.1 Inferences for regression effects

Consider the full model

$$\operatorname{logit}\{\pi(\mathbf{x})\} = \beta_0 + \beta_1 x_1 + \dots + \beta_{p-1} x_{p-1} = \mathbf{x}' \boldsymbol{\beta}.$$

Most types of inferences are functions of β , say $g(\beta)$. Some examples:

- $g(\beta) = \beta_j$, j^{th} regression coefficient.
- $g(\beta) = e^{\beta_j}$, j^{th} odds ratio.
- $g(\beta) = e^{\mathbf{x}'\beta}/(1 + e^{\mathbf{x}'\beta})$, probability $\pi(\mathbf{x})$.

If $\hat{\beta}$ is the MLE of β , then $g(\hat{\beta})$ is the MLE of $g(\beta)$. This provides an estimate.

The *delta method* is an all-purpose method for obtaining a standard error for $g(\hat{\beta})$.

We know

$$\hat{\boldsymbol{\beta}} \stackrel{\bullet}{\sim} N_p(\boldsymbol{\beta}, \widehat{\operatorname{cov}}(\hat{\boldsymbol{\beta}})).$$

Let $g(\beta)$ be a function from \mathbb{R}^p to \mathbb{R} . Taylor's theorem implies, as long as the MLE $\hat{\beta}$ is somewhat close to the true value β , that

$$g(eta) pprox g(\hat{eta}) + [Dg(\hat{eta})](eta - \hat{eta}),$$

where $[Dg(\beta)]$ is the vector of first partial derivatives

$$\mathcal{D}g(oldsymbol{eta}) = egin{bmatrix} rac{\partial g(oldsymbol{eta})}{\partialeta_1} \ rac{\partial g(oldsymbol{eta})}{\partialeta_2} \ dots \ rac{\partial g(oldsymbol{eta})}{\partialeta_2} \ dots \ rac{\partial g(oldsymbol{eta})}{\partialeta_p} \end{bmatrix}$$

Then

$$(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \stackrel{\bullet}{\sim} N_p(\mathbf{0}, \widehat{\operatorname{cov}}(\hat{\boldsymbol{\beta}})),$$

implies

$$[Dg(\beta)]'(\hat{eta} - eta) \stackrel{\bullet}{\sim} N(0, [Dg(\beta)]'\widehat{\operatorname{cov}}(\hat{eta})[Dg(eta)]),$$

and finally

$$g(\hat{\beta}) \stackrel{\bullet}{\sim} N(g(\beta), [Dg(\hat{\beta})]' \widehat{\operatorname{cov}}(\hat{\beta})[Dg(\hat{\beta})]).$$

So

$$\mathsf{se}\{\mathsf{g}(\hat{eta})\} = \sqrt{[D\mathsf{g}(\hat{eta})]'\widehat{\mathsf{cov}}(\hat{eta})[D\mathsf{g}(\hat{eta})]}.$$

This can be used to get confidence intervals for probabilities, etc.

Pointwise CIs for probability of success

```
proc logistic data=crabs1 descending;
model y = width; output out=crabs2 pred=p lower=l upper=u;
proc sort data=crabs2; by width;
proc gplot data=crabs2;
title "Estimated probabilities with pointwise 95% CI's";
symbol1 i=join color=black; symbol2 i=join color=red line=3;
symbol3 i=join color=black; axis1 label=('');
plot (1 p u)*width / overlay vaxis=axis1;
```


5.2.3, 5.2.4 & 5.2.5 Goodness of fit and grouping

The deviance GOF statistic is defined to be

$$D = 2\sum_{i=1}^{N} \left\{ y_i \log \left(\frac{y_i}{n_i \hat{\pi}_i} \right) + (n_i - y_i) \log \left(\frac{n_i - y_i}{n_i - n_i \hat{\pi}_i} \right) \right\},\,$$

where $\hat{\pi}_i = \frac{e^{\mathbf{x}_i'\hat{\boldsymbol{\beta}}}}{1+e^{\mathbf{x}_i'\hat{\boldsymbol{\beta}}}}$ are fitted values.

Pearson's GOF statistic is

$$X^{2} = \sum_{i=1}^{N} \frac{(y_{i} - n_{i}\hat{\pi}_{i})^{2}}{n_{i}\hat{\pi}_{i}(1 - \hat{\pi}_{i})}$$

Both statistics are approximately χ^2_{N-p} in large samples assuming that the number of *trials* $n = \sum_{i=1}^{N} n_i$ increases in such a way that each n_i increases.

Group your data

Binomial data is often recorded as individual (Bernoulli) records:

i	Уi	ni	xi
1	0	1	9
1 2 3	0	1	14
	1	1	14
4	0	1	17
5 6	1	1	17
6	1	1	17
7	1	1	20

Grouping the data yields an identical model:

i	Уi	ni	xi
1	0	1	9
2	1	2	14
3	2	3	17
4	1	1	20

- $\hat{\beta}$, se $(\hat{\beta}_j)$, and $L(\hat{\beta})$ don't care if data are grouped.
- The quality of residuals and GOF statistics *depend on how data are grouped*. *D* and Pearson's X² will change!

- In PROC LOGISTIC type AGGREGATE and SCALE=NONE after the MODEL statement to get D and X² based on grouped data. This option *does not* compute residuals based on the grouped data. You can aggregate over all variables or a subset, e.g. AGGREGATE=(width).
- The Hosmer and Lemeshow test statistic orders observations
 (x_i, Y_i) by fitted probabilities π̂(x_i) from smallest to largest
 and divides them into (typically) g = 10 groups of roughly the
 same size. A Pearson test statistic is computed from these g
 groups.

- The statistic would have a χ^2_{g-p} distribution if each group had *exactly the same predictor* **x** for all observations. In general, the null distribution is *approximately* χ^2_{g-2} (see text). Termed a "near-replicate GOF test." The LACKFIT option in PROC LOGISTIC gives this statistic.
- Can also test logit{π(x)} = β₀ + β₁x versus more general model logit{π(x)} = β₀ + β₁x + β₂x² via H₀ : β₂ = 0.

Raw (Bernoulli) data with aggregate scale=none lackfit;

Deviance and Pearson Goodness-of-Fit Statistics

Criterion	Value	DF	Value/DF	Pr > ChiSq
Deviance	69.7260	64	1.0895	0.2911
Pearson	55.1779	64	0.8622	0.7761

Number of unique profiles: 66

Partition for the Hosmer and Lemeshow Test

		y = 1		У	= 0
Group	Total	Observed	Expected	Observed	Expected
1	19	5	5.39	14	13.61
2	18	8	7.62	10	10.38
3	17	11	8.62	6	8.38
4	17	8	9.92	9	7.08
5	16	11	10.10	5	5.90
6	18	11	12.30	7	5.70
7	16	12	12.06	4	3.94
8	16	12	12.90	4	3.10
9	16	13	13.69	3	2.31
10	20	20	18.41	0	1.59

Hosmer and Lemeshow Goodness-of-Fit Test

Chi-Square	DF	Pr > ChiSq
5.2465	8	0.7309

Comments

- There are 66 distinct widths $\{\mathbf{x}_i\}$ out of N = 173 crabs. For χ^2_{66-2} to hold, we must keep sampling crabs that only have one of the 66 *fixed number of widths*! Does that make sense here?
- The Hosmer and Lemeshow test gives a *p*-value of 0.73 based on *g* = 10 groups. Are assumptions going into this *p*-value met?
- None of the GOF tests have assumptions that are met in practice for continuous predictors. Are they still useful?
- The raw statistics do not tell you *where* lack of fit occurs. Deviance and Pearson residuals do tell you this (later). Also, the table provided by the H-L tells you which groups are ill-fit should you reject H₀ : logistic model holds.
- GOF tests are meant to detect *gross* deviations from model assumptions. No model ever truly fits data except hypothetically.

5.3 Categorical predictors

Let's say we wish to include variable X, a categorical variable that takes on values $x \in \{1, 2, ..., I\}$. We need to allow each level of X = x to affect $\pi(x)$ differently. This is accomplished by the use of dummy variables. This is typically done one of two ways.

Define $z_1, z_2, \ldots, z_{I-1}$ as follows:

$$z_j = \begin{cases} 1 & X = j \\ -1 & X \neq j \end{cases}$$

This is the default in PROC LOGISTIC with a CLASS X statement. Say I = 3, then the model is

logit
$$\pi(x) = \beta_0 + \beta_1 z_1 + \beta_2 z_2$$
.

which gives

logit
$$\pi(x) = \beta_0 + \beta_1 - \beta_2$$
 when $X = 1$
logit $\pi(x) = \beta_0 - \beta_1 + \beta_2$ when $X = 2$
logit $\pi(x) = \beta_0 - \beta_1 - \beta_2$ when $X = 3$

Zero/One dummy variables

At alternative method uses "zero/one" dummies instead:

$$z_j = \begin{cases} 1 & X = j \\ 0 & X \neq j \end{cases}$$

This is the default if PROC GENMOD with a CLASS X statement. This can also be obtained in PROC LOGISTIC with the PARAM=REF option. This sets class X = I as baseline. Say I = 3, then the model is

$$\text{logit } \pi(x) = \beta_0 + \beta_1 z_1 + \beta_2 z_2.$$

which gives

$$\begin{array}{ll} \text{logit } \pi(x) = \beta_0 + \beta_1 & \text{when} & X = 1 \\ \text{logit } \pi(x) = \beta_0 + \beta_2 & \text{when} & X = 2 \\ \text{logit } \pi(x) = \beta_0 & \text{when} & X = 3 \end{array}$$

I prefer the latter method because it's easier to think about for me. You can choose a different baseline category with REF=FIRST next to the variable name in the CLASS statement. Table 3.8 (p. 89):

```
data mal;
input cons present absent @0;
total=present+absent;
datalines;
1 48 17066 2 38 14464 3 5 788 4 1 126 5 1 37
;
proc logistic;
class cons / param=ref;
model present/total = cons;
```

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	6.2020	4	0.1846
Score	12.0821	4	0.0168
Wald	9.2811	4	0.0544

Type 3 Analysis of Effects

		Wald	
Effect	DF	Chi-Square	Pr > ChiSq
cons	4	9.2811	0.0544

Analysis of Maximum Likelihood Estimates

				Standard	Wald	
Paramet	er	DF	Estimate	Error	Chi-Square	Pr > ChiSq
Interce	pt	1	-3.6109	1.0134	12.6956	0.0004
cons	1	1	-2.2627	1.0237	4.8858	0.0271
cons	2	1	-2.3309	1.0264	5.1577	0.0231
cons	3	1	-1.4491	1.1083	1.7097	0.1910
cons	4	1	-1.2251	1.4264	0.7377	0.3904

Odds Ratio Estimates

	Point	: 95%	Wald
Effect	Estimate	e Confider	nce Limits
cons 1 vs	5 0.104	0.014	0.774
cons 2 vs	5 0.097	0.013	0.727
cons 3 vs	5 0.235	0.027	2.061
cons 4 vs	5 0.294	0.018	4.810

The model is

logit $\pi(X) = \beta_0 + \beta_1 I\{X = 1\} + \beta_2 I\{X = 2\} + \beta_3 I\{X = 3\} + \beta_4 I\{X = 4\}$

where X denotes alcohol consumption X = 1, 2, 3, 4, 5.

- Type 3 analyses test whether all dummy variables associated with a categorical predictor are simultaneously zero, here $H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = 0$. If we accept this then the categorical predictor is not needed in the model.
- PROC LOGISTIC gives estimates and CIs for e^{β_j} for j = 1, 2, 3, 4. Here, these are interpreted as the odds of developing malformation when X = 1, 2, 3, or 4 versus the odds when X = 5.
- We are not as interested in the *individual* Wald tests $H_0: \beta_j = 0$ for a categorical predictor. Why is that? Because they only compare a level X = 1, 2, 3, 4 to baseline X = 5, not to each other.

Comments

- The Testing Global Null Hypothesis: BETA=0 are three tests that *no predictor* is needed; H_0 : logit{ $\pi(x)$ } = β_0 versus H_1 : logit{ $\pi(x)$ } = $\mathbf{x}'\beta$. Anything wrong here? We'll talk about exact tests later.
- Note that the Wald test for H₀: β = 0 is the same as the Type III test that consumption is not important. Why is that?
- Let Y = 1 denote malformation for a randomly sampled individual. To get an odds ratio for malformation from increasing from, say, X = 2 to X = 4, note that

$$\frac{P(Y=1|X=2)/P(Y=0|X=2)}{P(Y=1|X=4)/P(Y=0|X=4)} = e^{\beta_2 - \beta_4}.$$

This is estimated with the CONTRAST command.