Sections 1.4, 1.5, and 1.6

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 770: Categorical Data Analysis

1.4.1 Tests for a binomial probability π

Let $Y \sim \operatorname{bin}(n, \pi)$.
The likelihood is

$$
\mathcal{L}(\pi)=\binom{n}{y} \pi^{y}(1-\pi)^{n-y}
$$

and the log-likelihood is

$$
L(\pi)=\log \binom{n}{y}+y \log \pi+(n-y) \log (1-\pi)
$$

So

$$
L^{\prime}(\pi)=\frac{y}{\pi}-\frac{n-y}{1-\pi} .
$$

Approximate sampling distribution of $\hat{\pi}$

Solving for π gives the MLE $\hat{\pi}=y / n$, the sample proportion of successes.
Taking the $2^{\text {nd }}$ derivative of $L(\pi)$ gives

$$
L^{\prime \prime}(\pi)=-\frac{y}{\pi^{2}}-\frac{n-y}{(1-\pi)^{2}},
$$

and so

$$
-E\left(L^{\prime \prime}(\pi)\right)=E\left(\frac{Y}{\pi^{2}}+\frac{n-Y}{(1-\pi)^{2}}\right)=\frac{n \pi}{\pi^{2}}+\frac{n-n \pi}{(1-\pi)^{2}}=\frac{n}{\pi(1-\pi)}
$$

The large sample result is then

$$
\hat{\pi}=\frac{Y}{n} \dot{\sim} N\left(\pi, \frac{\pi(1-\pi)}{n}\right) .
$$

See Section 1.3.2.

Wald test of $H_{0}: \pi=\pi_{0}$

Let's consider $H_{0}: \pi=\pi_{0}$ where π_{0} is fixed and known (e.g.
$H_{0}: \pi=0.5$.)
The Wald test plugs in the MLE $\hat{\pi}=y / n$ for the unknown π in the large sample variance:

$$
\hat{\pi}=\frac{Y}{n} \stackrel{\bullet}{\sim}\left(\pi, \frac{\hat{\pi}(1-\hat{\pi})}{n}\right)
$$

Recall that $\operatorname{se}(\hat{\pi})=\sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}}$.
So then

$$
Z_{W}=\frac{\hat{\pi}-\pi_{0}}{\operatorname{se}(\hat{\pi})}=\frac{\hat{\pi}-\pi_{0}}{\sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}}} \dot{\sim} N(0,1)
$$

when H_{0} is true. Squaring, $W=Z_{W}^{2} \dot{\sim} \chi_{1}^{2}$.

Recall

$$
L^{\prime}\left(\pi_{0}\right)=\frac{y}{\pi_{0}}-\frac{n-y}{1-\pi_{0}}=\frac{y-n \pi_{0}}{\pi_{0}\left(1-\pi_{0}\right)}=\frac{\hat{\pi}-\pi_{0}}{\pi_{0}\left(1-\pi_{0}\right) / n} .
$$

Also

$$
\operatorname{var}(\hat{\pi})=\frac{\pi(1-\pi)}{n} .
$$

So the score statistic is

$$
S=L^{\prime}\left(\pi_{0}\right)^{2}[\operatorname{var}(\hat{\pi})]_{\pi=\pi_{0}}=\frac{\left(\hat{\pi}-\pi_{0}\right)^{2}}{\pi_{0}\left(1-\pi_{0}\right) / n} \dot{\sim} \chi_{1}^{2}
$$

where $[\operatorname{var}(\hat{\pi})]_{\pi=\pi_{0}}$ is asymptotic variance of unconstrained MLE $\hat{\pi}$ with π_{0} plugged in.
This is the same as plugging the null value into the large sample variance

$$
\hat{\pi}=\frac{Y}{n} \dot{\sim} N\left(\pi, \frac{\pi_{0}\left(1-\pi_{0}\right)}{n}\right) .
$$

So then

$$
Z_{S}=\frac{\hat{\pi}-\pi_{0}}{\sqrt{\frac{\pi_{0}\left(1-\pi_{0}\right)}{n}}} \dot{\sim} N(0,1)
$$

when H_{0} is true. Squaring, $S=Z_{S}^{2} \dot{\sim} \chi_{1}^{2}$.

LRT of $H_{0}: \pi=\pi_{0}$

Evaluating the log-likelihood at the unconstrained MLE gives

$$
L_{1}=L(\hat{\pi})=\log \binom{n}{y}+y \log \hat{\pi}+(n-y) \log (1-\hat{\pi}) .
$$

Under the constraint $H_{0}: \pi=\pi_{0}$, the log-likelihood is simply

$$
L_{0}=L\left(\pi_{0}\right)=\log \binom{n}{y}+y \log \pi_{0}+(n-y) \log \left(1-\pi_{0}\right)
$$

(there are no parameters left to maximize the constrained likelihood under!) and so the LRT, plugging Y in for y,

$$
L=-2\left(L_{0}-L_{1}\right)=2\left(Y \log \frac{\hat{\pi}}{\pi_{0}}+(n-Y) \log \frac{1-\hat{\pi}}{1-\pi_{0}}\right) \dot{\sim} \chi_{1}^{2}
$$

when H_{0} is true.

In all three cases, an approximate $\alpha=0.05$ significance test of $H_{0}: \pi=\pi_{0}$ is carried out by computing W, S, or L and rejecting if the test statistic is larger than the quantile corresponding to 0.05 right tail probability from a χ_{1}^{2} distribution, i.e. larger than $\chi_{1}^{2}(0.05)=3.84$.
Confidence intervals are obtained by inverting the test statistics; read Section 1.4.2.

1.4.3 where for art thou, vegetarians?

Out of $n=25$ students, $y=0$ were vegetarians. Assuming binomial data, the 95% Cls found by inverting the Wald, score, and LRT tests are

Wald	$(0,0)$
score	$(0,0.133)$
LRT	$(0,0.074)$

The Wald interval is particularly troublesome. Why the difference? for small or large (true, unknown) π the normal approximation for the distribution of $\hat{\pi}$ is pretty bad in small samples.

A solution is to consider the exact sampling distribution of $\hat{\pi}$ rather than a normal approximation.

1.4.4 Exact inference

An exact test proceeds as follows.
Under $H_{0}: \pi=\pi_{0}$ we know $Y \sim \operatorname{bin}\left(n, \pi_{0}\right)$. Values of $\hat{\pi}$ far away from π_{0}, or equivalently, values of Y far away from $n \pi_{0}$, indicate that $H_{0}: \pi=\pi_{0}$ is unlikely.

Say we reject H_{0} if $Y<a$ or $Y>b$ where $0 \leq a<b \leq n$. Then we set the type I error at α by requiring $P\left(\right.$ reject $H_{0} \mid H_{0}$ is true $)=\alpha$. That is,

$$
P\left(Y<a \mid \pi=\pi_{0}\right)=\frac{\alpha}{2} \text { and } P\left(Y>b \mid \pi=\pi_{0}\right)=\frac{\alpha}{2} .
$$

Bounding Type I error

However, since Y is discrete, the best we can do is bounding the type I error by choosing a as large as possible such that

$$
P\left(Y<a \mid \pi=\pi_{0}\right)=\sum_{i=0}^{a-1}\binom{n}{i} \pi_{0}^{i}\left(1-\pi_{0}\right)^{n-i}<\frac{\alpha}{2}
$$

and b as small as possible such that

$$
P\left(Y>b \mid \pi=\pi_{0}\right)=\sum_{i=b+1}^{n}\binom{n}{i} \pi_{0}^{i}\left(1-\pi_{0}\right)^{n-i}<\frac{\alpha}{2}
$$

For example, when $n=20, H_{0}: \pi=0.25$, and $\alpha=0.05$ we have

$$
P(Y<2 \mid \pi=0.25)=0.024 \text { and } P(Y<3 \mid \pi=0.25)=0.091
$$

so $a=2$. Also,

$$
P(Y>9 \mid \pi=0.25)=0.014 \text { and } P(Y>8 \mid \pi=0.25)=0.041
$$

so $b=9$. We reject $H_{0}: \pi=0.25$ when $Y<2$ or $Y>9$. The type I error is bounded: $\alpha=P\left(\right.$ reject $H_{0} \mid H_{0}$ is true $) \leq 0.05$, but in fact this is conservative,
$P\left(\right.$ reject $H_{0} \mid H_{0}$ is true $)=0.024+0.014=0.038$.
Nonetheless, this type of exact test can be inverted to obtain exact confidence intervals for π. However, the actual coverage probability is at least as large as $1-\alpha$, but typically more. So the procedure errs on the side of being conservative (Cl's are bigger than they need to be). Section 16.6.1 has more details.

To obtain the $95 \% \mathrm{Cl}$ from inverting the score test, and from inverting the exact (Clopper-Pearson) test:

```
> out1=prop.test(x=0,n=25, conf.level=0.95, correct=F)
> out1$conf.int
[1] 0.0000000 0.1331923
attr(,"conf.level") [1] 0.95
> out2=binom.test(x=0,n=25,conf.level=0.95)
> out2$conf.int
[1] 0.0000000 0.1371852
attr(,"conf.level") [1] 0.95
```


proc freq in SAS

For confidence intervals and tests of $H_{0}: \pi=\pi_{0}$ add the binomial option in proc freq. On the next slide, $H_{0}: \pi=0.032$ is tested (the U.S. proportion). SAS's default in the large sample test of $H_{0}: \pi=\pi_{0}$ is the Score test; the Wald test is obtained by adding var=sample.

An exact one-sided p -value is computed as the minimum of $P\left(Y \leq y \mid \pi=\pi_{0}\right)$ and $P\left(Y \geq y \mid \pi=\pi_{0}\right)$ and exact two-sided p -value is two times the one-sided; here y is the observed data.
data table;
input vegetarian\$ count @@;
datalines;
yes 0 no 25
;

* let pi be proportion of vegetarians in population;
* lets test HO: pi=0.032 (U.S. proportion) and obtain exact 95% CI for pi;
proc freq data=table order=data; weight count / zeros;
tables vegetarian / binomial($p=0.032$);
exact binomial;
run;
* other CI's given by binomial(ac wilson exact jeffreys);
* wilson=score, clopper-pearson=exact, jeffreys=Bayesian, ac=Agresti-Coull;
proc freq data=table order=data; weight count / zeros;
tables vegetarian / binomial(ac wilson exact jeffreys) alpha=.05;
run;
* different test based on chi-squared statistic (two sided);
proc freq data=table order=data; weight count / zeros;
tables vegetarian / chisq testp=(0.032,0.968);
exact chisq; * works for general multinomial data;
run;

1.5 inference for multinomial parameters

Assume $\mathbf{n} \sim \operatorname{mult}(n, \boldsymbol{\pi})$ where $\boldsymbol{\pi}=\left(\pi_{1}, \ldots, \pi_{c}\right)$ and $\mathbf{n}=\left(n_{1}, \ldots, n_{c}\right)$.

1.5.1 MLE estimation

A bit of calculus (p. 21) yields the MLE

$$
\hat{\boldsymbol{\pi}}=\left(\frac{n_{1}}{n}, \frac{n_{2}}{n}, \ldots, \frac{n_{c}}{n}\right) .
$$

The sample proportion of trials falling into category j is the MLE of π_{j} for all $j=1, \ldots, c$ categories (intuitive!)

1.5.2 Pearson statistic for testing $H_{0}: \boldsymbol{\pi}=\boldsymbol{\pi}_{0}$

Old test; motivated by roulette, Karl Pearson introduced in 1900. Example of a score test.

When $H_{0}:\left(\pi_{1}, \ldots, \pi_{c}\right)=\left(\pi_{01}, \ldots, \pi_{0 c}\right)$ is true then $E\left(n_{j}\right)=n \pi_{0 j}$ (Section 1.2.2). Pearson's test statistic is

$$
X^{2}=\sum_{j=1}^{c} \frac{\left(n_{j}-n \pi_{0 j}\right)^{2}}{n \pi_{0 j}}
$$

When $H_{0}: \pi=\pi_{0}$ is true n_{j} will be close to what's expected $n \pi_{0 j}$ and the statistic will be small. When $H_{0}: \boldsymbol{\pi}=\boldsymbol{\pi}_{0}$ is false the statistic will be large (for fixed sample size n). In large samples $X^{2} \dot{\sim} \chi_{c-1}^{2}$.
Carried out in SAS as in vegetarians example, except have more than two outcomes.

1.5.3 Likelihood ratio χ^{2}

The LRT statistic for $H_{0}: \pi=\pi_{0}$ is
$G^{2}=-2\left[\log \prod_{j=1}^{c}\left(\pi_{0 j}\right)^{n_{j}}-\log \prod_{j=1}^{c}\left(n_{j} / n\right)^{n_{j}}\right]=2 \sum_{j=1}^{c} n_{j} \log \left(n_{j} / n \pi_{j 0}\right)$.
What does this statistic equal when $\hat{\pi}_{j}=\frac{n_{j}}{n}=\pi_{0 j}$ for $j=1, \ldots, c$?

Pearson's X^{2} overall has better properties \& can work well when n / c is as small as one if the elements of π_{0} are not highly dissimilar (close to 1 or 0). See discussion p. 19. Note that an exact test is also possible for this hypothesis using the multinomial distribution (exact in proc freq).

Exact p-value via simulation

Observed test statistic is

$$
X_{o}^{2}=\sum_{j=1}^{c} \frac{\left(n_{j}-n \pi_{0 j}\right)^{2}}{n \pi_{0 j}}
$$

Exact test for the multinomial samples

$$
\mathbf{n}_{1}, \ldots, \mathbf{n}_{M} \stackrel{i i d}{\sim} \operatorname{mult}\left(n, \pi_{0}\right),
$$

and forms

$$
X_{i}^{2}=\sum_{j=1}^{c} \frac{\left(n_{i j}-n \pi_{0 j}\right)^{2}}{n \pi_{0 j}}, i=1, \ldots, M
$$

The p-value is

$$
p=P\left(X^{2} \geq X_{o}^{2} \mid \pi=\pi_{0}\right) \approx \frac{1}{M} \sum_{i=1}^{M} I\left\{X_{i}^{2} \geq X_{o}^{2}\right\}
$$

Can be computed exactly in many cases.

Special case: exact binomial score test

Binomial can be made multinomial as $\left(n_{1}, n_{2}\right)=(Y, n-Y)$. A bit of algebra reveals that the observed Pearson's test statistic for $H_{0}:\left(\pi_{1}, \pi_{2}\right)=\left(\pi_{01}, \pi_{02}\right)=\left(\pi_{0}, 1-\pi_{0}\right)$ is given by

$$
X_{o}^{2}=\frac{\left(\hat{\pi}-\pi_{0}\right)^{2}}{\pi_{0}\left(1-\pi_{0}\right) / n}=S
$$

Previous slide boils down to sampling

$$
y_{1}, \ldots, y_{M} \stackrel{i i d}{\sim} \operatorname{bin}\left(n, \pi_{0}\right)
$$

and forming

$$
X_{i}^{2}=\frac{\left(\frac{y_{i}}{n}-\pi_{0}\right)^{2}}{\pi_{0}\left(1-\pi_{0}\right) / n}, \quad i=1, \ldots, M
$$

then

$$
p=P\left(X^{2} \geq X_{o}^{2} \mid \pi=\pi_{0}\right) \approx \frac{1}{M} \sum_{i=1}^{M} I\left\{X_{i}^{2} \geq X_{o}^{2}\right\}
$$

1.5.5 Testing with estimated expected frequencies

Basic idea: extend Pearson's method to test a model $H_{0}: \boldsymbol{\pi}=\boldsymbol{\pi}_{0}(\boldsymbol{\theta})$ where $\boldsymbol{\theta}$ are parameters of a smaller-dimensional model. Once the model is fit through ML yielding $\hat{\boldsymbol{\theta}}$, the expected frequencies are $n \pi_{j 0}(\hat{\boldsymbol{\theta}})$ to be used in (1.15). Construct X^{2} as usual except $X^{2} \dot{\sim} \chi_{c-1-p}^{2}$ where p is the dimension of $\boldsymbol{\theta}$.
Example: $n=156$ calves were classified as one of "no pneumonia", "pneumonia, no secondary infection," or "pneumonia then secondary infection." We treat the data $\mathbf{n}=\left(n_{1}, n_{2}, n_{3}\right)$ as multinomial with probabilities $\pi=\left(\pi_{1}, \pi_{2}, \pi_{3}\right)$.

It is of interest to test that the probability of a calf getting pneumonia is equal to the conditional probability of a calf getting a secondary infection after getting pneumonia:

$$
H_{0}: \pi_{2}+\pi_{3}=\frac{\pi_{3}}{\pi_{2}+\pi_{3}} .
$$

This hypothesis restricts the parameter space from 2 dimensions $\boldsymbol{\beta}=\left(\pi_{1}, \pi_{2}\right)$ to just one. Let $\pi=\pi_{2}+\pi_{3}$. Then under the constrained model $\pi_{3}=\pi^{2}$. Also, we must have $\pi_{1}=1-\left(\pi_{2}+\pi_{3}\right)=1-\pi$. Finally, $\pi_{2}=\pi(1-\pi)$ (verify this!)
So $\theta=\pi$ here and $p=1$.
$\mathcal{L}(\pi) \propto(1-\pi)^{n_{1}}\left(\pi-\pi^{2}\right)^{n_{2}}\left(\pi^{2}\right)^{n_{3}}$ and calculus (p. 26) leads to the MLE

$$
\hat{\pi}=\frac{2 n_{3}+n_{2}}{2 n_{3}+2 n_{3}+n_{1}} .
$$

For the data $\mathbf{n}=(63,63,30), \hat{\pi}=0.494$, the estimated probability of pneumonia under the model. Then

$$
\begin{aligned}
X^{2}= & \frac{[63-156(1-0.494)]^{2}}{156(1-0.494)}+ \\
& \frac{\left[63-156\left(0.494-0.494^{2}\right)\right]^{2}}{156\left(0.494-0.494^{2}\right)}+\frac{\left[30-156\left(0.494^{2}\right)\right]^{2}}{156\left(0.494^{2}\right)}=19.7 .
\end{aligned}
$$

The p-value is $P\left(\chi_{1}^{2}>19.7\right)=0.00001$.
An alternative test is an approximate Wald test using the delta method and large-sample normality of $\left(\hat{\pi}_{2}, \hat{\pi}_{3}\right)$.

1.6 Bayesian approaches

- I am a Bayesian, and normally would try to include Bayesian approaches when possible.
- However, there is so much interesting material to cover in terms of models, that I'd rather focus on the different models rather than different modes of inference (frequentist vs. Bayesian).
- Agresti's book is wonderful in that it actually includes Bayesian approaches to obtaining inference. If you are interested in Bayesian modeling, I encourage you to read these sections on your own!
- There are a few models where the Bayesian approach is substantially easier than frequentist (e.g. mixed models in Chapter 13); we'll use Bayes then.

