
Metropolis Hastings algorithm
Gibbs sampling

WinBUGS

Markov chain Monte Carlo

Timothy Hanson1 and Alejandro Jara2

1 Division of Biostatistics, University of Minnesota, USA
2 Department of Statistics, Universidad de Concepción, Chile

IAP-Workshop 2009 Modeling Association and Dependence in Complex Data

Catholic University of Leuven, Leuven, November, 2009

1 / 29



Metropolis Hastings algorithm
Gibbs sampling

WinBUGS

Outline

1 Metropolis Hastings algorithm

2 Gibbs sampling

3 WinBUGS

2 / 29



Metropolis Hastings algorithm
Gibbs sampling

WinBUGS

Metropolis Hastings

Recall that MCMC constructs a transition kernel k(θ|θk−1)
that yields the posterior p(θ|y) as the stationary
distribution of the Markov chain.
MCMC iterates are generated directly from the kernel:

θ1|θ0 ∼ k(·|θ0),

θ2|θ1 ∼ k(·|θ1),

θ3|θ2 ∼ k(·|θ2),

...
θk |θk−1 ∼ k(·|θk−1)
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Metropolis Hastings transition kernel

Let q(θ∗|θ) be any conditional density. Under kernel
k(·|θk−1),

θk |θk−1

{
∼ q(θ|θk−1)ρ(θk−1,θ)∫

q(θ|θk−1)ρ(θk−1,θ)dθ
with prob. 1− s(θk−1)

= θk−1 with prob. s(θk−1)

}

where

ρ(θk−1,θ) = min

{
1,

p(θ|y)p(θ)q(θk−1|θ)

p(θk−1|y)p(θk−1)q(θ|θk−1)

}
.

s(θk−1) is the probability of θk = θk−1, or of θk staying at
where it is currently:

s(θk−1) = 1−
∫

θ∈Θ
q(θ|θk−1)ρ(θk−1,θ)dθ.
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Simulating the chain is easier than it might first appear.
Iterate k is generated from θk−1 according to

1 Draw θ∗ ∼ q(·|θk−1) independent of u ∼ U(0,1).
2 If u ≤ ρ(θk−1,θ∗) = min

{
1, p(θ∗|y)p(θ∗)q(θk−1|θ∗)

p(θk−1|y)p(θk−1)q(θ∗|θk−1)

}
then θk = θ∗ otherwise θk = θk−1.

In theory, under mild conditions, θk D→ p(θ|y).
In reality, k is nowhere near∞ and q(·|θk−1) needs to be
picked in an intelligent way.
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Metropolis algorithm: symmetric proposal

When q(θ∗|θ) = q(θ|θ∗), q is said to be symmetric.

In this case, the acceptance probability simplifies to
ρ(θk−1,θ∗) = min

{
1, p(θ∗|y)p(θ∗)

p(θk−1|y)p(θk−1)

}
.

Metropolis et al. (1953) used this algorithm for computing
properties of substances composed of interacting
individual molecules.
Also called a random walk chain.
Used a lot. Often θ∗ ∼ Np(θ,S) for some S. “Tuning”
required to get good S.
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Independence proposal

When q(θ∗|θ) = q(θ∗), q does not care about the last θ.

In this case, the acceptance probability is
ρ(θk−1,θ∗) = min

{
1, p(θ∗|y)p(θ∗)q(θ)

p(θk−1|y)p(θk−1)q(θ∗)

}
.

Hastings, W.K. (1970). Monte Carlo sampling methods
using Markov chains and their applications. Biometrika, 57,
97-109. Cited thousands of times.
Called independence chain. Proposal q(·) should have
“fatter tails” in Rp than p(θ|y) to get good sample. Same
idea as in importance sampling.
When is ρ = 1? This is the case for Gibbs sampling...
Often q(·) = Np(·|θ̂, Σ̂).
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Gibbs sampling

Gibbs sampling can be viewed a series of componentwise
Metropolis-Hastings algorithm steps, each with acceptance
probability one.

From θk−1, θk = (θk
1 , . . . , θ

k
p) is generated by “successive

substitution sampling.” When θ = (θ1, θ2, θ3) this boils
down to

θk
1 ∼ p(θ1|θ2 = θk−1

2 , θ3 = θk−1
3 , y)

θk
2 ∼ p(θ2|θ1 = θk

1 , θ3 = θk−1
3 , y)

θk
3 ∼ p(θ3|θ1 = θk

1 , θ2 = θk
2 , y)

Generalizes to any θ = (θ1, . . . ,θp)′.
Need to be able to sample from all full conditional
distributions!
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Each Gibbs update special case of M-H step

Again, for simplicity, p = 3.

Define q(θ∗|θk−1) =
p(θ∗1|θ

k−1
2 ,θk−1

3 , y)p(θ∗2|θ∗1,θ
k−1
3 , y)p(θ∗3|θ∗1,θ∗2, y).

This is transitional distribution (transition kernel) for Gibbs
sampler, but also can be viewed as series of
componentwise M-H proposals, each with acceptance
probability one.
For example ρ(θk−1

1 ,θ∗1|θ
k−1
2 ,θk−1

3 , y) = 1. Show this!
Gibbs sampler is sequence of special M-H steps where
candidate is always accepted.
Reviewed and reintroduced by Gelfand and Smith (1990).
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Example: Normal data

Model: y1, . . . , yn|µ, τ
iid∼ N(µ, τ−1).

Prior µ ∼ N(m, t−1) independent of τ ∼ Γ(a,b).
Full conditionals:

µ|τ, y ∼ N
(

nτ ȳ + mt
nτ + t

,
1

nτ + t

)
τ |µ, y ∼ Γ

(
a + 0.5n, b + 0.5

n∑
i=1

(yi − µ)2

)

MCMC iterates {(µk , τ k )}Mk=1 generated by first picking µ0

and τ0. Maybe µ0 = m and τ = a/b (why?). Then...
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Gibbs sampler...

µ1 ∼ N
(

nτ0ȳ + mt
nτ0 + t

,
1

nτ0 + t

)
τ1 ∼ Γ

(
a + 0.5n, b + 0.5

n∑
i=1

(yi − µ1)2

)

µ2 ∼ N
(

nτ1ȳ + mt
nτ1 + t

,
1

nτ1 + t

)
τ2 ∼ Γ

(
a + 0.5n, b + 0.5

n∑
i=1

(yi − µ2)2

)

µ3 ∼ N
(

nτ2ȳ + mt
nτ2 + t

,
1

nτ2 + t

)
τ3 ∼ Γ

(
a + 0.5n, b + 0.5

n∑
i=1

(yi − µ3)2

)
, etc...
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In R...

Let’s look at fitting a simple normal model to n = 30 young rats
whose weights were measured weekly for five weeks. Only the
first week is considered here.

##################################################################################
# Weight of n=30 rats in grams; ll is log posterior distribution for model given in notes
##################################################################################
ll=function(mean,precision,data,a,b,m,t){
ll=0
for(i in 1:length(data)){ll=ll+dnorm(data[i],mean,1/sqrt(precision),log=TRUE)}
ll=ll+dnorm(mean,m,1/sqrt(t),log=TRUE)
ll=ll+dgamma(precision,a,b,log=TRUE)

}

weight=c(151,145,147,155,135,159,141,159,177,134,160,143,154,171,163,160,142,156,157,
152,154,139,146,157,132,160,169,157,137,153)

MCtotal=1000
mean=1:MCtotal; precision=1:MCtotal # store MCtotal MCMC iterates here
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Random walk proposal M-H: R code

##################################################################################
# Metropolis-Hastings, random walk proposal for (mean,precision)
##################################################################################
mean[1]=mean(weight); precision[1]=1/var(weight) # starting values
a=0.01; b=0.01; m=150; t=0.1 # prior values
for(i in 2:MCtotal){
mean.star=rnorm(1,mean[i-1],1); prec.star=rnorm(1,precision[i-1],0.001)
rho=exp(ll(mean.star,prec.star,weight,a,b,m,t)-ll(mean[i-1],precision[i-1],weight,a,b,m,t))
u=runif(1)
if(u<=rho){ mean[i]=mean.star; precision[i]=prec.star }
if(u>rho) { mean[i]=mean[i-1]; precision[i]=precision[i-1] }

}

sum(mean[2:MCtotal]-mean[1:(MCtotal-1)]!=0)/(MCtotal-1) # accept rate for (mu,tau)
plot(mean,precision) # Monte Carlo estimate of posterior
quantile(mean,c(0.025,0.5,0.975)) # 95% CI and posterior median mu
quantile(precision,c(0.025,0.5,0.975)) # 95% CI and posterior median tau
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Independence proposal M-H: R code

##################################################################################
# Metropolis-Hastings, independence proposal for (mean,precision)
##################################################################################
mean[1]=mean(weight); precision[1]=1/var(weight) # starting values
a=0.01; b=0.01; m=150; t=0.1 # prior values
for(i in 2:MCtotal){
mean.star=rnorm(1,152,2); prec.star=rnorm(1,0.008,0.002)
rho=exp(ll(mean.star,prec.star,weight,a,b,m,t)-ll(mean[i-1],precision[i-1],weight,a,b,m,t)

-dnorm(mean.star,152,2,log=TRUE)+dnorm(mean[i-1],152,2,log=TRUE)
-dnorm(prec.star,0.008,0.002,log=TRUE)+dnorm(precision[i-1],0.008,0.002,log=TRUE))

u=runif(1)
if(u<=rho){ mean[i]=mean.star; precision[i]=prec.star }
if(u>rho) { mean[i]=mean[i-1]; precision[i]=precision[i-1] }

}

sum(mean[2:MCtotal]-mean[1:(MCtotal-1)]!=0)/(MCtotal-1) # accept rate for (mu,tau)
plot(mean,precision) # Monte Carlo estimate of posterior
quantile(mean,c(0.025,0.5,0.975)) # 95% CI and posterior median mu
quantile(precision,c(0.025,0.5,0.975)) # 95% CI and posterior median tau
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Gibbs sampling: R code

##################################################################################
# Gibbs sampler for (mean,precision)
##################################################################################
mean[1]=mean(weight); precision[1]=1/var(weight) # starting values
a=0.01; b=0.01; m=150; t=0.1; n=length(data) # prior values
for(i in 2:MCtotal){
mu.var=1/(n*precision[i-1]+t)
mu.mean=mu.var*(n*precision[i-1]*mean(weight)+m*t)
mean[i]=rnorm(1,mu.mean,sqrt(mu.var))
precision[i]=rgamma(1,a+0.5*n,b+0.5*sum((weight-mean[i])**2))

}

sum(mean[2:MCtotal]-mean[1:(MCtotal-1)]!=0)/(MCtotal-1) # accept rate for (mu,tau)
plot(mean,precision) # Monte Carlo estimate of posterior
quantile(mean,c(0.025,0.5,0.975)) # 95% CI and posterior median mu
quantile(precision,c(0.025,0.5,0.975)) # 95% CI and posterior median tau
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WinBUGS and OpenBUGS

WinBUGS is a free, Windows-based platform for MCMC
inference in general models; it is no longer being updated,
but still available.

OpenBUGS is an open-source version of BUGS, which
runs on Windows machines, Unix/Linux, or Macintosh. See
http://www.openbugs.info/w/FrontPage.
Note that OpenBUGS can be called from within R or SAS.
The rest of the slides will focus on WinBUGS, as it is
slightly easier to use initially
WinBUGS suffers in terms of analyzing the output though.
Complex analyses require imputting WinBUGS output into
R or SAS anyway.
After today, all examples will be almost exclusively in
DPpackage, but it’s good to know about BUGS, BayesX,
etc.
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How does WinBUGS sample the posterior?

WinBUGS uses Gibbs sampling exclusively. This has good and
bad points.

Good point: generating samples is more or less automatic.

Bad point: high correlation among elements of
θ = (θ1, . . . , θp)′

in the posterior makes Gibbs sampling really inefficient.
Good point: By construction, almost all Gibbs samplers are
p(θ|y)-irreducible, aperiodic, and positive Harris recurrent
(Tierney, 1994). This means they’re ergodic and all ergodic
theorems apply (LLN, convergence of quantiles, etc.).
Bad point: there are precious few practical ways to improve
mixing in a Gibbs sampler.
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“Intractable” full conditionals

Not all full conditionals are “recognizable” as Γ, normal,
uniform, etc. Alternatives in order of preference for WinBUGS:

Adaptive rejection sampling (if full conditional is
log-concave). (Gilks and Wild, 1992).

Slice sampling. (Neal, 2004). Restricted range, used with
censored data.
Metropolis step. (Tierney, 1994). Unrestricted range.
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WinBUGS code

WinBUGS code looks a lot like R or S-plus. Here’s code for
fitting a simple normal model to n = 30 young rats whose
weights were measured weekly for five weeks. Only the first
week is considered here.

model{
for(i in 1:n){ y[i] ˜ dnorm(mu, tau) }
mu ˜ dnorm(0,0.001)
tau ˜ dgamma(0.001,0.001)

}

list(mu=150, tau=0.1) # starting values

list(y=c(151,145,147,155,135,159,141,159,177,134,160,143,
154,171,163,160,142,156,157,152,154,139,146,157,
132,160,169,157,137,153), n=30) # data
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The model statement specifies the full probability model.
No improper priors are allowed.

After the model specification, list(mu=150, tau=0.1)
specifies the starting values of the Markov chain
(µ0 = 150, τ0 = 0.1). Starting values should be in a region
of non-negligible posterior support. More on this later.
Finally, the data is listed. Data can also be listed one or
more columns. Again, more on this later.
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WinBUGS tools:

There are three main tools you will use frequently. The
winBUGS manual explains the use of each in detail.
Under Model in the toolbar, pick Specification... and the
Specification Tool appears:

21 / 29



Metropolis Hastings algorithm
Gibbs sampling

WinBUGS

To make sure the model is at least syntactically correctly
specified, double click on model in the WinBUGS code (it
will then become highlighted), then click check model in
the Specification Tool.

If the model is okay, WinBUGS will tell you that “the model
is syntactically correct” in the lower left hand corner,
otherwise you’ll get an error message.
If the model is okay, next double click on the list that
holds the data and click load data . WinBUGS will tell you
“data loaded” if there were no problems, otherwise you’ll
find out something is not right with your data list or
perhaps your model.

Click compile .
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Starting values

You can either provide intelligent starting values for the
Markov chain or let WinBUGS generate them from the
prior. If the prior is vague, the former is a good idea.
Double click on the list that holds the starting values,
then click load inits . You are ready to generate samples!

Note: you can also provide partial starting values, for
example just the mean value in this example. This is handy
in random effects models where there may be several
hundred random effects. Click gen inits to simulate initial
values for remaining parameters.
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Update and Sample Monitor tools

Under Model choose Update... to bring up the Update
Tool, and under Inference choose Samples... to bring up
the Sample Monitor Tool.

The Sample Monitor Tool: In the slot by node enter “mu”,
then click on the set button, then enter “tau” and click on
the set button again. This slot tells WinBUGS what
quantities you want to keep track of in your analysis. To tell
WinBUGS you are done entering nodes, put an asterisk in
the slot. The window then looks like:

The path of the Markov chain can be monitored by clicking
on trace button.
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The Update tool

Click the update button in the Update Tool. The trace
plot will dynamically show the actual MCMC iterates being
generated with each click of update in the Update Tool.

Click update several times. Be careful, this can be quite
hypnotic. Update the Markov chain until 11000 iterates are
generated, i.e. until 11000 is in the iteration box. You can
update more or less than 1000 at a time by typing a
different value in the updates box.
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A burn in value can be specified in the beg box of the
Sample Monitor Tool. Type “1001” in this box. We will
discuss the notion of burn in carefully later, but roughly, we
are throwing out the first 1000 iterates to eliminate any
dependence posterior inferences might have on our
starting values.

Go back to the Sample Monitor Tool and click on stats
to get your posterior estimates.
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Comments:

Under Help you can find Examples Vol I and Examples
Vol II. These examples are an excellent source of models,
data, and ideas.

The error codes in WinBUGS are mysterious. A few are
explained in the manual. The most common errors have to
do with defining nodes twice and when WinBUGS has
trouble sampling, typically with censored data.
WinBUGS 1.4 now gives the user some leeway in
“tweaking” M-H burn-in values, allows for blocked updates,
and also allows choosing update options. This can improve
convergence dramatically.
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et cetera...

Multiple chains.

history gives entire iteration history for all nodes being
monitored. Good for assessing burn-in and convergence to
posterior.
density gives (marginal) posterior kernel-smoothed

density estimates.
stats gives posterior summary statistics.

coda gives the actual Gibbs iterates for use in other
programs.

quantiles gives “running quantiles” useful for assessing
burn-in and convergence.
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et cetera...

bgr daig gives a convergence diagnostic based on
running several chains simultaneously from different
starting values.

auto cor gives the ACF for each node. Useful for
determining how well the chain is mixing and/or
determining thinning values.
Inference then DIC... ultimately gives the deviance
information driterion for a model. Basically a measure of
how “complex” a model is along with an overall measure of
fit. This statistic can be informally used to compare models
and provides a measure of model fit penalized by
complexity much in the same manner as the AIC or BIC.
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