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1.4.1 Tests for a binomial probability π

Let Y ∼ bin(n, π).

The likelihood is

L(π) =

(
n
y

)
πy (1− π)n−y

and the log-likelihood is

L(π) = log

(
n
y

)
+ y log π + (n − y) log(1− π).

So

L′(π) =
y

π
− n − y

1− π
.
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Approximate sampling distribution of π̂

Solving for π gives the MLE π̂ = y/n, the sample proportion of
successes.

Taking the 2nd derivative of L(π) gives

L′′(π) = − y

π2
− n − y

(1− π)2
,

and so

−E (L′′(π)) = E

(
Y

π2
+

n − Y

(1− π)2

)
=

nπ

π2
+

n − nπ

(1− π)2
=

n

π(1− π)
.

The large sample result is then

π̂ =
Y

n
•∼ N

(
π,
π(1− π)

n

)
.

See Section 1.3.2.
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Wald test of H0 : π = π0

Let’s consider H0 : π = π0 where π0 is fixed and known (e.g.
H0 : π = 0.5.)
The Wald test plugs in the MLE π̂ = y/n for the unknown π in
the large sample variance:

π̂ =
Y

n
•∼ N

(
π,
π̂(1− π̂)

n

)
.

Recall that se(π̂) =
√

π̂(1−π̂)
n .

So then

ZW =
π̂ − π0
se(π̂)

=
π̂ − π0√
π̂(1−π̂)

n

•∼ N(0, 1)

when H0 is true. Squaring, W = Z 2
W
•∼ χ2

1.
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Score test of H0 : π = π0

Recall
L′(π0) = y

π0
− n−y

1−π0 = y−nπ0
π0(1−π0) = π̂−π0

π0(1−π0)/n .

Also
var(π̂) = π(1−π)

n .

So the score statistic is

S = L′(π0)2[var(π̂)]π=π0 = (π̂−π0)2
π0(1−π0)/n

•∼ χ2
1,

where [var(π̂)]π=π0 is asymptotic variance of unconstrained MLE π̂
with π0 plugged in.
This is the same as plugging the null value into the large sample
variance

π̂ =
Y

n
•∼ N

(
π, π0(1−π0)n

)
.

So then
ZS = π̂−π0√

π0(1−π0)
n

•∼ N(0, 1)

when H0 is true. Squaring, S = Z 2
S
•∼ χ2

1.
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LRT of H0 : π = π0

Evaluating the log-likelihood at the unconstrained MLE gives

L1 = L(π̂) = log

(
n
y

)
+ y log π̂ + (n − y) log(1− π̂).

Under the constraint H0 : π = π0, the log-likelihood is simply

L0 = L(π0) = log

(
n
y

)
+ y log π0 + (n − y) log(1− π0),

(there are no parameters left to maximize the constrained
likelihood under!) and so the LRT, plugging Y in for y ,

L = −2(L0 − L1) = 2

(
Y log

π̂

π0
+ (n − Y ) log

1− π̂
1− π0

)
•∼ χ2

1

when H0 is true.
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Testing H0 : π = π0

In all three cases, an approximate α = 0.05 significance test of
H0 : π = π0 is carried out by computing W , S , or L and rejecting
if the test statistic is larger than the quantile corresponding to 0.05
right tail probability from a χ2

1 distribution, i.e. larger than
χ2
1(0.05) = 3.84.

Confidence intervals are obtained by inverting the test statistics;
read Section 1.4.2.
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1.4.3 where for art thou, vegetarians?

Out of n = 25 students, y = 0 were vegetarians. Assuming
binomial data, the 95% CIs found by inverting the Wald, score,
and LRT tests are

Wald (0, 0)
score (0, 0.133)
LRT (0, 0.074)

The Wald interval is particularly troublesome. Why the difference?
for small or large (true, unknown) π the normal approximation for
the distribution of π̂ is pretty bad in small samples.

A solution is to consider the exact sampling distribution of π̂ rather
than a normal approximation.
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1.4.4 Exact inference

An exact test proceeds as follows.

Under H0 : π = π0 we know Y ∼ bin(n, π0). Values of π̂ far away
from π0, or equivalently, values of Y far away from nπ0, indicate
that H0 : π = π0 is unlikely.

Say we reject H0 if Y < a or Y > b where 0 ≤ a < b ≤ n. Then
we set the type I error at α by requiring
P(reject H0|H0 is true) = α. That is,

P(Y < a|π = π0) =
α

2
and P(Y > b|π = π0) =

α

2
.
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Bounding Type I error

However, since Y is discrete, the best we can do is bounding the
type I error by choosing a as large as possible such that

P(Y < a|π = π0) =
a−1∑
i=0

(
n
i

)
πi0(1− π0)n−i <

α

2
,

and b as small as possible such that

P(Y > b|π = π0) =
n∑

i=b+1

(
n
i

)
πi0(1− π0)n−i <

α

2
.
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Exact test, cont.

For example, when n = 20, H0 : π = 0.25, and α = 0.05 we have

P(Y < 2|π = 0.25) = 0.024 and P(Y < 3|π = 0.25) = 0.091,

so a = 2. Also,

P(Y > 9|π = 0.25) = 0.014 and P(Y > 8|π = 0.25) = 0.041,

so b = 9. We reject H0 : π = 0.25 when Y < 2 or Y > 9. The
type I error is bounded: α = P(reject H0|H0 is true) ≤ 0.05, but in
fact this is conservative,
P(reject H0|H0 is true) = 0.024 + 0.014 = 0.038.

Nonetheless, this type of exact test can be inverted to obtain exact
confidence intervals for π. However, the actual coverage
probability is at least as large as 1− α, but typically more. So the
procedure errs on the side of being conservative (CI’s are bigger
than they need to be). Section 16.6.1 has more details.
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Tests in R

To obtain the 95% CI from inverting the score test, and from
inverting the exact (Clopper-Pearson) test:

> out1=prop.test(x=0,n=25,conf.level=0.95,correct=F)

> out1$conf.int

[1] 0.0000000 0.1331923

attr(,"conf.level") [1] 0.95

> out2=binom.test(x=0,n=25,conf.level=0.95)

> out2$conf.int

[1] 0.0000000 0.1371852

attr(,"conf.level") [1] 0.95
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proc freq in SAS

For confidence intervals and tests of H0 : π = π0 add the
binomial option in proc freq. On the next slide, H0 : π = 0.032
is tested (the U.S. proportion). SAS’s default in the large sample
test of H0 : π = π0 is the Score test; the Wald test is obtained by
adding var=sample.

An exact one-sided p-value is computed as the minimum of
P(Y ≤ y |π = π0) and P(Y ≥ y |π = π0) and exact two-sided
p-value is two times the one-sided; here y is the observed data.
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SAS code

data table;

input vegetarian$ count @@;

datalines;

yes 0 no 25

;

* let pi be proportion of vegetarians in population;

* lets test H0: pi=0.032 (U.S. proportion) and obtain exact 95% CI for pi;

proc freq data=table order=data; weight count / zeros;

tables vegetarian / binomial(p=0.032);

exact binomial;

run;

* other CI’s given by binomial(ac wilson exact jeffreys);

* wilson=score, clopper-pearson=exact, jeffreys=Bayesian, ac=Agresti-Coull;

proc freq data=table order=data; weight count / zeros;

tables vegetarian / binomial(ac wilson exact jeffreys) alpha=.05;

run;

* different test based on chi-squared statistic (two sided);

proc freq data=table order=data; weight count / zeros;

tables vegetarian / chisq testp=(0.032,0.968);

exact chisq; * works for general multinomial data;

run;
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1.5 inference for multinomial parameters

Assume n ∼ mult(n,π) where π = (π1, . . . , πc) and
n = (n1, . . . , nc).

1.5.1 MLE estimation

A bit of calculus (p. 21) yields the MLE

π̂ =
(n1
n
,
n2
n
, . . . ,

nc
n

)
.

The sample proportion of trials falling into category j is the MLE
of πj for all j = 1, . . . , c categories (intuitive!)
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1.5.2 Pearson statistic for testing H0 : π = π0

Old test; motivated by roulette, Karl Pearson introduced in 1900.
Example of a score test.

When H0 : (π1, . . . , πc) = (π01, . . . , π0c) is true then E (nj) = nπ0j
(Section 1.2.2). Pearson’s test statistic is

X 2 =
c∑

j=1

(nj − nπ0j)
2

nπ0j
.

When H0 : π = π0 is true nj will be close to what’s expected nπ0j
and the statistic will be small. When H0 : π = π0 is false the
statistic will be large (for fixed sample size n). In large samples

X 2 •∼ χ2
c−1.

Carried out in SAS as in vegetarians example, except have more
than two outcomes.
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1.5.3 Likelihood ratio χ2

The LRT statistic for H0 : π = π0 is

G 2 = −2

log
c∏

j=1

(π0j)
nj − log

c∏
j=1

(nj/n)nj

 = 2
c∑

j=1

nj log(nj/nπj0).

What does this statistic equal when π̂j =
nj
n = π0j for j = 1, . . . , c?

Pearson’s X 2 overall has better properties & can work well when
n/c is as small as one if the elements of π0 are not highly
dissimilar (close to 1 or 0). See discussion p. 19. Note that an
exact test is also possible for this hypothesis using the multinomial
distribution (exact in proc freq).
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Exact p-value via simulation

Observed test statistic is

X 2
o =

c∑
j=1

(nj − nπ0j)
2

nπ0j
.

Exact test for the multinomial samples

n1, . . . ,nM
iid∼ mult(n, π0),

and forms

X 2
i =

c∑
j=1

(nij − nπ0j)
2

nπ0j
, i = 1, . . . ,M.

The p-value is

p = P(X 2 ≥ X 2
o |π = π0) ≈ 1

M

M∑
i=1

I{X 2
i ≥ X 2

o }.

Can be computed exactly in many cases.
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Special case: exact binomial score test

Binomial can be made multinomial as (n1, n2) = (Y , n − Y ). A bit
of algebra reveals that the observed Pearson’s test statistic for
H0 : (π1, π2) = (π01, π02) = (π0, 1− π0) is given by

X 2
o =

(π̂ − π0)2

π0(1− π0)/n
= S .

Previous slide boils down to sampling

y1, . . . , yM
iid∼ bin(n, π0),

and forming

X 2
i =

( yin − π0)2

π0(1− π0)/n
, i = 1, . . . ,M,

then

p = P(X 2 ≥ X 2
o |π = π0) ≈ 1

M

M∑
i=1

I{X 2
i ≥ X 2

o }.
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1.5.5 Testing with estimated expected frequencies

Basic idea: extend Pearson’s method to test a model
H0 : π = π0(θ) where θ are parameters of a smaller-dimensional
model. Once the model is fit through ML yielding θ̂, the expected
frequencies are nπj0(θ̂) to be used in (1.15). Construct X 2 as

usual except X 2 •∼ χ2
c−1−p where p is the dimension of θ.

Example: n = 156 calves were classified as one of “no
pneumonia”, “pneumonia, no secondary infection,” or “pneumonia
then secondary infection.” We treat the data n = (n1, n2, n3) as
multinomial with probabilities π = (π1, π2, π3).
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Pneumonia in calves, cont.

It is of interest to test that the probability of a calf getting
pneumonia is equal to the conditional probability of a calf getting a
secondary infection after getting pneumonia:

H0 : π2 + π3 =
π3

π2 + π3
.

This hypothesis restricts the parameter space from 2 dimensions
β = (π1, π2) to just one. Let π = π2 + π3. Then under the
constrained model π3 = π2. Also, we must have
π1 = 1− (π2 + π3) = 1− π. Finally, π2 = π(1− π) (verify this!)

So θ = π here and p = 1.
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Pneumonia in calves, cont.

L(π) ∝ (1− π)n1(π − π2)n2(π2)n3 and calculus (p. 26) leads to
the MLE

π̂ =
2n3 + n2

2n3 + 2n3 + n1
.

For the data n = (63, 63, 30), π̂ = 0.494, the estimated probability
of pneumonia under the model. Then

X 2 =
[63− 156(1− 0.494)]2

156(1− 0.494)
+

[63− 156(0.494− 0.4942)]2

156(0.494− 0.4942)
+

[30− 156(0.4942)]2

156(0.4942)
= 19.7.

The p-value is P(χ2
1 > 19.7) = 0.00001.

An alternative test is an approximate Wald test using the delta
method and large-sample normality of (π̂2, π̂3).
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1.6 Bayesian approaches

I am a Bayesian, and normally would try to include Bayesian
approaches when possible.

However, there is so much interesting material to cover in
terms of models, that I’d rather focus on the different models
rather than different modes of inference (frequentist vs.
Bayesian).

Agresti’s book is wonderful in that it actually includes
Bayesian approaches to obtaining inference. If you are
interested in Bayesian modeling, I encourage you to read these
sections on your own!

There are a few models where the Bayesian approach is
substantially easier than frequentist (e.g. mixed models in
Chapter 13); we’ll use Bayes then.
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