Markov chain Monte Carlo

Timothy Hanson¹ and Alejandro Jara²

¹ Division of Biostatistics, University of Minnesota, USA ² Department of Statistics, Universidad de Concepción, Chile

IAP-Workshop 2009 Modeling Association and Dependence in Complex Data Catholic University of Leuven, Leuven, November, 2009

- 2 Discrete state space Markov chains
- 3 Continuous state space Markov chains

Obtaining posterior inference

• We start with a full Bayesian probability model. May be hierarchical, involve dependent data, etc.

Obtaining posterior inference

- We start with a full Bayesian probability model. May be hierarchical, involve dependent data, etc.
- Must be possible to evaluate unnormalized posterior

$$p(\theta|\mathbf{y}) = p(\theta_1, \ldots, \theta_k|y_1, \ldots, y_n).$$

Obtaining posterior inference

- We start with a full Bayesian probability model. May be hierarchical, involve dependent data, etc.
- Must be possible to evaluate unnormalized posterior

$$p(\theta|\mathbf{y}) = p(\theta_1, \ldots, \theta_k|y_1, \ldots, y_n).$$

• e.g. In simple model $\mathbf{y} \sim p(\mathbf{y}|\boldsymbol{\theta})$, with $\boldsymbol{\theta} \sim p(\boldsymbol{\theta})$ this is usual

$$p(heta|\mathbf{y}) \propto p(heta,\mathbf{y}) = p(\mathbf{y}| heta)p(heta).$$

Obtaining posterior inference

- We start with a full Bayesian probability model. May be hierarchical, involve dependent data, etc.
- Must be possible to evaluate unnormalized posterior

$$p(\theta|\mathbf{y}) = p(\theta_1, \ldots, \theta_k|y_1, \ldots, y_n).$$

• e.g. In simple model $\mathbf{y} \sim p(\mathbf{y}|\boldsymbol{\theta})$, with $\boldsymbol{\theta} \sim p(\boldsymbol{\theta})$ this is usual

$$p(\theta|\mathbf{y}) \propto p(\theta, \mathbf{y}) = p(\mathbf{y}|\theta)p(\theta).$$

• e.g. In hierarchical model $\mathbf{y}|\theta, \tau \sim p(\mathbf{y}|\theta), \theta|\tau \sim p(\theta|\tau), \tau \sim p(\tau)$ this is

 $p(heta, au | \mathbf{y}) \propto p(heta, au, \mathbf{y}) = p(\mathbf{y} | heta, au) p(heta, au) = p(\mathbf{y} | heta) p(heta | au) p(au).$

Monte Carlo inference

Sometimes it is possible to sample directly from the posterior p(θ|y) (or p(θ, τ|y), etc.):
 θ¹, θ²,..., θ^M ^{iid} ∼ p(θ|y).

Monte Carlo inference

- Sometimes it is possible to sample directly from the posterior p(θ|y) (or p(θ, τ|y), etc.):
 θ¹, θ²,..., θ^M ^{iid} ∼ p(θ|y).
- We can use empirical estimates (mean, variance, quantiles, etc.) based on $\{\theta^k\}_{k=1}^M$ to estimate the corresponding population parameters.

•
$$M^{-1} \sum_{k=1}^{M} \theta^k \approx E(\theta | \mathbf{y}).$$

*p*th quantile: where 0
θ^[pM]_j ≈ q such that ∫^q_{-∞} p(θ_j|**y**)dθ_j = p.
 etc.

Markov chain Monte Carlo (MCMC)

 Only very simple models are amenable to Monte Carlo estimation of posterior inference.

- Only very simple models are amenable to Monte Carlo estimation of posterior inference.
- A generalization of the Monte Carlo approach is Markov chain Monte Carlo.

- Only very simple models are amenable to Monte Carlo estimation of posterior inference.
- A generalization of the Monte Carlo approach is Markov chain Monte Carlo.
- Instead of independent draws {θ^k} from the posterior, we obtain *dependent* draws.

- Only very simple models are amenable to Monte Carlo estimation of posterior inference.
- A generalization of the Monte Carlo approach is Markov chain Monte Carlo.
- Instead of independent draws {θ^k} from the posterior, we obtain *dependent* draws.
- Treat them the same as if they were independent though. Ergodic theorems (Tierney, 1994, Section 3.3) provide LLN for MCMC iterates.

- Only very simple models are amenable to Monte Carlo estimation of posterior inference.
- A generalization of the Monte Carlo approach is Markov chain Monte Carlo.
- Instead of independent draws {θ^k} from the posterior, we obtain *dependent* draws.
- Treat them the same as if they were independent though. Ergodic theorems (Tierney, 1994, Section 3.3) provide LLN for MCMC iterates.
- Let's get a taste of some fundamental ideas behind MCMC.

Discrete state space Markov chain

• Let $S = \{s_1, s_2, ..., s_m\}$ be a set of *m* states. Without loss of generality, we will take $S = \{1, 2, ..., m\}$. Note this is a *finite* state space.

Discrete state space Markov chain

- Let $S = \{s_1, s_2, ..., s_m\}$ be a set of *m* states. Without loss of generality, we will take $S = \{1, 2, ..., m\}$. Note this is a *finite* state space.
- The sequence of vectors {X^k}[∞]_{k=0} forms a Markov chain on S if

$$P(X^{k} = i | X^{k-1}, X^{k-2}, \dots, X^{2}, X^{1}, X^{0}) = P(X^{k} = i | X^{k-1}),$$

where i = 1, ..., m are the possible states. At time k, the distribution of X^k only cares about the previous X^{k-1} and none of the earlier $X^0, X^1, ..., X^{k-2}$.

Discrete state space Markov chain

- Let $S = \{s_1, s_2, ..., s_m\}$ be a set of *m* states. Without loss of generality, we will take $S = \{1, 2, ..., m\}$. Note this is a *finite* state space.
- The sequence of vectors {X^k}[∞]_{k=0} forms a Markov chain on S if

$$P(X^{k} = i | X^{k-1}, X^{k-2}, \dots, X^{2}, X^{1}, X^{0}) = P(X^{k} = i | X^{k-1}),$$

where i = 1, ..., m are the possible states. At time k, the distribution of X^k only cares about the previous X^{k-1} and none of the earlier $X^0, X^1, ..., X^{k-2}$.

• If the probability distribution $P(X^k = i | X^{k-1})$ doesn't change with time k then the chain is said to be *homogeneous* or *stationary*. We will only discuss stationary chains.

Transition matrix

• Let $p_{ij} = P(X^k = j | X^{k-1} = i)$ be the probability of the chain going from state *i* to state *j* in one step. These values can be placed into a *transition matrix*:

$$\mathbf{P} = \begin{bmatrix} p_{11} & p_{21} & \cdots & p_{m,1} \\ p_{12} & p_{22} & \cdots & p_{m,2} \\ \vdots & \vdots & \ddots & \vdots \\ p_{1,m} & p_{2,m} & \cdots & p_{m,m} \end{bmatrix}$$

Transition matrix

• Let $p_{ij} = P(X^k = j | X^{k-1} = i)$ be the probability of the chain going from state *i* to state *j* in one step. These values can be placed into a *transition matrix*:

$$\mathbf{P} = \begin{bmatrix} p_{11} & p_{21} & \cdots & p_{m,1} \\ p_{12} & p_{22} & \cdots & p_{m,2} \\ \vdots & \vdots & \ddots & \vdots \\ p_{1,m} & p_{2,m} & \cdots & p_{m,m} \end{bmatrix}$$

• Each column specifies conditional probability distribution & elements add up to 1.

Transition matrix

• Let $p_{ij} = P(X^k = j | X^{k-1} = i)$ be the probability of the chain going from state *i* to state *j* in one step. These values can be placed into a *transition matrix*:

$$\mathbf{P} = \begin{bmatrix} p_{11} & p_{21} & \cdots & p_{m,1} \\ p_{12} & p_{22} & \cdots & p_{m,2} \\ \vdots & \vdots & \ddots & \vdots \\ p_{1,m} & p_{2,m} & \cdots & p_{m,m} \end{bmatrix}$$

- Each column specifies conditional probability distribution & elements add up to 1.
- **Question**: Describe the chain with each column in the transition matrix is identical.

n-step transition matrix

 You should verify that the transition matrix for
 P(X^k = j|X^{k-n} = i) = P(Xⁿ = j|X⁰ = i) (stationarity) is
 given by the product Pⁿ.

n-step transition matrix

- You should verify that the transition matrix for
 P(X^k = j|X^{k-n} = i) = P(Xⁿ = j|X⁰ = i) (stationarity) is
 given by the product Pⁿ.
- This can be derived through iterative use of conditional probability statements, or by using the Chapman-Kolmogorov equations (which follow from iterative use of conditional probability statements).

Initial value X^0

• Say that the chain is started by drawing X^0 from $P(X^0 = j)$. These probabilities specify a the distribution for the *initial* value or state of the chain X^0 .

Initial value X^0

- Say that the chain is started by drawing X^0 from $P(X^0 = j)$. These probabilities specify a the distribution for the *initial* value or state of the chain X^0 .
- Silly but important question: What happens when
 P(X⁰ = j) = 0 for j = 1, 2, ..., m? This has implications for choosing a starting value in MCMC.

Example

Let \mathbf{p}^k be vector of probabilities $P(X^k = j) = p_j^k$. Let's look at an example.

• Three states $S = \{1, 2, 3\}$.

Example

Let \mathbf{p}^k be vector of probabilities $P(X^k = j) = p_j^k$. Let's look at an example.

• Three states $S = \{1, 2, 3\}$.

• Initial state
$$X^0$$
 distributed
 $\mathbf{p}^0 = \begin{bmatrix} P(X^0 = 1) \\ P(X^0 = 2) \\ P(X^0 = 3) \end{bmatrix} = \begin{bmatrix} 0.3 \\ 0.4 \\ 0.3 \end{bmatrix}$

Example

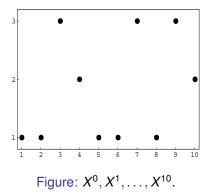
Let \mathbf{p}^k be vector of probabilities $P(X^k = j) = p_j^k$. Let's look at an example.

• Three states *S* = {1, 2, 3}.

• Initial state
$$X^0$$
 distributed
 $\mathbf{p}^0 = \begin{bmatrix} P(X^0 = 1) \\ P(X^0 = 2) \\ P(X^0 = 3) \end{bmatrix} = \begin{bmatrix} 0.3 \\ 0.4 \\ 0.3 \end{bmatrix}.$
• Transition matrix $\mathbf{P} = \begin{bmatrix} 0.1 & 0.6 & 0.2 \\ 0.1 & 0.2 & 0.3 \\ 0.8 & 0.2 & 0.5 \end{bmatrix}.$

Example chain

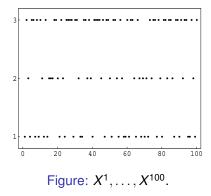
 $X^0 = 1, X^1, X^2, \dots, X^{10}$ generated according to *P*.



4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の 9 ()
11/26

Longer chain

Example: Different $X^0 = 1, X^1, X^2, \dots, X^{100}$ generated according to *P*.



◆□ ▶ < ⑦ ▶ < ≧ ▶ < ≧ ▶ ≧ りへで 12/26

Limiting distribution

• *Marginal* or *unconditional* distribution of X¹ is given by the law of total probability

$$P(X^{1} = j) = \sum_{i=1}^{m} P(X^{1} = j | X^{0} = i) P(X^{0} = i).$$

Here, m = 3 states. In general, $\mathbf{p}^k = \mathbf{P}\mathbf{p}^{k-1}$.

Limiting distribution

 Marginal or unconditional distribution of X¹ is given by the law of total probability

$$P(X^{1} = j) = \sum_{i=1}^{m} P(X^{1} = j | X^{0} = i) P(X^{0} = i).$$

Here, m = 3 states. In general, $\mathbf{p}^k = \mathbf{P}\mathbf{p}^{k-1}$.

Simply

$$\mathbf{p}^{1} = \mathbf{P}\mathbf{p}^{0} = \begin{bmatrix} 0.1 & 0.6 & 0.2 \\ 0.1 & 0.2 & 0.3 \\ 0.8 & 0.2 & 0.5 \end{bmatrix} \begin{bmatrix} 0.3 \\ 0.4 \\ 0.3 \end{bmatrix} = \begin{bmatrix} 0.33 \\ 0.20 \\ 0.47 \end{bmatrix}$$

.

Recursion...

•
$$\mathbf{p}^1 = \begin{bmatrix} P(X^1 = 1) \\ P(X^1 = 2) \\ P(X^1 = 3) \end{bmatrix} = \begin{bmatrix} 0.33 \\ 0.20 \\ 0.47 \end{bmatrix}.$$

-

Recursion....

$$\mathbf{p}^{1} = \begin{bmatrix} P(X^{1} = 1) \\ P(X^{1} = 2) \\ P(X^{1} = 3) \end{bmatrix} = \begin{bmatrix} 0.33 \\ 0.20 \\ 0.47 \end{bmatrix}.$$
$$\mathbf{p}^{2} = \begin{bmatrix} P(X^{2} = 1) \\ P(X^{2} = 2) \\ P(X^{2} = 3) \end{bmatrix} = \begin{bmatrix} 0.1 & 0.6 & 0.2 \\ 0.1 & 0.2 & 0.3 \\ 0.8 & 0.2 & 0.5 \end{bmatrix} \begin{bmatrix} 0.33 \\ 0.20 \\ 0.47 \end{bmatrix} = \begin{bmatrix} 0.25 \\ 0.21 \\ 0.54 \end{bmatrix}.$$

Recursion...

$$\mathbf{p}^{1} = \begin{bmatrix} P(X^{1} = 1) \\ P(X^{1} = 2) \\ P(X^{1} = 3) \end{bmatrix} = \begin{bmatrix} 0.33 \\ 0.20 \\ 0.47 \end{bmatrix} ,$$

$$\mathbf{p}^{2} = \begin{bmatrix} P(X^{2} = 1) \\ P(X^{2} = 2) \\ P(X^{2} = 3) \end{bmatrix} = \begin{bmatrix} 0.1 & 0.6 & 0.2 \\ 0.1 & 0.2 & 0.3 \\ 0.8 & 0.2 & 0.5 \end{bmatrix} \begin{bmatrix} 0.33 \\ 0.20 \\ 0.47 \end{bmatrix} = \begin{bmatrix} 0.25 \\ 0.21 \\ 0.54 \end{bmatrix} ,$$

$$\mathbf{p}^{3} = \begin{bmatrix} P(X^{3} = 1) \\ P(X^{3} = 3) \\ P(X^{3} = 3) \end{bmatrix} = \begin{bmatrix} 0.1 & 0.6 & 0.2 \\ 0.1 & 0.2 & 0.3 \\ 0.8 & 0.2 & 0.5 \end{bmatrix} \begin{bmatrix} 0.25 \\ 0.21 \\ 0.54 \end{bmatrix} = \begin{bmatrix} 0.26 \\ 0.23 \\ 0.51 \end{bmatrix} .$$

<ロ > < 団 > < 団 > < 亘 > < 亘 > < 亘) の < で 14/26

Recursion...

$$\mathbf{p}^{1} = \begin{bmatrix} P(X^{1} = 1) \\ P(X^{1} = 2) \\ P(X^{1} = 3) \end{bmatrix} = \begin{bmatrix} 0.33 \\ 0.20 \\ 0.47 \end{bmatrix}.$$

$$\mathbf{p}^{2} = \begin{bmatrix} P(X^{2} = 1) \\ P(X^{2} = 2) \\ P(X^{2} = 3) \end{bmatrix} = \begin{bmatrix} 0.1 & 0.6 & 0.2 \\ 0.1 & 0.2 & 0.3 \\ 0.8 & 0.2 & 0.5 \end{bmatrix} \begin{bmatrix} 0.33 \\ 0.20 \\ 0.47 \end{bmatrix} = \begin{bmatrix} 0.25 \\ 0.21 \\ 0.54 \end{bmatrix}.$$

$$\mathbf{p}^{3} = \begin{bmatrix} P(X^{3} = 1) \\ P(X^{3} = 2) \\ P(X^{3} = 3) \end{bmatrix} = \begin{bmatrix} 0.1 & 0.6 & 0.2 \\ 0.1 & 0.2 & 0.3 \\ 0.8 & 0.2 & 0.5 \end{bmatrix} \begin{bmatrix} 0.25 \\ 0.21 \\ 0.54 \end{bmatrix} = \begin{bmatrix} 0.26 \\ 0.23 \\ 0.23 \\ 0.51 \end{bmatrix}.$$

$$\mathbf{p}^{4} = \begin{bmatrix} P(X^{4} = 1) \\ P(X^{4} = 2) \\ P(X^{4} = 3) \end{bmatrix} = \begin{bmatrix} 0.1 & 0.6 & 0.2 \\ 0.1 & 0.2 & 0.3 \\ 0.8 & 0.2 & 0.5 \end{bmatrix} \begin{bmatrix} 0.26 \\ 0.23 \\ 0.51 \end{bmatrix} = \begin{bmatrix} 0.26 \\ 0.23 \\ 0.51 \end{bmatrix}.$$

・ロ・・雪・・ヨ・・ヨ・ シへの

14/26

Recursion...

$$\mathbf{p}^{1} = \begin{bmatrix} P(X^{1} = 1) \\ P(X^{1} = 2) \\ P(X^{1} = 3) \end{bmatrix} = \begin{bmatrix} 0.33 \\ 0.20 \\ 0.47 \end{bmatrix}.$$

$$\mathbf{p}^{2} = \begin{bmatrix} P(X^{2} = 1) \\ P(X^{2} = 2) \\ P(X^{2} = 3) \end{bmatrix} = \begin{bmatrix} 0.1 & 0.6 & 0.2 \\ 0.1 & 0.2 & 0.3 \\ 0.8 & 0.2 & 0.5 \end{bmatrix} \begin{bmatrix} 0.33 \\ 0.20 \\ 0.47 \end{bmatrix} = \begin{bmatrix} 0.25 \\ 0.21 \\ 0.54 \end{bmatrix}.$$

$$\mathbf{p}^{3} = \begin{bmatrix} P(X^{3} = 1) \\ P(X^{3} = 2) \\ P(X^{3} = 3) \end{bmatrix} = \begin{bmatrix} 0.1 & 0.6 & 0.2 \\ 0.1 & 0.2 & 0.3 \\ 0.8 & 0.2 & 0.5 \end{bmatrix} \begin{bmatrix} 0.25 \\ 0.21 \\ 0.54 \end{bmatrix} = \begin{bmatrix} 0.26 \\ 0.23 \\ 0.51 \end{bmatrix}.$$

$$\mathbf{p}^{4} = \begin{bmatrix} P(X^{4} = 1) \\ P(X^{4} = 2) \\ P(X^{4} = 3) \end{bmatrix} = \begin{bmatrix} 0.1 & 0.6 & 0.2 \\ 0.1 & 0.2 & 0.3 \\ 0.8 & 0.2 & 0.5 \end{bmatrix} \begin{bmatrix} 0.26 \\ 0.23 \\ 0.51 \end{bmatrix} = \begin{bmatrix} 0.26 \\ 0.23 \\ 0.51 \end{bmatrix}.$$

$$\mathbf{p}^{5} = \begin{bmatrix} P(X^{5} = 1) \\ P(X^{5} = 3) \\ P(X^{5} = 3) \end{bmatrix} = \begin{bmatrix} 0.1 & 0.6 & 0.2 \\ 0.1 & 0.2 & 0.3 \\ 0.8 & 0.2 & 0.5 \end{bmatrix} \begin{bmatrix} 0.26 \\ 0.23 \\ 0.51 \end{bmatrix} = \begin{bmatrix} 0.26 \\ 0.23 \\ 0.51 \end{bmatrix}.$$

・ロト・日本・日本・日本・日本・今日や

14/26

Recursion...

$$\mathbf{p}^{1} = \begin{bmatrix} P(X^{1} = 1) \\ P(X^{1} = 2) \\ P(X^{1} = 3) \end{bmatrix} = \begin{bmatrix} 0.33 \\ 0.20 \\ 0.47 \end{bmatrix}.$$

$$\mathbf{p}^{2} = \begin{bmatrix} P(X^{2} = 1) \\ P(X^{2} = 2) \\ P(X^{2} = 3) \end{bmatrix} = \begin{bmatrix} 0.1 & 0.6 & 0.2 \\ 0.1 & 0.2 & 0.3 \\ 0.8 & 0.2 & 0.5 \end{bmatrix} \begin{bmatrix} 0.33 \\ 0.20 \\ 0.47 \end{bmatrix} = \begin{bmatrix} 0.25 \\ 0.21 \\ 0.54 \end{bmatrix}.$$

$$\mathbf{p}^{3} = \begin{bmatrix} P(X^{3} = 1) \\ P(X^{3} = 2) \\ P(X^{3} = 3) \end{bmatrix} = \begin{bmatrix} 0.1 & 0.6 & 0.2 \\ 0.1 & 0.2 & 0.3 \\ 0.8 & 0.2 & 0.5 \end{bmatrix} \begin{bmatrix} 0.25 \\ 0.21 \\ 0.54 \end{bmatrix} = \begin{bmatrix} 0.26 \\ 0.23 \\ 0.51 \end{bmatrix}.$$

$$\mathbf{p}^{4} = \begin{bmatrix} P(X^{4} = 1) \\ P(X^{4} = 2) \\ P(X^{4} = 3) \end{bmatrix} = \begin{bmatrix} 0.1 & 0.6 & 0.2 \\ 0.1 & 0.2 & 0.3 \\ 0.8 & 0.2 & 0.5 \end{bmatrix} \begin{bmatrix} 0.26 \\ 0.23 \\ 0.51 \end{bmatrix} = \begin{bmatrix} 0.26 \\ 0.23 \\ 0.51 \end{bmatrix}.$$

$$\mathbf{p}^{5} = \begin{bmatrix} P(X^{5} = 1) \\ P(X^{5} = 2) \\ P(X^{5} = 2) \\ P(X^{50} = 2) \\ P(X^{50} = 3) \end{bmatrix} = \begin{bmatrix} 0.1 & 0.6 & 0.2 \\ 0.1 & 0.2 & 0.3 \\ 0.8 & 0.2 & 0.5 \end{bmatrix} \begin{bmatrix} 0.26 \\ 0.23 \\ 0.51 \end{bmatrix} = \begin{bmatrix} 0.26 \\ 0.23 \\ 0.51 \end{bmatrix}.$$

ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 >

.

14/26

Recursion...

•
$$\mathbf{p}^{1} = \begin{bmatrix} P(X^{1} = 1) \\ P(X^{1} = 2) \\ P(X^{1} = 3) \end{bmatrix} = \begin{bmatrix} 0.33 \\ 0.20 \\ 0.47 \end{bmatrix}.$$

• $\mathbf{p}^{2} = \begin{bmatrix} P(X^{2} = 1) \\ P(X^{2} = 2) \\ P(X^{2} = 3) \end{bmatrix} = \begin{bmatrix} 0.1 & 0.6 & 0.2 \\ 0.1 & 0.2 & 0.3 \\ 0.8 & 0.2 & 0.5 \end{bmatrix} \begin{bmatrix} 0.33 \\ 0.20 \\ 0.47 \end{bmatrix} = \begin{bmatrix} 0.25 \\ 0.21 \\ 0.54 \end{bmatrix}.$
• $\mathbf{p}^{3} = \begin{bmatrix} P(X^{3} = 1) \\ P(X^{3} = 2) \\ P(X^{3} = 3) \\ P(X^{3} = 3) \end{bmatrix} = \begin{bmatrix} 0.1 & 0.6 & 0.2 \\ 0.1 & 0.2 & 0.3 \\ 0.8 & 0.2 & 0.5 \end{bmatrix} \begin{bmatrix} 0.25 \\ 0.21 \\ 0.47 \end{bmatrix} = \begin{bmatrix} 0.26 \\ 0.23 \\ 0.51 \end{bmatrix}.$
• $\mathbf{p}^{4} = \begin{bmatrix} P(X^{4} = 1) \\ P(X^{4} = 2) \\ P(X^{4} = 3) \end{bmatrix} = \begin{bmatrix} 0.1 & 0.6 & 0.2 \\ 0.1 & 0.2 & 0.3 \\ 0.8 & 0.2 & 0.5 \end{bmatrix} \begin{bmatrix} 0.26 \\ 0.23 \\ 0.51 \end{bmatrix} = \begin{bmatrix} 0.26 \\ 0.23 \\ 0.51 \end{bmatrix}.$
• $\mathbf{p}^{5} = \begin{bmatrix} P(X^{5} = 1) \\ P(X^{5} = 2) \\ P(X^{5} = 3) \end{bmatrix} = \begin{bmatrix} 0.1 & 0.6 & 0.2 \\ 0.1 & 0.2 & 0.3 \\ 0.8 & 0.2 & 0.5 \end{bmatrix} \begin{bmatrix} 0.26 \\ 0.23 \\ 0.51 \end{bmatrix} = \begin{bmatrix} 0.26 \\ 0.23 \\ 0.51 \end{bmatrix}.$
• $\mathbf{p}^{50} = \begin{bmatrix} P(X^{50} = 1) \\ P(X^{50} = 2) \\ P(X^{50} = 3) \end{bmatrix} = \begin{bmatrix} 0.1 & 0.6 & 0.2 \\ 0.1 & 0.2 & 0.3 \\ 0.8 & 0.2 & 0.5 \end{bmatrix} \begin{bmatrix} 0.26 \\ 0.23 \\ 0.51 \end{bmatrix} = \begin{bmatrix} 0.26 \\ 0.23 \\ 0.51 \end{bmatrix}.$
• $\mathbf{p}^{\infty} = \begin{bmatrix} 0.26 \\ 0.23 \\ 0.51 \end{bmatrix}$ is *limiting* or *stationary* distribution of Markov chain. Here it's essentially reached within 3 iterations!

14/26

э

Starting value gets lost

Limiting distribution doesn't care about initial value

• When $\mathbf{p}^0 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$, stationary distribution $p^{\infty} = \begin{bmatrix} 0.26\\0.23\\0.51 \end{bmatrix}$

essentially reached within 5 iterations (within two significant digits), but is only reached exactly at $k = \infty$.

Note that stationary distribution satisfies p[∞] = Pp[∞]. That is, if X^{k-1} ~ p[∞] then so is X^k ~ p[∞].

Some important notions

An absorbing state exists if p_{ii} = 1 for some *i*. i.e. once X^k enters state *i*, it stays there forever.

Some important notions

- An absorbing state exists if p_{ii} = 1 for some *i*. i.e. once X^k enters state *i*, it stays there forever.
- If every state can be reached from every other state in finite time the chain is *irreducible*. This certainly occurs when p_{ij} > 0 for all *i* and *j* as each state can be reached from any other state in one step!

Some important notions

- An absorbing state exists if p_{ii} = 1 for some *i*. i.e. once X^k enters state *i*, it stays there forever.
- If every state can be reached from every other state in finite time the chain is *irreducible*. This certainly occurs when p_{ij} > 0 for all *i* and *j* as each state can be reached from any other state in one step!
- **Question:** Can a chain with an absorbing state be irreducible?

Positive recurrence

• Say the chain starts at $X^0 = i$. Consider

$$P(X^k = i, X^{k-1} \neq i, X^{k-2} \neq i, \dots, X^2 \neq i, X^1 \neq i | X^0 = i).$$

This is the probability that the *first return* to state *i* occurs at time *k*. State *i* is *recurrent* if

$$\sum_{k=1}^{\infty} P(X^{k} = i, X^{k-1} \neq i, X^{k-2} \neq i, \dots, X^{2} \neq i, X^{1} \neq i | X^{0} = i) = 1.$$

Positive recurrence

• Say the chain starts at $X^0 = i$. Consider

$$P(X^k = i, X^{k-1} \neq i, X^{k-2} \neq i, \dots, X^2 \neq i, X^1 \neq i | X^0 = i).$$

This is the probability that the *first return* to state *i* occurs at time *k*. State *i* is *recurrent* if

$$\sum_{k=1}^{\infty} P(X^{k} = i, X^{k-1} \neq i, X^{k-2} \neq i, \dots, X^{2} \neq i, X^{1} \neq i | X^{0} = i) = 1.$$

Let *T_i* be distributed with the above probability distribution;
 T_i is the *first return time* to *i*.

Positive recurrence

• Say the chain starts at $X^0 = i$. Consider

$$P(X^k = i, X^{k-1} \neq i, X^{k-2} \neq i, \dots, X^2 \neq i, X^1 \neq i | X^0 = i).$$

This is the probability that the *first return* to state *i* occurs at time *k*. State *i* is *recurrent* if

$$\sum_{k=1}^{\infty} P(X^{k} = i, X^{k-1} \neq i, X^{k-2} \neq i, \dots, X^{2} \neq i, X^{1} \neq i | X^{0} = i) = 1.$$

- Let *T_i* be distributed with the above probability distribution;
 T_i is the *first return time* to *i*.
- If *E*(*T_i*) < ∞ the state is *positive recurrent*. The *chain* is positive recurrent if all states are positive recurrent.

Positive recurrence

• Say the chain starts at $X^0 = i$. Consider

$$P(X^k = i, X^{k-1} \neq i, X^{k-2} \neq i, \dots, X^2 \neq i, X^1 \neq i | X^0 = i).$$

This is the probability that the *first return* to state *i* occurs at time *k*. State *i* is *recurrent* if

$$\sum_{k=1}^{\infty} P(X^{k} = i, X^{k-1} \neq i, X^{k-2} \neq i, \dots, X^{2} \neq i, X^{1} \neq i | X^{0} = i) = 1.$$

- Let *T_i* be distributed with the above probability distribution;
 T_i is the *first return time* to *i*.
- If *E*(*T_i*) < ∞ the state is *positive recurrent*. The *chain* is positive recurrent if all states are positive recurrent.
- Question: Is an absorbing state recurrent? Positive recurrent? If so, what is *E*(*T_i*)?

Periodicity

 A state *i* is *periodic* if in can be *re*-visited only at regularly spaced times. Formally, define

$$d(i) = g.c.d\{k : (\mathbf{P}^k)_{ii} > 0\}$$

where g.c.d. stands for greatest common divisor. *i* is periodic if d(i) > 1 with period d(i).

Periodicity

 A state *i* is *periodic* if in can be *re*-visited only at regularly spaced times. Formally, define

$$d(i) = g.c.d\{k : (\mathbf{P}^k)_{ii} > 0\}$$

where g.c.d. stands for greatest common divisor. *i* is periodic if d(i) > 1 with period d(i).

 A state is *aperiodic* if d(i) = 1. This of course happens when p_{ij} > 0 for all i and j.

Periodicity

 A state *i* is *periodic* if in can be *re*-visited only at regularly spaced times. Formally, define

$$d(i) = g.c.d\{k : (\mathbf{P}^k)_{ii} > 0\}$$

where g.c.d. stands for greatest common divisor. *i* is periodic if d(i) > 1 with period d(i).

- A state is *aperiodic* if d(i) = 1. This of course happens when p_{ii} > 0 for all i and j.
- A chain is *aperiodic* if all states *i* are aperiodic.

What is the point?

If a Markov chain $\{X^k\}_{k=0}^{\infty}$ is aperiodic, irreducible, and positive recurrent, it is *ergodic*. **Theorem:** Let $\{X^k\}_{k=0}^{\infty}$ be an *ergodic* (discrete time) Markov

chain. Then there exists a stationary distribution \mathbf{p}^{∞} such that $\mathbf{p}_{i}^{\infty} > 0$ for i = 1, ..., m, that satisfies $\mathbf{P}\mathbf{p}^{\infty} = \mathbf{p}^{\infty}$ and $\mathbf{p}^{k} \to \mathbf{p}^{\infty}$.

Can get a draw from p[∞] by running chain out a ways (from any starting value in the state space S!). Then X^k, for k "large enough," is approximately distributed p[∞].

Aperiodicity

• Aperiodicity is important to ensure a limiting distribution. e.g. $\mathbf{P} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ yields an irreducible, positive recurrent chain, but both states have period 2. There is no limiting distribution! For any initial distribution $\mathbf{p}^0 = \begin{bmatrix} P(X^0 = 1) \\ P(X^0 = 2) \end{bmatrix} = \begin{bmatrix} p_1^0 \\ p_2^0 \end{bmatrix}$, \mathbf{p}^k alternates between $\begin{bmatrix} p_1^0 \\ p_2^0 \end{bmatrix}$ and $\begin{bmatrix} p_2^0 \\ p_1^0 \end{bmatrix}$.

Positive recurrence and irreducibility

Positive recurrence roughly ensures that {X^k}_{k=0}[∞] will visit each state *i* enough times (infinitely often) to reach the stationary distribution. A state is recurrent if it can keep happening.

Positive recurrence and irreducibility

- Positive recurrence roughly ensures that {X^k}_{k=0}[∞] will visit each state *i* enough times (infinitely often) to reach the stationary distribution. A state is recurrent if it can keep happening.
- Irreducibility disallows the chain getting "stuck" in certain subsets of *S* and not being able to get out. Reducibility would imply that the full state space *S* could not be explored. Actually, if **P**p[∞] = p[∞] and the chain is irreducible, then the chain is positive recurrent.

Positive recurrence and irreducibility

- Positive recurrence roughly ensures that {X^k}_{k=0}[∞] will visit each state *i* enough times (infinitely often) to reach the stationary distribution. A state is recurrent if it can keep happening.
- Irreducibility disallows the chain getting "stuck" in certain subsets of *S* and not being able to get out. Reducibility would imply that the full state space *S* could not be explored. Actually, if **P**p[∞] = p[∞] and the chain is irreducible, then the chain is positive recurrent.
- Note that everything is satisfied when p_{ij} > 0 for all i and j!!

Illustration

A reducible chain can still converge to its stationary distribution! Let $\mathbf{P} = \begin{bmatrix} 1 & 0.5 \\ 0 & 0.5 \end{bmatrix}$. For any starting value, $\mathbf{p}^{\infty} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Here, \mathbf{p}^k does converge to stationary distribution, we just don't have $p_i^{\infty} > 0$ for i = 1, 2.

Markov chain Monte Carlo

MCMC algorithms are cleverly constructed so that the posterior distribution $p(\theta|\mathbf{y})$ is the *stationary distribution* of the Markov chain!

Since θ typically lives in R^d, there is a continuum of states.
 So the Markov chain is said to have a continuous state space.

Markov chain Monte Carlo

MCMC algorithms are cleverly constructed so that the posterior distribution $p(\theta|\mathbf{y})$ is the *stationary distribution* of the Markov chain!

- Since θ typically lives in R^d, there is a continuum of states.
 So the Markov chain is said to have a continuous state space.
- The transition matrix is replaced with a *transition kernel*: $P(\theta^k \in A | \theta^{k-1} = \mathbf{x}) = \int_A k(\mathbf{s} | \mathbf{x}) d\mathbf{s}.$

Continuous state spaces...

 Notions such as aperiodicity, positive recurrence, and irreducibility are generalized for continuous state spaces (see Tierney, 1994). Same with ergodicity.

Continuous state spaces...

- Notions such as aperiodicity, positive recurrence, and irreducibility are generalized for continuous state spaces (see Tierney, 1994). Same with ergodicity.
- Stationary distribution now satisfies

$$P^{\infty}(A) = \int_{A} p^{\infty}(\mathbf{s}) d\mathbf{s}$$

= $\int_{\mathbf{x} \in \mathbb{R}^{d}} \left[\int_{A} k(\mathbf{s}|\mathbf{x}) d\mathbf{s} \right] p^{\infty}(\mathbf{x}) d\mathbf{x}$
= $\int_{\mathbf{x} \in \mathbb{R}^{d}} P(\theta^{k} \in A | \theta^{k-1} = \mathbf{x}) p^{\infty}(\mathbf{x}) d\mathbf{x}$

Continuous state spaces...

- Notions such as aperiodicity, positive recurrence, and irreducibility are generalized for continuous state spaces (see Tierney, 1994). Same with ergodicity.
- Stationary distribution now satisfies

$$P^{\infty}(A) = \int_{A} p^{\infty}(\mathbf{s}) d\mathbf{s}$$

= $\int_{\mathbf{x} \in \mathbb{R}^{d}} \left[\int_{A} k(\mathbf{s}|\mathbf{x}) d\mathbf{s} \right] p^{\infty}(\mathbf{x}) d\mathbf{x}$
= $\int_{\mathbf{x} \in \mathbb{R}^{d}} P(\theta^{k} \in A | \theta^{k-1} = \mathbf{x}) p^{\infty}(\mathbf{x}) d\mathbf{x}$

• Continuous time analogue to $\mathbf{p}^{\infty} = \mathbf{P}\mathbf{p}^{\infty}$.

・ロッ ・回 ・ ・ ヨッ ・ ヨッ

MCMC

Again, MCMC algorithms cleverly construct $k(\theta|\theta^{k-1})$ so that $p^{\infty}(\theta) = p(\theta|\mathbf{y})!$

Run chain out long enough and θ^k approximately distributed as p[∞](θ) = p(θ|y).

MCMC

Again, MCMC algorithms cleverly construct $k(\theta|\theta^{k-1})$ so that $p^{\infty}(\theta) = p(\theta|\mathbf{y})!$

- Run chain out long enough and θ^k approximately distributed as $p^{\infty}(\theta) = p(\theta|\mathbf{y})$.
- Whole idea is that kernel k(θ|θ^{k-1}) is easy to sample from but p(θ|y) is difficult to sample from.

MCMC

Again, MCMC algorithms cleverly construct $k(\theta|\theta^{k-1})$ so that $p^{\infty}(\theta) = p(\theta|\mathbf{y})!$

- Run chain out long enough and θ^k approximately distributed as $p^{\infty}(\theta) = p(\theta|\mathbf{y})$.
- Whole idea is that kernel k(θ|θ^{k-1}) is easy to sample from but p(θ|y) is difficult to sample from.
- Different kernels: Gibbs, Metropolis-Hastings, Metropolis-within-Gibbs, etc.

MCMC

Again, MCMC algorithms cleverly construct $k(\theta|\theta^{k-1})$ so that $p^{\infty}(\theta) = p(\theta|\mathbf{y})!$

- Run chain out long enough and θ^k approximately distributed as $p^{\infty}(\theta) = p(\theta|\mathbf{y})$.
- Whole idea is that kernel k(θ|θ^{k-1}) is easy to sample from but p(θ|y) is difficult to sample from.
- Different kernels: Gibbs, Metropolis-Hastings, Metropolis-within-Gibbs, etc.
- We will mainly consider variants of Gibbs sampling in R and DPpackage. WinBUGS can automate the process for some problems; most of the compiled functions in DPpackage use *Gibbs sampling* with some *Metropolis-Hastings* updates. Will discuss these next...

Simple example, finished...

Example: Back to simple finite, discrete state space example with m = 3.

Run out chain X⁰, X¹, X³, ..., X¹⁰⁰⁰⁰. Initial value X⁰ doesn't matter.

Simple example, finished...

Example: Back to simple finite, discrete state space example with m = 3.

Run out chain X⁰, X¹, X³,..., X¹⁰⁰⁰⁰. Initial value X⁰ doesn't matter.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

26/26

• Can estimate
$$\mathbf{p}^{\infty}$$
 by
 $\hat{\mathbf{p}}^{\infty} = \begin{bmatrix} \frac{1}{10000} \sum_{k=1}^{10000} I_{\{1\}}(X^k) \\ \frac{1}{10000} \sum_{k=1}^{10000} I_{\{2\}}(X^k) \\ \frac{1}{10000} \sum_{k=1}^{10000} I_{\{3\}}(X^k) \end{bmatrix} = \begin{bmatrix} 0.26 \\ 0.22 \\ 0.52 \end{bmatrix}$

Simple example, finished...

Example: Back to simple finite, discrete state space example with m = 3.

- Run out chain X⁰, X¹, X³,..., X¹⁰⁰⁰⁰. Initial value X⁰ doesn't matter.
- Can estimate \mathbf{p}^{∞} by $\hat{\mathbf{p}}^{\infty} = \begin{bmatrix} \frac{1}{10000} \sum_{k=1}^{10000} I_{\{1\}}(X^k) \\ \frac{1}{10000} \sum_{k=1}^{10000} I_{\{2\}}(X^k) \\ \frac{1}{10000} \sum_{k=1}^{10000} I_{\{3\}}(X^k) \end{bmatrix} = \begin{bmatrix} 0.26 \\ 0.22 \\ 0.52 \end{bmatrix}.$
- This is *one* approximation from running chain out *once*. Will have (slightly) different answers each time.

Simple example, finished...

Example: Back to simple finite, discrete state space example with m = 3.

- Run out chain X⁰, X¹, X³,..., X¹⁰⁰⁰⁰. Initial value X⁰ doesn't matter.
- Can estimate \mathbf{p}^{∞} by $\hat{\mathbf{p}}^{\infty} = \begin{bmatrix} \frac{1}{10000} \sum_{k=1}^{10000} I_{\{1\}}(X^k) \\ \frac{1}{10000} \sum_{k=1}^{10000} I_{\{2\}}(X^k) \\ \frac{1}{10000} \sum_{k=1}^{10000} I_{\{3\}}(X^k) \end{bmatrix} = \begin{bmatrix} 0.26 \\ 0.22 \\ 0.52 \end{bmatrix}.$
- This is *one* approximation from running chain out *once*. Will have (slightly) different answers each time.
- LLN for ergodic chains guarantees this approximation will get better the longer the chain is taken out.