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Bootstrap etymology

To “lift youself up by your bootstraps” means to pull yourself out
of a difficult situation through sheer effort, without outside help.

Here, this refers to using the data itself to help us estimate a
statistic’s sampling distribution.

The bootstrap is computationally demanding but easy to code, and
very useful when

Asymptotics don’t work; e.g. non-standard or non-regular
models, small sample sizes, richly parameterized, etc.

Asymptotics are too difficult to carry out.

Key idea: Sampling variability in the statistic is approximated very
well by the sample itself! “Proof” of bootstrap approximations
relies on von Mises differentiable functionals or Edgeworth
expansions...we wont worry about that here. Basic idea (like kernel
estimation) has been around a long time without formal “proofs.”
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Statistic θ̂(x1:n)

Let data x1:n = (x1, . . . , xn), where xi ∈ Rk , be

x1, . . . , xn
iid∼ F .

Let θ̂(x1:n) be a statistic that estimates a population parameter θ,
e.g. the mean, IQR, a quantile, etc. θ can also be (parametric)
model parameters or a function of parameters.

The empirical measure based on data x1:n is Fn = 1
n

∑n
i=1 δxi ,

where δxi is point mass or “Dirac measure” at xi . Corresponding
empirical c.d.f. is

Fn(x) = 1
n

n∑
i=1

I{xi1 ≤ x1, . . . , xik ≤ xk}.

Note that Fn(x)
a.s.→ F (x).
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Sampling distribution of θ̂(x1:n)

The statistic θ̂(x1:n) is a random vector and has a distribution,
called the sampling distribution induced by F .

The sampling distribution is important; it’s how we perform
inference on θ, e.g. hypothesis tests, confidence intervals, etc.

A Monte Carlo estimate of the (unknown!) sampling distribution is
obtained by repeatedly taking independent samples of size n and
forming the statistic

xm,1, . . . , xm,n
iid∼ F , θ̂m = θ̂(xm,1:n), m = 1, . . . ,M.

The Monte Carlo sample θ̂1, . . . , θ̂M can be used to make a
histogram of, estimate quantiles from, or form integrals against the
sampling distribution of θ̂(x1:n).
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Approximate sampling distribution of θ̂(x1:n)

Unfortunately, we don’t know F ! However, noting that that
Fn(x)

a.s.→ F (x), an approximate Monte Carlo estimate of the
sampling distribution is obtained by repeatedly taking independent
samples of size n from Fn and forming the statistic

xm,1, . . . , xm,n
iid∼ Fn, θ̂m = θ̂(xm,1:n), m = 1, . . . ,M.

That’s it! We simply replace F by Fn...it’s like magic.

The key property is that x1, . . . , xn are iid from F . So if we have,
say, regression data {(zi , yi )}ni=1, then xi = (zi , yi ). If we have
survival data w/ risk factors xi = (zi , yi , δi ), etc.
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What can we do with our Monte Carlo sample?

Estimate the standard error SE(θ̂j).

Form confidence intervals for θj from θ̂1,j , . . . , θ̂M,j by simply
taking quantiles. In the boot packages this is
method="perc".

Test, e.g., H0 : θj = b based on bootstrap CI.

Examine the sampling distribution of θ̂j(x1:n) via histograms
or kernel-smoothed densities.

Reduce estimation bias by considering the bootstrap sampling
approximation to θ̂j − θj . Tim thinks this is silly, as a general
approach (board).

Examples: quantiles; logistic regression standard errors & CIs.
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Quantile CIs

Obtaining a CI for a population quantile is challenging. The
estimator itself is easy; let

x1, . . . , xn
iid∼ F ,

and let Fn be the e.c.d.f. Define F−1n (p) = inf{x : Fn(x) ≥ p}.
Then the p(100)th quantile is qn = F−1n (p) = x(dnpe). Note: this is
not what R uses! Then

qn
•∼ N

(
q,

p(1− p)

nf (q)2

)
can be used to obtain a large-sample CI for q from estimating f by
a kernel-smoothed version f̂ .

Alternatively, we can use the bootstrap! Example.

7 / 14



Logistic regression w/ small sample size

Exact logistic regression is useful in small samples where
large-sample asymptotics fail. An alternative approach to obtaining
standard errors is simply bootstrapping the coefficients. Let the
data be x1:n = {(zi , yi )}ni=1. Simply sample n pairs (zi , yi ) from
x1:n with replacement, computing the MLE for each sample:

β̂
1
, . . . , β̂

M
.

The estimated SE for each β̂j is simply the standard deviation

ŜE (β̂j) =

√√√√ 1
M

M∑
m=1

(
β̂mj −

1
M

N∑
s=1

β̂sj

)2

.

Note: Bayesian approach also natural.
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Logistic regression w/ small sample size

In small sample sizes, or with perfectly predictive data, MLEs may
not be unique or exist. This happens when (a) all of the responses
are zeros or all ones, or (b) the zeros and ones can be perfectly
separated by a hyperplane (quasi or complete separation).

One method for obtaining estimates (no longer MLEs) is to simply
use a prior on β, the most natural being Jeffreys’ prior:

π(β) ∝ |X′MX|1/2, M = diag

(
ex′iβ

(1+e
x′
i
β
)2

)
.

Frequentists call the posterior mode under this prior a penalized
likelihood MLE. They would rather use the term “penalized
likelihood” than “prior” or “Bayes.” Originally due to Firth (1993).

Asymptotic CIs using Firth’s method can be terrible; bootstrap a
natural approach here. Firth’s method also necessary because a
bootstrapped sample might have all zeros or all ones!
Example: Challenger data.
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Parametric bootstrap

The bootstrap just discussed applies to any situation – parametric
or not – and is referred to as the “nonparametric bootstrap.”

The parametric bootstrap is most useful for estimating p-values for
testing hypotheses in parametric models in the presence of
“nuisance parameters.”

Say θ = (θ1,θ2) and

x1, . . . , xn
iid∼ Fθ,

and we want to test H0 : θ2 = b, or even the nonlinear
H0 : g(θ2) = b.

Let θ̂10 be the MLE of θ1 under the constraint H0 on θ2 and let
W = h(x1:n) be a test-statistic (not a function of θ) to test H0

(bigger W ⇒ H0 unlikely).
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Parametric bootstrap

Key observation: MLEs are functions of sufficient statistics, so
sampling from Fθ̂10

is equivalent to conditioning on the sufficient
statistics under H0. Related to score test; only fit reduced model!

A bootstrapped p-value takes

xm,1, . . . , xm,n
iid∼ Fθ̂10

, Wm = h(xm,1:n), m = 1, . . . ,M,

and p = 1
M

∑M
m=1 I{Wm ≥W }.

Since the sampling distribution relies on the underlying parametric
model, a parametric bootstrap may be sensitive to parametric
assumptions, unlike the nonparametric bootstrap.

Examples: independence in r × c tables, multivariate example.
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Testing independence in r × c table

Let n = {nij} be the cell counts for i = 1, . . . , r and j = 1, . . . , c .
Let πij = P(X = i ,Y = j). Under H0 : X ⊥ Y , π̂ij = ni+

n++

n+j

n++
. The

Pearson test statistic is

W (n) =
r∑

i=1

k∑
j=1

(nij − µ̂ij)2

µ̂ij
,

where µ̂ij =
ni+n+j

n++
.

Parametric bootstrap simply repeatedly samples a multinomial over
a table nm ∼ mult(n, π̂), where π = {π̂ij} is computed under H0

as described above. Then

p = 1
M

M∑
m=1

I{W (nm) ≥W (n)}.
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Testing independence in data xi

Let x1, . . . , xn
iid∼ Np(µ,Σ). A test of interest is that the elements

of each xi are independent, H0 : Σ = κIp. Mardia, Kent, and
Bibby (1979, Chapter 5) derive the LRT

L = np log

{
1
p trS

|S|1/p

}
.

Under H0, the MLE’s are µ̂ = x̄ and κ̂ = 1
p trS. A bootstrapped

p-value simulates M bootstrap samples

xm1 , . . . , x
m
n

iid∼ Np(µ̂, κ̂Ip),

and forms test statistics Lm = np log

{
1
p trSm

|Sm|1/p

}
. The p-value is

p = 1
M

M∑
m=1

I{Lm ≥ L}.
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Comments

Bootstrap is not a panacea; breaks down for small samples
and/or dependent data. There are various fixes, e.g.
smoothed bootstrap, blocked bootstrap, etc.

Very useful when asympotics are either inaccurate or too
difficult to obtain.

Can be more robust than large sample results.

Computationally intensive, especially, e.g. repeated
bootstraps, etc.

Bayesian approach also natural; posterior distribution often
“mimics” bootstrap histogram of a parameter, including skew.
Sort of “smooths” the bootstrap, e.g. logistic regression.

Bootstrap Methods and Their Application by Davison and
Hinkley good starting point.
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