
Markov Chain Monte Carlo

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 740: Statistical Computing

1 / 30

R packages

There are many R packages to fit Bayesian models using
MCMC with “built in” algorithms! Check to see if the model
you want to fit is in a package. e.g. DPpackage,
spBayesSurv, ICBayes, MCMCglmm, etc.

https://cran.r-project.org/web/views/Bayesian.html

2 / 30

Independence sampling

It’s hard to find good independence M-H proposals.

Lots of recent research on building independence proposals,
e.g. PTsampler in DPpackage.

For simple models we can use
θ∗ ∼ Nk(θ̂, c[−∇2 log π(θ̂|x)]−1) (c ≥ 1) as an independence
proposal; accept with probability

1 ∧ π(θ∗|x)φk(θt |θ̂, [−∇2 log π(θ̂|x)]−1)

π(θt |x)φk(θ∗|θ̂, [−∇2 log π(θ̂|x)]−1)
,

where a ∧ b is the smaller of a and b.

Why c ≥ 1?

The “acceptance rate” is the proportion of accepted proposals.

For independence proposals we want an acceptance rate as
close to 1 as possible.

Example: Logistic regression on Challenger data.
3 / 30

Random-walk sampling

Similarly, for random walk M-H we can use
θ∗ ∼ Nk(θt , c[−∇2 log π(θ̂|x)]−1) for some c and try to get
an acceptance rate between 20% and 50%. Accept with
probability

1 ∧ π(θ∗|x)

π(θt |x)
,

Choosing c smaller leads to larger acceptance rates, c bigger
gives smaller acceptance rates. Need to “tune” proposal to
get good acceptance rate & make algorithm efficient.

Acceptance rate too high ⇒ taking “small steps” in a local
area of the posterior. Acceptance rate too low ⇒ taking
“giant leaps” away from area of high posterior mass into the
tails each time.

Adaptive random-walk M-H very useful; no need to “manually
tune” proposal variance to get desired acceptance rate (later).

Example: Logistic regression on Challenger data.
4 / 30

General comments on MCMC

For most models with many parameters, we write out the full
joint distribution, simply “pull out” the pieces that involve
each parameter to obtain that parameter’s unnormalized full
conditional pdf/pmf, and perform componentwise updating.

If all full conditionals are closed-form we have Gibbs sampling,
otherwise it’s a hybrid sampler.

JAGS, OpenBUGS are component-at-time samplers. Often
use slice sampling, random-walk M-H with “pilot adaption,”
and conditional conjugacy (when present).

MfUSampler is an R package that does a component-at-a-time
via ARMS, slice sampling and M-H w/ Gaussian proposal.

Two examples where conditional conjugacy happens are the
one-sample normal model and a finite mixture of normals.

5 / 30

Pros and cons of component-at-a-time

Pros:

Often easy to program; “recognizable” full conditional
distributions easy to sample.

Automated in JAGS, OpenBUGS, etc.

Always “works” but may be prohibitively slow.

Cons:

Introduces potentially a lot of autocorrelation in the iterates
(e.g. on board). A well thought-out M-H correlated proposal
distribution can dramatically outperform component-at-a-time
updates.

6 / 30

Normal data

Model: x1, . . . , xn|µ, τ
iid∼ N(µ, τ−1),

Prior: µ ∼ N(m, p−1) ind. τ ∼ Γ(a, b).

L(µ, τ |x) ∝
n∏

i=1

τ1/2 exp{− τ
2 (xi−µ)2} = τn/2 exp

{
−τ

2

n∑
i=1

(xi − µ)2

}
.

Thus the posterior density is proportional to

π(µ, τ |x) ∝ τn/2 exp

{
−τ

2

n∑
i=1

(xi − µ)2

}
exp{− p

2 (µ−m)2}τ a−1 exp{−bτ}.

Recall:

φd(x|µ1,Σ1)φd(x|µ2,Σ2) ∝ φd(x|V[Σ−1
1 µ1 + Σ−1

2 µ2],V),

where V = [Σ−1
1 + Σ−1

2]−1.

7 / 30

Normal data

Let s2 = 1
n

∑n
i=1(xi − x̄)2 be the MLE for σ2 = τ−1. Note that

n∑
i=1

(xi − µ)2 =
n∑

i=1

(xi − x̄)2 + n(µ− x̄)2 = n[s2 + (µ− x̄)2].

Thus
π(µ|τ, x) ∝ φ(µ|x̄ , [nτ]−1)φ(µ|m, p−1),

π(τ |µ, x) ∝ τn/2+a−1 exp{−n
2 [s2 + (µ− x̄)2]τ − bτ}.

Leading to

µ|τ, x ∼ N

(
nτ x̄ + pm

nτ + p
,

1

nτ + p

)
,

τ |µ, x ∼ Γ(a + n
2 , b + n

2 [s2 + (µ− x̄)2]).

We are in good shape for Gibbs sampling!

Example: normal data hand-coded Gibbs sampler.

8 / 30

OpenBUGS & JAGS

R2OpenBUGS and BRugs interface R to OpenBUGS. R2jags
interfaces R to JAGS. The syntax for OpenBUGS and JAGS are
very similar, but but not exactly the same. BUGS is “Baysian
inference Using Gibbs Sampling and JAGS is Just Another Gibbs
Sampler.

Download JAGS from
https://sourceforge.net/projects/mcmc-jags/files/latest/download

and install it. Then start R and install the R package R2jags.

JAGS mainly uses slice sampling and the inverse cdf method for
updating individual parameters.

Example: normal data via JAGS.

9 / 30

Finite mixture models: unsupervised learning

Recall model-based clustering:

X1, . . . ,Xn|θ
iid∼ f (x) =

J∑
j=1

πjφ(x |µj , σ2
j).

Parameters are
θ = (π1, . . . , πJ−1, µ1, . . . , µJ , σ

2
1, . . . , σ

2
J)′ ∈ R3J−1. Direct

maximization of

L(θ|x) =
n∏

j=1

J∑
j=1

πjφ(xi |µj , σ2
j)

is very challenging.

E-M offered a solution. How about Bayes?

10 / 30

Component membership

Recall method of composition Xi |θ, zi ∼ N(µzi , σ
2
zi

) conditionally,
and p(j |θ) = P(zi = j |θ) = πj marginally, gives same distribution
f (x) on previous slide. Add “missing” z = (z1, . . . , zn)′ to the
model to get

L(θ|x, z) = f (x, z|θ) = f (x|z,θ)f (z|θ)

=

[
n∏

i=1

φ(xi |µzi , σ
2
zi

)

][
n∏

i=1

p(zi |θ)

]

=
n∏

i=1

φ(xi |µzi , σ
2
zi

)πzi

Bayesian analysis requires prior distributions, perhaps

(π1, . . . , πJ)′ ∼ Dirichlet(w , . . . ,w),

µ1, . . . , µJ
iid∼ N(m, p−1),

τ1, . . . , τJ
iid∼ Γ(a, b).

11 / 30

Dirichlet distribution & posterior

Prior on π such that π1 + · · ·+πJ = 1. Generalizes the beta. Using
π for two different things, the density is π(π) = Γ(Jw)

Γ(w)J

∏J
j=1 π

w−1
j .

π(µ, τ ,π, z|x) = π(µ,τ ,π,z|x)
f (x)

∝ f (x|z,µ, τ ,π)p(z|µ, τ ,π)π(µ, τ ,π)

= L(µ, τ ,π|x, z)p(z|π)π(µ)π(τ)π(π)

=
n∏

i=1

φ(xi |µzi , τ
−1
zi

)
n∏

i=1

πzi

×
J∏

j=1

φ(µj |m, p−1)
J∏

j=1

ba

Γ(a)
τ a−1
j e−bτj

×Γ(Jw)
Γ(w)J

J∏
j=1

πw−1
j .

12 / 30

Full conditional distributions

Just pick out parts of π(µ, τ ,w, z|x) on previous slide that involve
the parameter of interest!

π(µj |else) ∝ φ(µj |m, p−1)
∏
i :zi=j

φ(xi |µj , τ−1
j),

π(τ |else) ∝ τ a−1
j e−bτj

∏
i :zi=j

φ(xi |µj , τ−1
j),

π(π|else) ∝
J∏

j=1

π
∑n

i=1 I{zi=j}
j

J∏
j=1

πw−1
j .

P(zi = j |else) ∝ φ(xi |µj , τ−1
j)πj ,

13 / 30

All distributions have closed-form!

Let nj =
∑n

i=1 I{zi = j} and x̄j = 1
nj

∑
i :zi=j xi .

µj |else ∼ N(
njτ x̄j+pm
njτ+p , 1

njτ+p),

τj |else ∼ Γ

a +
nj
2 , b + 1

2

∑
i :zi=j

(xi − µj)2

 ,

π|else ∼ Dirichlet(w + n1, . . . ,w + nJ).

P(zi = j |else) =
φ(xi |µj ,τ−1

j)πj∑J
k=1 φ(xi |µk ,τ−1

k)πk
,

Gibbs sampler straightforward to set up!

Example: Galaxy data hand-coded and in JAGS. Note: BayesMix

automates this!

14 / 30

Tricking JAGS to fit general models

Say we have a model with independent likelihood contributions

Li = f (yi |θ),

where θ are model parameters that can include random effects.

Define “data” zi = 0 for i = 1, . . . , n. Then

zi ∼ Pois{− log(Li)},

gives the correct likelihood! Simply have to define − log(Li) for
each datum; JAGS will (attempt) to do the rest.

15 / 30

What if we didn’t augment likelihood w/ z?

π(θ|x) ∝

 n∏
j=1

J∑
j=1

πjφ(xi |µj , σ2
j)

π(µ, τ ,π)

does not simplify! Can attempt a general M-H scheme (will utterly
fail unless J is 2 or 3). JAGS performs componentwise updating
via the “Poisson zeros trick.”

Example: galaxy data using the zeros trick in JAGS.

16 / 30

Posterior inference for finite mixture

Inference centers on {(µm, τm,πm)}Mm=1, we throw away the
sampled zm if we fit the model using latent data. We are using the
method of composition to make updating easier!

An estimate of f (x) is the posterior mean of the density f (x |θ)

f (x |x) =

∫
θ∈Θ

f (x |θ) π(θ|x)︸ ︷︷ ︸
MCMC

dθ.

Using method of composition,

f (x |x) ≈ 1
M

M∑
m=1

J∑
j=1

πmj φ(x |µm
j , τ

−1m
j)︸ ︷︷ ︸

f (x |θm)

.

17 / 30

Ache hunting

Recall

yi |β, ui
ind .∼ Pois{ti exp(β0 +β1ai +ui)}, u1, . . . , u47|τ

iid∼ N(0, τ−1).

Assume β0, β1
iid∼ N(0, 104) indep. of τ ∼ Γ(10−4, 10−4). These

priors are proper but vague. Let θ = (β0, β1, τ)′. The augmented
likelihood is

L(θ|y,u) ∝
n∏

i=1

exp{−tieβ0+β1ai+ui}e(β0+β1ai+ui)yi .

The augmented posterior is

π(θ,u|y) ∝ L(θ|y,u)

[
n∏

i=1

τ1/2e−
τ
2 u2

i

]
π(β)π(τ).

18 / 30

MCMC component-at-a-time

The MCMC algorithm will cycle through sampling the full
conditional distributions of β0, β1, τ, u1, . . . , u47 giving a final
MCMC sample {(βm0 , βm1 , τm, um1 , . . . , um47)Mm=1 from the posterior
distribution [β0, β1, τ, u1, . . . , u47|y].

If we don’t care about u1, . . . , u47 we throw them away (method of
composition) and are simply left with [β0, β1, τ |y]! Introducing
u1, . . . , u47 into the MCMC scheme simply makes it easier to
update; no numerical integration required as when we used
maximum likelihood.

Example: Ache hunting data.

19 / 30

Prediction

Prediction is ridiculously easy using MCMC. Say we want to
predict how many kills y a new hunter aged a years will make on a
t-day trek. This is given by

p(y |y) =

∫
R

∫
Θ
p(y |u,θ, y)π(u,θ|y)dudθ

=

∫
R

∫
Θ
p(y |u,θ)p(u|θ)π(θ|y)dudθ

=

∫
R

∫
Θ

Pois(y |teβ0+β1a+u)φ(u|0, τ−1) π(θ|y)︸ ︷︷ ︸
MCMC

dudθ

We can use the method of composition (again)!

um ∼ N(0, τ−1m), ym ∼ Pois(teβ
m
0 +βm

1 a+um), m = 1, . . . ,M.

Then y1, . . . , yM are a sample from the predictive number of kills
over t days for a new age a hunter from the population age a years.

20 / 30

PROC MCMC and PROC NLMIXED in SAS

PROC NLMIXED fits very general models; like JAGS you can build
a likelihood from “component parts” and fit general hierarchical
nonlinear mixed effects models. PROC NLMIXED uses adaptive
quadrature to compute the likelihood for models with random
effects.

PROC MCMC works much like PROC NLMIXED but uses MCMC
to fit the models instead. Can have much higher dimension for
random effects vectors and fit more general models. Uses block
update random-walk M-H. Like JAGS, adaption occurs during
burn-in. However, the user gets to determine which “blocks” of
parameters are updated together via random walk M-H.

21 / 30

PROC MCMC and PROC NLMIXED in SAS

Let’s look at the Ache capuchin monkey hunting data again:

yi ∼ Pois{ti exp(β0 + β1ai + β2a
2
i + ui)}

where yi is the number of monkeys killed on a trek that lasted ti
days for the ith hunter aged ai years.

u1, . . . , u47
iid∼ N(0, σ2).

We will fit Bayesian and frequentist versions of this mixed model.

PROC NLMIXED computes the likelihood by integrating out the
random effects u1, . . . , u47 via adaptive Gaussian quadrature.
Inference is based on the large sample normal approximation
θ̂ ∼ N4(θ, [−∇2 log L(θ|y)]−1).

PROC MCMC fits the model including sampling u1, . . . , u47.

22 / 30

Adaptive M-H

Haario, Saksman, and Tamminen (2001) propose an ingenious
solution to the random walk M-H “tuning dilemma.”

They suggest using previous MCMC iterates to adjust a
random-walk M-H proposal “on the fly” as the algorithm
progresses. This works because the covariance matrix converges
almost surely to the posterior covariance matrix for π(θ|x).

That is, the chain “converges” to a random walk M-H scheme with
a multiple of cov(θ|x) as the proposal.

adaptMCMC performs adaptive M-H for arbitrary log π(θ|x). Need
to supply an approximate starting covariance matrix for θ|x, which
can just be diagonal with estimated variances.

23 / 30

Adaptive M-H

The algorithm samples θ∗ ∼ Nk(θj , cVj) and accepts θj+1 = θ∗

with the usual probability

1 ∧ π(θ∗|x)

π(θj |x)
,

otherwise θj+1 = θj . Haario et al. suggest k = 2.4/k . Here,

Vj =

{
V0 j ≤ B

1
j

∑j
k=1(θj − θ̄j)(θj − θ̄j)

′ j > B

}
.

For a sequence θ1,θ2,θ3, . . . a recursive formula for the mean is

θ̄j = 1
j ((j − 1)θ̄j−1 + θj).

A recursive formula for the variance is

Vj = 1
j [(j − 1)(Vj−1 + θ̄j−1θ̄

′
j−1) + θjθ

′
j]− θ̄j θ̄

′
j .

Example: Challenger data via adaptive M-H.
24 / 30

Componentwise adaption

Its is often better in terms of mixing to break up θ into pieces; e.g.
sometimes the full conditional of one (or more) piece is closed-form
or a piece has elements that are related in some way (like
regression coefficients).

One can do adaptive M-H on each piece separately. For example,
say θ = (θ1,θ2,θ3) where θj ∈ Rkj with k1 + k2 + k3 = k . One
can then sample

θ∗1 ∼ Nk1(θt
1, c1V1t) and accept w/ probability ρ1t ,

θ∗2 ∼ Nk2(θt
2, c1V2t) and accept w/ probability ρ2t ,

θ∗3 ∼ Nk3(θt
3, c3V3t) and accept w/ probability ρ3t ,

where the ρtj and Vjt are on the previous slide and cj = 2.4/kj .

See Haario, Saksman, and Tamminen (2005).

25 / 30

Adapting both c and V

It is also possible to adapt the c parameter to achieve a desired
acceptance rate, e.g. c → ct .

We will not delve into this further, but the adaptMCMC R package
automates this for single block updates (all at once).

Example: Challenger data via adaptMCMC

26 / 30

Censored data

Censored data follow

t1, . . . , tn
iid∼ fθ(·) indep. c1, . . . , cn

iid∼ h(·).

We see yi = min{ti , ci} and δi = I{ti < ci}. The observed data is
x = {(yi , δi)}ni=1. Missing data are z = {ti : δi = 0}.

One can try and sample the observed data posterior directly

π(θ|x) ∝ π(θ)
n∏

i=1

fθ(yi)
δi [1− Fθ(yi)]1−δi ,

e.g. via M-H, adaptive M-H, or the zeros trick in JAGS.

Alternatively, as in E-M, one can introduce latent “missing data”
to make updating simpler.

27 / 30

Censored data

Missing data are the true survival times ti for δi = 0. When δi = 0
all we know is that ti ∼ fθ(·) and xi > yi . For those i s.t. δi = 0,

ti |ti > yi ,θ, x ∼ fθ(·)I{ti > yi}.

Simply sample ti from fθ(·) truncated to (yi ,∞).

π(θ|x, z) ∝ π(θ)
n∏

i=1

fθ(ti).

Simply alternate updating the censored ti , then updating θ! Much,
much easier than E-M!

JAGS can automate this, but it’s a bit clumsy.

28 / 30

Right-censored normal data

Model: t1, . . . , tn|µ, τ
iid∼ N(µ, τ−1),

Prior: µ ∼ N(m, p−1) ind. τ ∼ Γ(a, b).

For all i s.t. δi = 0,

ti |ti > yi ,θ, x ∼ N(µ, τ−1)I{ti > yi},

is updated by taking ui ∼ U{Φ(yi |µ, τ−1), 1} and then
ti = µ+ τ−1/2Φ−1(ui). Then θ = (µ, τ) is updated

µ|τ, t ∼ N

(
nτ t̄ + pm

nτ + p
,

1

nτ + p

)
,

τ |µ, t ∼ Γ(a + n
2 , b + n

2 [s2 + (µ− t̄)2]).

where s2 = 1
n

∑n
i=1(ti − t̄)2. Note that s2 and t̄ change every

MCMC iteration along with the sampled {ti : δi = 0}.
Example: V.A. data by hand & JAGS.

29 / 30

Comments

The slower the ACF dies down to zero, the more iterates you
need!

The effective sample size (ESS) is an estimate of how many
iid samples you really have.

Burn-in should range from 1000 to 10,000. However, if you
know you are starting in a “reasonable” area (e.g. using the
MLE) no burn-in is needed.

I always take a mininum of 5,000 iterates after burnin, but
much larger numbers cannot hurt, e.g. 10,000 or 50,000 or
100,000 or a million...

I typically run one long chain and look at history (or trace)
plots, cumulative percentiles, density estimates, and ACF
plots.

30 / 30

