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Chapter 5 – Logistic Regression I

The logistic regression model is

Yi ∼ bin(ni , πi ), πi =
exp(β0 + β1xi1 + · · · + βp−1xi ,p−1)

1 + exp(β0 + β1xi1 + · · · + βp−1xi ,p−1)
.

xi = (1, xi1, . . . , xi ,p−1) is a p-dimensional vector of
explanatory variables including a place holder for the intercept.

β = (β0, . . . , βp−1) is the p-dimensional vector of regression
coefficients. These are the unknown population parameters.

ηi = x′iβ is called the linear predictor.

Page 163: many, many uses including credit scoring, genetics,
disease modeling, etc, etc...

Many generalizations: ordinal data, complex random effects
models, discrete choice models, etc.
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5.1.1 Model interpretation

Lets start with simple logistic regression:

Yi ∼ bin

(
ni ,

eα+βxi

1 + eα+βxi

)
.

An odds ratio: let’s look at how the odds of success changes when
we increase x by one unit:

π(x + 1)/[1 − π(x + 1)]

π(x)/[1 − π(x)]
=

[
eα+βx+β

1+eα+βx+β

]
/
[

1
1+eα+βx+β

]

[
eα+βx

1+eα+βx

]
/
[

1
1+eα+βx

]

=
eα+βx+β

eα+βx
= eβ.

When we increase x by one unit, the odds of an event occurring
increases by a factor of eβ , regardless of the value of x .
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Another interpretation for β

So eβ is an odds ratio.

We also have
∂π(x)

∂x
= βπ(x)[1 − π(x)].

Note that π(x) changes more when π(x) is away from zero or one
than when π(x) is near 0.5.

This gives us approximately how π(x) changes when x increases by
a unit. This increase depends on x , unlike the odds ratio.

See Figure 5.1, p. 164.
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5.1.3 Horseshoe crab data

Let’s look at Yi = 1 if a female crab has one or more satellites,
and Yi = 0 if not. So

π(x) =
eα+βx

1 + eα+βx
,

is the probability of a female having more than her nest-mate
around as a function of her width x .

data crabs;

input color spine width satell weight @@; weight=weight/1000; color=color-1;

y=0; if satell>0 then y=1;

datalines;

...DATA HERE...

;

proc logistic;

model y=width;
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Crab data
3 3 28.3 8 3050 4 3 22.5 0 1550 2 1 26.0 9 2300 4 3 24.8 0 2100 4 3 26.0 4 2600

3 3 23.8 0 2100 2 1 26.5 0 2350 4 2 24.7 0 1900 3 1 23.7 0 1950 4 3 25.6 0 2150

4 3 24.3 0 2150 3 3 25.8 0 2650 3 3 28.2 11 3050 5 2 21.0 0 1850 3 1 26.0 14 2300

2 1 27.1 8 2950 3 3 25.2 1 2000 3 3 29.0 1 3000 5 3 24.7 0 2200 3 3 27.4 5 2700

3 2 23.2 4 1950 2 2 25.0 3 2300 3 1 22.5 1 1600 4 3 26.7 2 2600 5 3 25.8 3 2000

5 3 26.2 0 1300 3 3 28.7 3 3150 3 1 26.8 5 2700 5 3 27.5 0 2600 3 3 24.9 0 2100

2 1 29.3 4 3200 2 3 25.8 0 2600 3 2 25.7 0 2000 3 1 25.7 8 2000 3 1 26.7 5 2700

5 3 23.7 0 1850 3 3 26.8 0 2650 3 3 27.5 6 3150 5 3 23.4 0 1900 3 3 27.9 6 2800

4 3 27.5 3 3100 2 1 26.1 5 2800 2 1 27.7 6 2500 3 1 30.0 5 3300 4 1 28.5 9 3250

4 3 28.9 4 2800 3 3 28.2 6 2600 3 3 25.0 4 2100 3 3 28.5 3 3000 3 1 30.3 3 3600

5 3 24.7 5 2100 3 3 27.7 5 2900 2 1 27.4 6 2700 3 3 22.9 4 1600 3 1 25.7 5 2000

3 3 28.3 15 3000 3 3 27.2 3 2700 4 3 26.2 3 2300 3 1 27.8 0 2750 5 3 25.5 0 2250

4 3 27.1 0 2550 4 3 24.5 5 2050 4 1 27.0 3 2450 3 3 26.0 5 2150 3 3 28.0 1 2800

3 3 30.0 8 3050 3 3 29.0 10 3200 3 3 26.2 0 2400 3 1 26.5 0 1300 3 3 26.2 3 2400

4 3 25.6 7 2800 4 3 23.0 1 1650 4 3 23.0 0 1800 3 3 25.4 6 2250 4 3 24.2 0 1900

3 2 22.9 0 1600 4 2 26.0 3 2200 3 3 25.4 4 2250 4 3 25.7 0 1200 3 3 25.1 5 2100

4 2 24.5 0 2250 5 3 27.5 0 2900 4 3 23.1 0 1650 4 1 25.9 4 2550 3 3 25.8 0 2300

5 3 27.0 3 2250 3 3 28.5 0 3050 5 1 25.5 0 2750 5 3 23.5 0 1900 3 2 24.0 0 1700

3 1 29.7 5 3850 3 1 26.8 0 2550 5 3 26.7 0 2450 3 1 28.7 0 3200 4 3 23.1 0 1550

3 1 29.0 1 2800 4 3 25.5 0 2250 4 3 26.5 1 1967 4 3 24.5 1 2200 4 3 28.5 1 3000

3 3 28.2 1 2867 3 3 24.5 1 1600 3 3 27.5 1 2550 3 2 24.7 4 2550 3 1 25.2 1 2000

4 3 27.3 1 2900 3 3 26.3 1 2400 3 3 29.0 1 3100 3 3 25.3 2 1900 3 3 26.5 4 2300

3 3 27.8 3 3250 3 3 27.0 6 2500 4 3 25.7 0 2100 3 3 25.0 2 2100 3 3 31.9 2 3325

5 3 23.7 0 1800 5 3 29.3 12 3225 4 3 22.0 0 1400 3 3 25.0 5 2400 4 3 27.0 6 2500

4 3 23.8 6 1800 2 1 30.2 2 3275 4 3 26.2 0 2225 3 3 24.2 2 1650 3 3 27.4 3 2900

3 2 25.4 0 2300 4 3 28.4 3 3200 5 3 22.5 4 1475 3 3 26.2 2 2025 3 1 24.9 6 2300

2 2 24.5 6 1950 3 3 25.1 0 1800 3 1 28.0 4 2900 5 3 25.8 10 2250 3 3 27.9 7 3050

3 3 24.9 0 2200 3 1 28.4 5 3100 4 3 27.2 5 2400 3 2 25.0 6 2250 3 3 27.5 6 2625

3 1 33.5 7 5200 3 3 30.5 3 3325 4 3 29.0 3 2925 3 1 24.3 0 2000 3 3 25.8 0 2400

5 3 25.0 8 2100 3 1 31.7 4 3725 3 3 29.5 4 3025 4 3 24.0 10 1900 3 3 30.0 9 3000

3 3 27.6 4 2850 3 3 26.2 0 2300 3 1 23.1 0 2000 3 1 22.9 0 1600 5 3 24.5 0 1900

3 3 24.7 4 1950 3 3 28.3 0 3200 3 3 23.9 2 1850 4 3 23.8 0 1800 4 2 29.8 4 3500

3 3 26.5 4 2350 3 3 26.0 3 2275 3 3 28.2 8 3050 5 3 25.7 0 2150 3 3 26.5 7 2750

3 3 25.8 0 2200 4 3 24.1 0 1800 4 3 26.2 2 2175 4 3 26.1 3 2750 4 3 29.0 4 3275

2 1 28.0 0 2625 5 3 27.0 0 2625 3 2 24.5 0 2000 6 / 29



Fit of logit(πi) = α + βxi where xi is width

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -12.3508 2.6287 22.0749 <.0001

width 1 0.4972 0.1017 23.8872 <.0001

Odds Ratio Estimates

Point 95% Wald

Effect Estimate Confidence Limits

width 1.644 1.347 2.007

We estimate the probability of a satellite as

π̂(x) =
e−12.35+0.50x

1 + e−12.35+0.50x
.

The odds of having a satellite increases by a factor between 1.3
and 2.0 times for every cm increase in carapace width.

The coefficient table houses estimates β̂j , se(β̂j ), and the Wald

statistic z2
j = {β̂j/se(β̂j )}

2 and p-value for testing H0 : βj = 0.
What do we conclude here?
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5.1.2 Looking at data

With a single predictor x , can plot pi = yi/ni versus xi . This
approach works well when ni 6= 1. The plot should look like a “lazy
s.” Alternatively, the sample logits
log pi/(1 − pi ) = log yi/(ni − yi ) versus xi should be approximately
straight. If some categories have all successes or failures, an ad
hoc adjustment is log{(yi + 0.5)/(ni − yi + 0.5)}.

When many ni are small, you can group the data yourself into, say,
10-20 like categories and plot them. For the horseshoe crab data
let’s use the categories defined in Chapter 4. A new variable w is
created that is the midpoint of the width categories:

data crab1; input color spine width satell weight;

weight=weight/1000; color=color-1;

y=0; n=1; if satell>0 then y=1; w=22.75;

if width>23.25 then w=23.75;

if width>24.25 then w=24.75;

if width>25.25 then w=25.75;

if width>26.25 then w=26.75;

if width>27.25 then w=27.75;

if width>28.25 then w=28.75;

if width>29.25 then w=29.75;
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Plot of sample logits vs. width windows

proc sort data=crab1; by w;

proc means data=crab1 noprint; by w; var y n; output out=crabs2 sum=sumy sumn;

data crabs3; set crabs2; p=sumy/sumn;

logit=log((sumy+0.5)/(sumn-sumy+0.5));

proc gplot;

plot p*w; plot logit*w;

Figure: Sample logits versus width; is this “straight?”
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Another option is to use loess

loess (Cleveland, 1979) stands for locally weighted scatterplot

smoothing.

For data {(xi , yi )}
n
i=1, a weighted regression is fit at each x0,

where x-values further away from x0 are given less weight.

Essentially fits a nonparametric mean function µ(x) = E (y |x)
to {(xi , yu)}n

i=1.

Useful for (a) exploratory visualization of data, e.g. “is the
mean approximately a line?” and (b) residual plots for models
where the response is binary or a count.

However, loess does not restrict the mean to be between zero
and one!

proc sgscatter;

plot y*width / loess;
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5.1.4 Retrospective sampling & logistic regression

In case-control studies the number of cases and the number of
controls are set ahead of time. It is not possible to estimate the
probability of being a case from the general population for these
types of data, but just as with a 2 × 2 table, we can still estimate

an odds ratio eβ .

Let Z indicate whether a subject is sampled (1=yes,0=no). Let
ρ1 = P(Z = 1|y = 1) be the probability that a case is sampled and
let ρ0 = P(Z = 1|y = 0) be the probability that a control is
sampled.

In a simple random sample, ρ1 = P(Y = 1) and
ρ0 = P(Y = 0) = 1 − ρ1.

Assume the logistic regression model

π(x) = P(Yi = 1|x) =
eα+βx

1 + eα+βx
.
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Case-control studies, cont.

Assume that the probability of choosing a case is independent of x ,
P(Z = 1|y = 1, x) = P(Z = 1|y = 1) and the same for a control
P(Z = 1|y = 0, x) = P(Z = 1|y = 0). This is the case, for
instance, when a fixed number of cases and controls are sampled
retrospectively, regardless of their x values.

Bayes’ rule gives us

P(Y = 1|z = 1, x) =
ρ1π(x)

ρ1π(x) + ρ0(1 − π(x))

=
eα∗+βx

1 + eα∗+βx
,

where α∗ = α + log(ρ1/ρ0).

The parameter β has the same interpretation in terms of odds
ratios as with simple random sampling.
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Comments

This is very powerful & another reason why logistic regression
is widely used.

Other links (e.g. identity, probit) do not have this property.

Matched case/controls studies require more thought; Chapter
11.

5.1.5 relates directly to ROC analysis where x is a diagnostic
test score (e.g. ELISA) and Y indicates presence/absence of
disease.
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5.2.1 Inferences for regression effects

Consider the full model

logit{π(x)} = β0 + β1x1 + · · · + βp−1xp−1 = x
′β.

Most types of inferences are functions of β, say g(β). Some
examples:

g(β) = βj , j th regression coefficient.

g(β) = eβj , j th odds ratio.

g(β) = ex′β/(1 + ex′β), probability π(x).

If β̂ is the MLE of β, then g(β̂) is the MLE of g(β). This
provides an estimate.

The delta method is an all-purpose method for obtaining a
standard error for g(β̂).
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Delta method

We know
β̂

•

∼ Np(β, ĉov(β̂)).

Let g(β) be a function from R
p to R. Taylor’s theorem implies, as

long as the MLE β̂ is somewhat close to the true value β, that

g(β) ≈ g(β̂) + [Dg(β̂)](β − β̂),

where [Dg(β)] is the vector of first partial derivatives

Dg(β) =




∂g(β)
∂β1

∂g(β)
∂β2
...

∂g(β)
∂βp




.
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Delta method

Then
(β̂ − β)

•

∼ Np(0, ĉov(β̂)),

implies

[Dg(β)]′(β̂ − β)
•

∼ N(0, [Dg(β)]′ĉov(β̂)[Dg(β)]),

and finally

g(β̂)
•

∼ N(g(β), [Dg(β̂)]′ĉov(β̂)[Dg(β̂)]).

So

se{g(β̂)} =

√
[Dg(β̂)]′ĉov(β̂)[Dg(β̂)].

This can be used to get confidence intervals for probabilities, etc.
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Pointwise CIs for probability of success

proc logistic data=crabs1 descending;

model y = width; output out=crabs2 pred=p lower=l upper=u;

proc sort data=crabs2; by width;

proc gplot data=crabs2;

title "Estimated probabilities with pointwise 95% CI’s";

symbol1 i=join color=black; symbol2 i=join color=red line=3;

symbol3 i=join color=black; axis1 label=(’’);

plot (l p u)*width / overlay vaxis=axis1;
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5.2.3, 5.2.4 & 5.2.5 Goodness of fit and grouping

The deviance GOF statistic is defined to be

D = 2

N∑

i=1

{
yi log

(
yi

ni π̂i

)
+ (ni − yi) log

(
ni − yi

ni − ni π̂i

)}
,

where π̂i = e
x
′

i
β̂

1+e
x′
i
β̂

are fitted values.

Pearson’s GOF statistic is

X 2 =

N∑

i=1

(yi − ni π̂i )
2

ni π̂i (1 − π̂i)
.

Both statistics are approximately χ2
N−p in large samples assuming

that the number of trials n =
∑N

i=1 ni increases in such a way that
each ni increases.
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Group your data

Binomial data is often recorded as individual (Bernoulli) records:

i yi ni xi

1 0 1 9
2 0 1 14
3 1 1 14
4 0 1 17
5 1 1 17
6 1 1 17
7 1 1 20

Grouping the data yields an identical model:

i yi ni xi

1 0 1 9
2 1 2 14
3 2 3 17
4 1 1 20

β̂, se(β̂j ), and L(β̂) don’t care if data are grouped.

The quality of residuals and GOF statistics depend on how

data are grouped. D and Pearson’s X 2 will change!
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Comments

In PROC LOGISTIC type AGGREGATE and SCALE=NONE
after the MODEL statement to get D and X 2 based on
grouped data. This option does not compute residuals based
on the grouped data. You can aggregate over all variables or a
subset, e.g. AGGREGATE=(width).

The Hosmer and Lemeshow test statistic orders observations
(xi ,Yi ) by fitted probabilities π̂(xi ) from smallest to largest
and divides them into (typically) g = 10 groups of roughly the
same size. A Pearson test statistic is computed from these g

groups.
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Comments

The statistic would have a χ2
g−p distribution if each group

had exactly the same predictor x for all observations. In
general, the null distribution is approximately χ2

g−2 (see text).
Termed a “near-replicate GOF test.” The LACKFIT option in
PROC LOGISTIC gives this statistic.

Can also test logit{π(x)} = β0 + β1x versus more general
model logit{π(x)} = β0 + β1x + β2x

2 via H0 : β2 = 0.
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Raw (Bernoulli) data with aggregate scale=none

lackfit;

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 69.7260 64 1.0895 0.2911

Pearson 55.1779 64 0.8622 0.7761

Number of unique profiles: 66

Partition for the Hosmer and Lemeshow Test

y = 1 y = 0

Group Total Observed Expected Observed Expected

1 19 5 5.39 14 13.61

2 18 8 7.62 10 10.38

3 17 11 8.62 6 8.38

4 17 8 9.92 9 7.08

5 16 11 10.10 5 5.90

6 18 11 12.30 7 5.70

7 16 12 12.06 4 3.94

8 16 12 12.90 4 3.10

9 16 13 13.69 3 2.31

10 20 20 18.41 0 1.59

Hosmer and Lemeshow Goodness-of-Fit Test

Chi-Square DF Pr > ChiSq

5.2465 8 0.7309
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Comments

There are 66 distinct widths {xi} out of N = 173 crabs. For
χ2

66−2 to hold, we must keep sampling crabs that only have
one of the 66 fixed number of widths! Does that make sense
here?

The Hosmer and Lemeshow test gives a p-value of 0.73 based
on g = 10 groups. Are assumptions going into this p-value
met?

None of the GOF tests have assumptions that are met in
practice for continuous predictors. Are they still useful?

The raw statistics do not tell you where lack of fit occurs.
Deviance and Pearson residuals do tell you this (later). Also,
the table provided by the H-L tells you which groups are ill-fit
should you reject H0 : logistic model holds.

GOF tests are meant to detect gross deviations from model
assumptions. No model ever truly fits data except
hypothetically.
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5.3 Categorical predictors

Let’s say we wish to include variable X , a categorical variable that
takes on values x ∈ {1, 2, . . . , I}. We need to allow each level of
X = x to affect π(x) differently. This is accomplished by the use
of dummy variables. This is typically done one of two ways.

Define z1, z2, . . . , zI−1 as follows:

zj =

{
1 X = j

−1 X 6= j

This is the default in PROC LOGISTIC with a CLASS X
statement. Say I = 3, then the model is

logit π(x) = β0 + β1z1 + β2z2.

which gives

logit π(x) = β0 + β1 − β2 when X = 1

logit π(x) = β0 − β1 + β2 when X = 2

logit π(x) = β0 − β1 − β2 when X = 3
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Zero/One dummy variables

At alternative method uses “zero/one” dummies instead:

zj =

{
1 X = j

0 X 6= j

This is the default if PROC GENMOD with a CLASS X statement.
This can also be obtained in PROC LOGISTIC with the
PARAM=REF option. This sets class X = I as baseline. Say
I = 3, then the model is

logit π(x) = β0 + β1z1 + β2z2.

which gives

logit π(x) = β0 + β1 when X = 1

logit π(x) = β0 + β2 when X = 2

logit π(x) = β0 when X = 3
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SAS example

I prefer the latter method because it’s easier to think about for me.
You can choose a different baseline category with REF=FIRST
next to the variable name in the CLASS statement. Table 3.8 (p.
89):

data mal;

input cons present absent @@;

total=present+absent;

datalines;

1 48 17066 2 38 14464 3 5 788 4 1 126 5 1 37

;

proc logistic;

class cons / param=ref;

model present/total = cons;
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SAS output

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 6.2020 4 0.1846

Score 12.0821 4 0.0168

Wald 9.2811 4 0.0544

Type 3 Analysis of Effects

Wald

Effect DF Chi-Square Pr > ChiSq

cons 4 9.2811 0.0544

Analysis of Maximum Likelihood Estimates

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -3.6109 1.0134 12.6956 0.0004

cons 1 1 -2.2627 1.0237 4.8858 0.0271

cons 2 1 -2.3309 1.0264 5.1577 0.0231

cons 3 1 -1.4491 1.1083 1.7097 0.1910

cons 4 1 -1.2251 1.4264 0.7377 0.3904

Odds Ratio Estimates

Point 95% Wald

Effect Estimate Confidence Limits

cons 1 vs 5 0.104 0.014 0.774

cons 2 vs 5 0.097 0.013 0.727

cons 3 vs 5 0.235 0.027 2.061

cons 4 vs 5 0.294 0.018 4.810
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Interpretation

The model is

logit π(X ) = β0+β1I{X = 1}+β2I{X = 2}+β3I{X = 3}+β4I{X = 4}

where X denotes alcohol consumption X = 1, 2, 3, 4, 5.

Type 3 analyses test whether all dummy variables associated
with a categorical predictor are simultaneously zero, here
H0 : β1 = β2 = β3 = β4 = 0. If we accept this then the
categorical predictor is not needed in the model.

PROC LOGISTIC gives estimates and CIs for eβj for
j = 1, 2, 3, 4. Here, these are interpreted as the odds of
developing malformation when X = 1, 2, 3, or 4 versus the
odds when X = 5.

We are not as interested in the individual Wald tests
H0 : βj = 0 for a categorical predictor. Why is that? Because
they only compare a level X = 1, 2, 3, 4 to baseline X = 5, not
to each other.
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Comments

The Testing Global Null Hypothesis: BETA=0 are
three tests that no predictor is needed; H0 : logit{π(x)} = β0

versus H1 : logit{π(x)} = x′β. Anything wrong here? We’ll
talk about exact tests later.

Note that the Wald test for H0 : β = 0 is the same as the
Type III test that consumption is not important. Why is that?

Let Y = 1 denote malformation for a randomly sampled
individual. To get an odds ratio for malformation from
increasing from, say, X = 2 to X = 4, note that

P(Y = 1|X = 2)/P(Y = 0|X = 2)

P(Y = 1|X = 4)/P(Y = 0|X = 4)
= eβ2−β4.

This is estimated with the CONTRAST command.
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