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Repeated measures

Example of repeated measures:

Data are comprised of several repeated measurements on the
same individual over time, e.g. Yij might indicate an acne
outbreak for patient i in month j .

Data are recorded in clusters, e.g. Yij might indicate the
presence of tooth decay for tooth j in patient i .

Data are from naturally associated groups, e.g. Yij might
denote a successful treatment of patient j at clinic i .

In all of these examples, the repeated measurements are (typically
positively) correlated within an individual or group.
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12.2 Marginal GLM modeling of multiple categorical
responses

Let Ti binary responses Yi = (Yi1, . . . ,YiTi
) come from the i th

cluster (individual, litter, clinic, etc.) Let µi = (µi1, . . . , µiTi
)

where µij = E (Yij). Let xij be a p × 1 vector of explanatory
variables.
We assume the vectors Y1, . . . ,Yn are independent, but that
elements of Yi are correlated. Common choices are

R(α) = corr(Yi ) =



1 α α · · · α
α 1 α · · · α
α α 1 · · · α

.

.
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.

.
. . .
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.

.
α α α · · · 1


Ti×Ti

exchangeable,

and R(α) = corr(Yi ) =



1 α α2 · · · αTi−1

α 1 α · · · αTi−2

α2 α 1 · · · αTi−3

.

.

.
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.
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.

.

αTi−1 αTi−2 αTi−3 · · · 1


Ti×Ti

AR(1).
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Other correlation choices

R(α) = corr(Yi ) =



1 α12 α13 · · · α1T
α12 1 α23 · · · α2T
α13 α23 1 · · · α3T

.
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.

.

.

.

.

.
. . .

.

.

.
α1T α2T α3T · · · 1


T×T

unstructured,

and R = corr(Yi ) =



1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
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.

.
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.

.
. . .

.

.

.
0 0 0 · · · 1


Ti×Ti

independence.

4 / 27



Comments

You can also specify a fixed, known R as well as MDEP(m) which
yields R(α) as

corr(Yij , Yi,j+t ) =

 1 t = 0
αt t = 1, . . . ,m
0 t > m

 .

Unstructured most general; often a default choice. However,
need balance: Ti = T for all i .

Exchangeable useful when time is not important and
correlations thought to be approximately equal, e.g. repeated
measurements on individual in crossover study, measurements
across several individuals from clinic i .

AR(1) useful when serial correlation plausible, e.g. repeated
measurements across equally spaced time points on individual.
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More comments

These correlation matrices are used in a GEE algorithm
(sketched below) in PROC GENMOD.

Repeated measures are accounted for via REPEATED
statement.

The order of (Yi1, . . . ,YiT ) makes a difference with some
R(α). If ordering is different to that defined in the DATA
step, one can use the WITHIN subcommand in the
REPEATED statement to tell SAS what the ordering is. Also
used when missing some measurements in (Yi1, . . . ,YiT ).

CORRW in the REPEATED statement gives the final working
correlation matrix estimate.

Elements of β are interpreted as usual, but averaged over
clusters. This is a marginal interpretation.
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GEE approach

Let µij = g−1(x′ijβ) be the marginal mean. We assume Yij is from
an exponential family

Yij ∼ f (yij ; θij , φ) = exp{[yijθij − b(θij)]/φ+ c(yij , φ)},

where the dispersion φ is known. The GEE approach requires some
notation:

µij = b′(θij) and v(µij) = var(Yij) = b′′(θij)φ.

R(α) is “working correlation matrix,” reflecting our best
guess at the true correlation structure among the elements of
Yi . See the previous slide. Choice of R(α) can be made
based on QIC (Pan, 2001).

Bi = diag(b′′(θi1), . . . , b′′(θiT )) is a diagonal matrix with
var(Yij)/φ along the diagonal.

Vi = B
1/2
i R(α)B

1/2
i φ is the working covariance matrix.
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GEE approach

Let Di = ∂µi
∂β = Bi∆iXi be the Ti × p matrix of first partial

derivatives where µi = µi (β) = (g−1(x′i1β), . . . , g−1(x′iTi
β)),

∆i = diag( ∂θi1∂ηiTi
, . . . , ∂θi1∂ηiTi

), ηij = x′ijβ, and Xi =

 x′i1
...

x′iTi

.

The generalized estimating equations (GEE) are

u(β) =
n∑

i=1

D′iV
−1
i [yi − µi (β)] = 0.

These correspond to likelihood (score) equations, but are not
derived from a proper likelihood. However, the β̂ that solves them
is consistent, even when the correlation assumption is wrong.
Roughly speaking, this is because consistency is a first moment
(mean) property.
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Basic idea

For correlated normal data where E (Yi ) = Xiβ and
cov(Yi ) = Σi ), the maximum likelihood estimate of β is

β̂ =

[
n∑

i=1

X′iΣ̂
−1

i Xi

]−1 n∑
i=1

XiΣ̂
−1

i Yi ,

which solves the score equations

n∑
i=1

X′iΣ̂
−1

i (Yi − Xiβ) = 0.

For our (uncorrelated) data, the score equations are

n∑
i=1

D′i︸︷︷︸
Bi ∆i Xi

B−1
i (Yi − µi (β)) = 0.

GEE simply replaces Bi by Vi = B
1/2
i R(α)B

1/2
i . Note that

Vi = Σ̂i in the correlated normal model.
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Sandwich estimator of cov(β̂)

Liang and Zeger (1986) show β̂
•∼ Np(β,VG ) where

VG =

[
n∑

i=1

D′i V
−1
i Di

]−1 [
n∑

i=1

D′i V
−1
i cov(Yi )V−1

i Di

] [
n∑

i=1

D′i V
−1
i Di

]−1

.

Here β is replaced by β̂, φ replaced with φ̂ (φ = 1 for binomial
and Poisson models), and α replaced by α̂. cov(Yi ) is replaced by
[yi − µi (β̂)][yi − µi (β̂)]′.

This sandwich estimator sandwiches an empirical estimate between

the theoretical (working guess)
[∑n

i=1 D′iV
−1
i Di

]−1
. If we know

for certain (we don’t) that corr(Yi ) = R(α), then we can use this
instead (MODELSE in the REPEATED statement).
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GEE approach summary

To reiterate, the ingredients for the marginal GEE approach are

A marginal model where Yij is binomial, Poisson, normal,
gamma, etc. with mean µij = g−1(x′ijβ).

Note that often for repeated measures, xij = xi for
j = 1, . . . ,Ti ; e.g. gender and weight are not apt to change
over a 6 month study.

An assumption on how the elements of Yi = (Yi1, . . . ,YiTi
)

are correlated, corr(Yi ) = R(α).
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Mental depression example

Table 12.1 (p. 456) houses data from a longitudinal study
comparing a new drug with a standard drug for treatment of
subjects suffering mental depression. n = 340 Patients were either
mildly or severely depressed upon admission into the study. At
weeks 1, 2, and 4, corresponding to j = 1, 2, 3, patient i ’s suffering
Yij was classified as normal Yij = 1 or abnormal Yij = 0. Let
si = 0, 1 be the severity of the diagnosis (mild, severe) and
di = 0, 1 denote the drug (standard, new).

We treat time as a categorical predictor and fit a marginal logit
model with an exchangeable correlation structure; note T = 3:

corr(Yi ) = corr

 Yi1

Yi2

Yi3

 =

 1 α α
α 1 α
α α 1

 .
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SAS code and output

data depress;

infile "c:/tim/cat/depress.txt";

input case diagnose treat time outcome; time=time+1;

proc genmod descending; class case time;

model outcome = diagnose treat time treat*time / dist=bin link=logit type3;

repeated subject=case / type=exch corrw;

Fit of independence model to get initial estimate of β:

Analysis Of Initial Parameter Estimates

Standard Wald 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 0.9812 0.1809 0.6267 1.3356 29.43 <.0001

diagnose 1 -1.3116 0.1462 -1.5981 -1.0251 80.50 <.0001

treat 1 2.0429 0.3056 1.4439 2.6420 44.68 <.0001

time 1 1 -0.9600 0.2290 -1.4088 -0.5112 17.58 <.0001

time 2 1 -0.6206 0.2245 -1.0607 -0.1806 7.64 0.0057

time 3 0 0.0000 0.0000 0.0000 0.0000 . .

treat*time 1 1 -2.0980 0.3893 -2.8610 -1.3351 29.05 <.0001

treat*time 2 1 -1.0961 0.3838 -1.8482 -0.3439 8.16 0.0043

treat*time 3 0 0.0000 0.0000 0.0000 0.0000 . .

GEE Model Information

Correlation Structure Exchangeable

Subject Effect case (340 levels)

Number of Clusters 340

Correlation Matrix Dimension 3
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More output

Working Correlation Matrix

Col1 Col2 Col3

Row1 1.0000 -0.0034 -0.0034

Row2 -0.0034 1.0000 -0.0034

Row3 -0.0034 -0.0034 1.0000

Exchangeable Working

Correlation

Correlation -0.003436171

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Standard 95% Confidence

Parameter Estimate Error Limits Z Pr > |Z|

Intercept 0.9812 0.1841 0.6203 1.3421 5.33 <.0001

diagnose -1.3117 0.1453 -1.5964 -1.0269 -9.03 <.0001

treat 2.0427 0.3061 1.4428 2.6426 6.67 <.0001

time 1 -0.9601 0.2379 -1.4265 -0.4938 -4.04 <.0001

time 2 -0.6207 0.2372 -1.0855 -0.1559 -2.62 0.0089

time 3 0.0000 0.0000 0.0000 0.0000 . .

treat*time 1 -2.0975 0.3923 -2.8663 -1.3287 -5.35 <.0001

treat*time 2 -1.0958 0.3900 -1.8602 -0.3314 -2.81 0.0050

treat*time 3 0.0000 0.0000 0.0000 0.0000 . .
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More output

Score Statistics For Type 3 GEE Analysis

Chi-

Source DF Square Pr > ChiSq

diagnose 1 70.83 <.0001

treat 1 40.38 <.0001

time 2 15.73 0.0004

treat*time 2 29.52 <.0001

Clearly, there is an important interaction between time and the
treatment. The initial diagnosis is also important. Fitting two
more models shows that there is no evidence of interaction
between diagnosis and treatment or diagnosis and time.

We see a severe diagnosis (s = 1) significantly decreases the odds
of a normal classification by a factor of e−1.31 = 0.27. The odds
(for normal classification) ratio comparing the new drug to the
standard drug changes with time because of the interaction. At 1
week it’s e2.04−2.09 = 0.95, and week 2 it’s e2.04−1.10 = 2.6, and at
4 weeks it’s e2.04−0 = 7.7. The new drug is better, but takes time
to work.
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Interpretation

Here, the focus is on whole populations of patients at 1, 2, and 4
weeks, and on the new drug versus the standard drug. These
interpretations are not within the individual, as one would make for
a conditional analysis, coming up in Chapter 13.

Look at the estimate of the working correlation matrix. What does
this tell you? In fact, if “comment out” the REPEATED statement
and assume independent observations across individuals, i.e.
Yi1,Yi2,Yi3 independent, regression coefficients and standard
errors change negligibly.
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Which working correlation?

When to use which correlation structure R(α)?

Because GENMOD automatically uses the “sandwich” estimate of
the variance, adjusting the working correlation with an empirical
(but yet model-based from mean estimates!) estimate of cov(β̂),
this GEE is robust to misspecification of R(α). However, it’s nice
to have a formal tool for choosing.

Pan (2001) proposes a measure analogous to AIC for
quasi-likelihood termed the QIC. When φ = 1 it reduces to

QIC = −2L(µ(β̂); y1, . . . , yn) + 2trace(Ω̂VG ),

where Ω̂ =
∑n

i=1 D′iViDi ; see Pan (2001).
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QIC in SAS

QIC is automatically included in version 9.2 and above.

There are two versions: QIC and QICu.

QICu replaces 2trace(Ω̂VG ) with 2p and should only be used to
choose among regression models (with fixed working correlation),
whereas QIC can be used to choose among both regression models
and working correlation structure...just use QIC to be safe.
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Example: Chapter 12 Problem 6 (pp. 480–481)

Here’s my SAS code:

data abc1;

input seq a b c count @@;

datalines;

1 0 0 0 0 1 0 0 1 2 1 0 1 0 2 1 0 1 1 9 1 1 0 0 0 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1

2 0 0 0 2 2 0 0 1 0 2 0 1 0 0 2 0 1 1 9 2 1 0 0 1 2 1 0 1 0 2 1 1 0 0 2 1 1 1 4

3 0 0 0 0 3 0 0 1 1 3 0 1 0 1 3 0 1 1 8 3 1 0 0 1 3 1 0 1 3 3 1 1 0 0 3 1 1 1 1

4 0 0 0 0 4 0 0 1 1 4 0 1 0 1 4 0 1 1 8 4 1 0 0 1 4 1 0 1 0 4 1 1 0 0 4 1 1 1 1

5 0 0 0 3 5 0 0 1 0 5 0 1 0 0 5 0 1 1 7 5 1 0 0 0 5 1 0 1 1 5 1 1 0 2 5 1 1 1 1

6 0 0 0 1 6 0 0 1 5 6 0 1 0 0 6 0 1 1 4 6 1 0 0 0 6 1 0 1 3 6 1 1 0 1 6 1 1 1 0

;

data abc2; set abc1;

case=0;

do i=1 to count;

case=case+1;

pattern=4*a+2*b+c;

y=a; treat=1; output;

y=b; treat=2; output;

y=c; treat=3; output;

end;

proc print;

proc genmod descending; class pattern case treat seq;

model y=treat seq / dist=bin link=logit;

repeated subject=case(seq*pattern) / type=exch;

estimate ’3 vs 1’ treat -1 0 1 / exp;

estimate ’2 vs 1’ treat -1 1 0 / exp;

estimate ’3 vs 2’ treat 0 -1 1 / exp;
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SAS output

GEE Model Information

Correlation Structure Exchangeable

Subject Effect case(pattern*seq) (86 levels)

Number of Clusters 86

Correlation Matrix Dimension 3

Maximum Cluster Size 3

Minimum Cluster Size 3

Exchangeable Working

Correlation

Correlation -0.04403048

Contrast Estimate Results

Standard Chi-

Label Estimate Error Alpha Confidence Limits Square Pr > ChiSq

3 vs 1 2.5076 0.4141 0.05 1.6959 3.3193 36.66 <.0001

Exp(3 vs 1) 12.2750 5.0836 0.05 5.4513 27.6400

2 vs 1 1.9914 0.3876 0.05 1.2317 2.7511 26.39 <.0001

Exp(2 vs 1) 7.3257 2.8396 0.05 3.4270 15.6599

3 vs 2 0.5162 0.3158 0.05 -0.1029 1.1352 2.67 0.1022

Exp(3 vs 2) 1.6756 0.5292 0.05 0.9023 3.1118
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SAS output

Empirical Standard Error Estimates

Standard 95% Confidence

Parameter Estimate Error Limits Z Pr > |Z|

Intercept 0.9554 0.3282 0.3121 1.5987 2.91 0.0036

treat 1 -2.5076 0.4141 -3.3193 -1.6959 -6.05 <.0001

treat 2 -0.5162 0.3158 -1.1352 0.1029 -1.63 0.1022

treat 3 0.0000 0.0000 0.0000 0.0000 . .

seq 1 0.5200 0.3907 -0.2459 1.2858 1.33 0.1833

seq 2 0.7775 0.5352 -0.2715 1.8265 1.45 0.1463

seq 3 0.6454 0.3865 -0.1122 1.4029 1.67 0.0950

seq 4 0.5830 0.4230 -0.2460 1.4121 1.38 0.1681

seq 5 0.2384 0.5116 -0.7642 1.2410 0.47 0.6412

seq 6 0.0000 0.0000 0.0000 0.0000 . .

I am nesting the subject (case) index within both the drug
sequence k = 1, . . . , 6 and pattern type p = 1, . . . , 8 for
(0, 0, 0), (0, 0, 1), . . . , (1, 1, 1). The model looks like

logit P(Yi(k∗p)j = 1) = γ + αk + βj ,

where β3 = α6 = 0 correspond to baseline.
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11.5 Markov chains for transitional modeling

When j indexes time, Yi1,Yi2, . . . ,YiTi
is a stochastic process,

often termed a time series. Let’s consider Yij = 0, 1 for now.

The series Yi1,Yi2, . . . ,YiTi
follows a first-order Markov chain if

the distribution of Yij only cares about the previous value Yi ,j−1,
formally [Yij |Yi1, . . . ,Yi ,j−1] = [Yij |Yi ,j−1].

Time-varying covariates can be included:

logit P(Yij = 1|Yi ,j−1) = x′ijβ + γ1Yi ,j−1,

where γ1 models the effect of the i th subject’s previous observation
on the probability of a current (time j) success. eγ1 has a nice
interpretation in terms of how success odds changes based on what
happened at last time point.
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Markov chain

Second-order, and in general t-order, Markov chains can be
considered by including the most previous t observations
(Yi ,j−1, . . . ,Yi ,j−t):

logit P(Yij = 1|Yi ,j−1, . . . ,Yi ,j−t) = x′ijβ +
t∑

s=1

γsYi ,j−s .

Interactions between covariates xij and previous values can also
improve model fit.
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Likelihood

For a first order Markov-chain with no interaction the likelihood is
written

L(β) =
n∏

i=1

f1(yi1)f2(yi2|yi1)f3(yi3|yi2) · · · fTi
(yiTi
|yi ,Ti−1).

if we ignore the marginal contribution of the first observation
f1(yi1) we get

L(β) =
n∏

i=1

f2(yi2|yi1)f3(yi3|yi2) · · · fTi
(yiTi
|yi ,Ti−1).

For each subject i we have the product of Ti − 1 conditional
logistic regression kernels; the transitional model can be fit in
PROC LOGISTIC as usual, but for observation Yij , treating Yi ,j−1

as an observed predictor!
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12.4.4 Respiratory illness and maternal smoking

Example (p. 476): Children were evaluated every year on whether
they had a respiratory illness. A covariate of interest is whether the
child’s mom smoked at the beginning of the study; si = 0 indicates
not and si = 1 indicates a smoker.
Each child has a sequence of 4 indicators (Yi1,Yi2,Yi3,Yi4) taken
at 7, 8, 9, and 10 years. For each child we have covariates si and
tj = j + 6. The first order Markov model is fit

logit P(Yij = 1|Yi ,j−1 = yi ,j−1) = β0 + β1si + β2tj + β3yi ,j−1,

for i = 1, . . . , 537 and j = 2, 3, 4.
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SAS code to fit the Markov model

data mm1;

input s y1 y2 y3 y4 count;

y=y2; yp=y1; sm=s; t=8; ct=count; output;

y=y3; yp=y2; sm=s; t=9; ct=count; output;

y=y4; yp=y3; sm=s; t=10; ct=count; output;

datalines;

0 0 0 0 0 237

0 0 0 0 1 10

0 0 0 1 0 15

0 0 0 1 1 4

0 0 1 0 0 16

0 0 1 0 1 2

0 0 1 1 0 7

0 0 1 1 1 3

etc...

1 1 1 0 0 4

1 1 1 0 1 2

1 1 1 1 0 4

1 1 1 1 1 7

;

proc logistic descending;

freq ct; model y=sm t yp / lackfit;
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SAS output

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Standardized Odds

Variable DF Estimate Error Chi-Square Chi-Square Estimate Ratio

INTERCPT 1 -0.2926 0.8460 0.1196 0.7295 . .

SM 1 0.2960 0.1563 3.5837 0.0583 0.077761 1.344

T 1 -0.2428 0.0947 6.5800 0.0103 -0.109336 0.784

YP 1 2.2111 0.1582 195.3589 0.0001 0.450688 9.126

Hosmer and Lemeshow Goodness-of-Fit Test

Goodness-of-fit Statistic = 1.1723 with 6 DF (p=0.9782)

We see both time and whether the child had a respiratory illness
the previous year are important predictors. Smoking is almost
significant at the 5% level (and is significant if we perform a
one-sided test). Maternal smoking increases the odds of a
respiratory illness by about 34%. As time goes on the child is less
likely to have a respiratory illness. If a child had a respiratory
illness last year, the odds of having one this year are nine times
greater than if the child did not have one last year.
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