
Simulating Random Variables

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 740: Statistical Computing

1 / 23

R has many built-in random number generators...

Beta, gamma (also χ2 and exponential), normal (also Student’s t
& Cauchy, F , log-normal), Weibull, logistic, binomial, geometric,
hypergeometric, Poisson, etc.

For each distribution, R has the pdf/pmf, quantile function, cdf,
and an independent random number generator.

R also has the distribution of different test statistics, e.g. Tukey’s
studentized range, Wilcoxin rank sum statistic, etc.

There are packages to sample multivariate normal, Wishart and
inverse Wishart, multivariate t, Pareto, etc. Google is your friend.

We will discuss methods for simulating random variables anyway
for when you run into non-standard ones.

2 / 23

Everything starts with uniform...

Simulating U1,U2,U3, · · ·
iid∼ U(0, 1) is the main building block for

all that follows.

Random uniform generators are not random. In R try
set.seed(1) then runif(10) several times.

They are said to be “pseudo random” – they satisfy certain
statistical tests we’d expect independent uniforms to pass, e.g.
Kolmogorov-Smirnov. Look up “Diehard tests” in Wikipedia.

Try ?RNG to see what R is capable of and the default.

Historically common: conguential generators, see pp. 72–75.

R sets the seed by the current time and process ID.

3 / 23

Inverse transformation

Important result (p. 39): U ∼ U(0, 1), and X = F−(U)

implies X ∼ F (·). The generalized inverse of a non-decreasing
cdf F (·) is F−(u) = inf{x : F (x) ≥ u}.
If F (·) is monotone increasing and continuous over its
support, representing a continuous random variable,
F−(u) = F−1(u). You just need to find the inverse function.
Proof of result straightforward (board).

(p. 44) If F (u) is a “stair function” with jumps at
x1, x2, x3, . . . , representing a discrete random variable, then
U ∼ U(0, 1) and X = xj ⇔ F (xj−1) < U < F (xj) implies
X ∼ F (·). Here, F (x0) = 0.

sample automates this last result; ddiscrete, pdiscrete,
qdiscrete, and rdiscrete are in the e1071 package.

4 / 23

Examples...

Inverses can be easily derived in closed-form:

exp(λ) (Ex. 2.5, p. 39)

Weibull(α, β)

Pareto

Cauchy

Inverses not available in closed-form:

Normal (although R uses inversion as the default!)

beta

gamma

F (is there another way?)

5 / 23

Section 2.2 Tricks and relationships...

Lots of clever tricks, relationships among variables, etc. on
pp. 42–46:

Box-Muller for normal r.v. (can be implemented in rnorm),

Poisson via waiting times,

beta from order statistics,

gamma from beta & exponential, etc.

These can be used but are often not optimal.

There are a few that are good for MCMC (coming up).

6 / 23

Sampling multivariate normals

Want to simulate y ∼ Np(µ,Σ).

Recall if z1, . . . , zp
iid∼ N(0, 1), z = (z1, . . . , zp)′, a ∈ Rm and

A ∈ Rm×p then
a + Az ∼ Nm(a,AA′).

A Cholesky decomposition produces a C such that Σ = C′C where
C is upper triangular. Thus

Σ = C′C⇒ µ+ C′z ∼ Np(µ,Σ).

7 / 23

Some other multivariate distributions

To sample (q1, . . . , qp) ∼ Dirichlet(α1, . . . , αp) take

yi
ind .∼ Γ(αi , 1) and qi = yi∑k

j=1 yj
for i = 1, . . . , p.

To sample Σ ∼Wishartp(k ,S0) the def’n

Σ =
k∑

i=1

xix
′
i , x1, . . . , xk

iid∼ Np(0,Σ),

is impractical when k is large. Odell, and Feiveson (1966,
JASA) give an efficient method based on χ2 and normal r.v.

To sample n ∼ mult(n,q), independently sample discrete
Y1, . . . ,Yn where P(Yi = k) = qk for k = 1, . . . , p and set

nk =
n∑

i=1

I{Yi = k}, k = 1, . . . , p.

Examples: multivariate normal; Dirichlet.
8 / 23

Some other multivariate distributions

There are algorithms to simulate many other multivariate
distributions (e.g. multivariate t); Google is your friend.

R has rWishart and rmultinom, rdirichlet is in
MCMCpack, rmvnorm is in mvtnorm, etc. Many more versions
of all of these floating around different packages as well as
functions to evaluate the pdf/pmf/cdf, etc.

IMSL is a package of numeric routines for FORTRAN 90/95
that includes various random number generators,
pmf/pdf/cdf/quantile functions, etc.

9 / 23

Fundamental theorem of simulation

Back to univariate simulation...

Over pp. 47–50 is a general idea that can be paraphrased as
follows.

To simulate from a (possibly unnormalized) density Y ∼ f (·), we
can find a density g(x) such that f (x) ≤ Mg(x) for all x , then (a)
simulate from X ∼ g(·) and (b) accept Y = X ⇔ with probability
f (X)

Mg(X) . If Y not accepted repeat (a) and (b).

This is the same as X ∼ g(·) indep. U ∼ U(0, 1) and accepting

Y = X ⇔ U ≤ f (X)
Mg(X) .

Called the accept-reject algorithm. Read Section 2.3.2 for
examples and implementation notes. In particular, the probability
of accepting is 1

M when both densities are normalized.

10 / 23

Some simple ideas

Show (x1, x2) with joint density h(x1, x2) = I{0 < x2 < g(x1)}
implies x1 ∼ g(·). This proves the fundamental theorem of
simulation.

Show if x1 ∼ g(·) and x2|x1 ∼ U(0, g(x1)) then the joint density is
h(x1, x2) = I{0 < x2 < g(x2)}. This is how the pair (x1, x2) is
sampled.

Finally, if f (x) ≤ Mg(x) for all x , then x1 ∼ g(·),
x2|x1 ∼ U(0,Mg(x1)), and x2 < f (x1) ⇒ x1 ∼ f (·).

11 / 23

Accept-reject

Direct, unintuitive proof that it works...

P
(
Y ≤ x |U ≤ f (Y)

Mg(Y)

)
=

P

(
Y≤x ,U≤ f (Y)

Mg(Y)

)
P

(
U≤ f (Y)

Mg(Y)

)

=
∫ x
−∞

∫ f (y)/[Mg(y)]
0 du g(y) dy∫∞

−∞
∫ f (y)/[Mg(y)]
0 du g(y) dy

=
∫ x
−∞ f (y)/[Mg(y)]g(y) dy∫∞
−∞ f (y)/[Mg(y)]g(y) dy

=
∫ x
−∞ f (y) dy∫∞
−∞ f (y) dy

Example in R: multimodal density on p. 50.

12 / 23

Envelope accept-reject

If f (·) is costly to evaluate we can add a lower “squeezing”
function. Say

gl(x) ≤ f (x) ≤ Mgm(x), all x .

1 X ∼ gm(·) indep. of U ∼ U(0, 1);

2 accept Y = X if U ≤ gl (X)
Mgm(X) ;

3 otherwise accept Y = X if U ≤ f (X)
Mgm(X) .

Repeat if necessary until Y accepted. Then Y ∼ f (·).

Only more efficient if evaluating f (·) is costly. See examples pp.
54–55.

13 / 23

Adaptive rejection sampling

A widely applicable, adaptive version of envelope accept-reject is
available for (possibly unnormalized) densities f (·) that are

log-concave, d2

dx2
log f (x) < 0 for all x ; the algorithm is called

adaptive rejection sampling (ARS).

This method iteratively builds piecewise-linear envelope functions
log gl(x) and log gm(x) around log f (x) and performs envelope
accept-reject until acceptance. The rejected values x1, x2, . . . are
where log f (x) is evaluated. You book tersely describes the
algorthm on pp. 56–57; I’ll attempt to illustrate on the board.
Wikipedia also has a nice explanation.

14 / 23

Adaptive rejection sampling

Each rejected xj is incorporated into the upper and lower
envelopes, making them tighter where they need to be.
Eventually gl and gm will be close enough to f (x) to easily
accept.

Sampling from gm is simply truncated exponential
distributions; easy!

There is a derivative-free version and a slightly more efficient
version that requires d

dx log f (x).

For non-log-concave densities, i.e. any f (x), one can use the
adaptive rejection Metropolis sampling (ARMS) algorithm;
more later.

Coding by hand is possible (see Wild & Gilks 1993, Applied
Statistics) but a pain. Tim did it for his dissertation work.

15 / 23

R packages that perform ARS...

ars. Requires d
dx log f (x).

MfUSampler. Also does ARMS, slice sampling and
Metropolis-Hastings w/ Gaussian proposal.

There are others not on CRAN. Google “adaptive rejection R
package”.

Also found C and FORTRAN subroutines posted.

Example: ARS for N(0, 1).

16 / 23

Metropolis-Hastings

We will cover Metropolis-Hastings (MH) in more detail later when
we discuss MCMC for obtaining Bayesian inference for π(θ|x), but
for now let’s briefly introduce it as another method for simulating
from (a possibly unnormalized) f (·).

The MH algorthim produces a dependent sample Y1, . . . ,Yn from
f (·) that, if we are careful, we can use like an iid sample. Or we
can take simply take the last one Y = Yn ∼ f (·).

17 / 23

Metropolis-Hastings

Here’s one version called an independence sampler.

(0) Initialize Y0 = y0 for some y0. Then for j = 1, . . . , n repeat
(1) through (3):

(1) Generate X ∼ g(·) indep. of U ∼ U(0, 1);

(2) compute ρ = 1 ∧ f (X)g(Yj−1)
f (Yj−1)g(X) ;

(3) if U ≤ ρ accept Yj = X otherwise Yj = Yj−1.

With positive probability successive values can be tied! Algorithm
efficiency has to do with this probability. What is the probability of
acceptance of a new value if g(x) ∝ f (x)?

Example in R: multimodal density on p. 50.

18 / 23

Method of composition

For joint (X ,Y) ∼ f (x , y) = fX |Y (x |y)fY (y) you can sample

(a) Y ∼ fY (·), then

(b) X |Y = y ∼ fX |Y (·|y).

The pair (X ,Y) ∼ f (x , y) as required. This works when it is easy
to sample Y marginally, and easy to sample X |Y . Use this to get
(X1,Y1), . . . , (Xn,Yn).

This is useful in many situations, but here’s a common one. We

are interested in X1, . . . ,Xn
iid∼ fX (·) where

fX (x) =

∫ ∞
−∞

fX |Y (x |y)fY (y)︸ ︷︷ ︸
f (x ,y)

dy .

The method of composition will allow us to get an iid sample
X1, . . . ,Xn; we just throw away Y1, . . . ,Yn.

19 / 23

Two examples...

Works the same for discrete mixtures

fX (x) =
∞∑
j=1

fX |Y (x |yj)P(Y = yj)︸ ︷︷ ︸
πj

.

A finite mixture of univariate normals has density

f (x) =
J∑

j=1

πjφ(x |µj , σ2j).

Sampling X ∼ f (·) is easily carried out via the method of
composition: first sample Y where P(Y = j) = πj , then sample
X |Y ∼ N(µY , σ

2
Y).

20 / 23

tν

Another example: t distribution: Y ∼ χ2
ν , X |Y ∼ N(0, ν/Y)

⇒ X ∼ tν .

Note that this is just the definition. Let Y ∼ χ2
ν indep. of

Z ∼ N(0, 1) and let

X = Z√
Y /ν

= Z
√
ν/Y .

Then X |Y ∼ N(0, ν/Y).

21 / 23

Frequentist properties of estimators

Most papers in JASA, Biometrics, Statistics in Medicine, JRSSB,
etc. have a simulations section.

Data are generated under known conditions and then an
estimator/inferential procedure is applied. That is,
x1, . . . , xn ∼ f (x1, . . . , xn|θ) is generated M times with known

θ0 = (θ01, . . . ,θ0k)′ producing M estimates θ̂
1
, . . . , θ̂

M
, M sets of

k SEs or posterior SDs, and M sets of k CIs.

Typically M = 500 or M = 1000 and n reflects common sample
sizes found in clinical setting or in the data analysis section, e.g.
n = 100, n = 500, n = 1000, n = 5000, etc. Often two or three
sample sizes are chosen.

22 / 23

Frequentist properties of estimators

Common things to look at are:

k Biases 1
M

∑M
m=1 θ̂

m
j − θ0j .

k average SE or SD 1
M

∑M
m=1 se(θ̂mj). Sometimes instead

average lengths of k CIs are reported; gets at the same thing.

k MSEs 1
M

∑M
m=1(θ̂mj − θ0j)2.

k SD of point estimates 1
M

∑M
m=1(θ̂mj −

1
M

∑M
s=1 θ̂

s
j)2.

k Coverage probability of CIs 1
M

∑M
m=1 I{Lmj < θ0j < Um

j }.

23 / 23

