STAT 730: Homework 3

1. An important application of two theorems from Chapter 3 to univariate regression. Consider the usual regression model from STAT 704: $\mathbf{y} \sim N_{n}\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathcal{I}_{n}\right)$ where $\mathbf{X}(n \times p)$ is full rank, $n>p$, and $\boldsymbol{\beta}(p \times 1)$ are regression effects. The first column in \mathbf{X} is $\mathbf{x}_{(1)}=\mathbf{1}_{n}$. Let $\mathbf{X}=\left[\mathbf{X}_{1}(n \times(p-k)) \mathbf{X}_{2}(n \times k)\right]$ and $\boldsymbol{\beta}^{\prime}=\left(\boldsymbol{\beta}_{1}((p-k) \times 1)^{\prime}, \boldsymbol{\beta}_{2}(k \times 1)^{\prime}\right)$. We have two models, reduced (R) and full (F):

$$
R: \mathbf{y} \sim N_{n}\left(\mathbf{X}_{1} \boldsymbol{\beta}_{1}, \sigma^{2} \mathcal{I}_{n}\right), \quad F: \mathbf{y} \sim N_{n}\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathcal{I}_{n}\right) .
$$

Finally let $\mathbf{P}_{\mathbf{X}}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}, \mathbf{P}_{\mathbf{X}_{1}}=\mathbf{X}_{1}\left(\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{1}^{\prime}$, and $\mathbf{P}_{\mathbf{1}_{n}}=\frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{\prime}$ We will construct the F-statistic for testing $H_{0}: \boldsymbol{\beta}_{2}=\mathbf{0}$ in the full model.
(a) Show $S S R_{d}=\mathbf{y}^{\prime}\left[\mathbf{P}_{\mathbf{x}}-\mathbf{P}_{\mathbf{X}_{1}}\right] \mathbf{y}$ has a scaled χ^{2} distribution under H_{0} using Cochran's theorem. Hint: first show $S S R_{d}=\left(\mathbf{y}-\mathbf{X}_{1} \boldsymbol{\beta}_{1}\right)^{\prime}\left[\mathbf{P}_{\mathbf{X}}-\mathbf{P}_{\mathbf{X}_{1}}\right]\left(\mathbf{y}-\mathbf{X}_{1} \boldsymbol{\beta}_{1}\right)$ and argue that $\left(\mathbf{y}-\mathbf{X}_{1} \boldsymbol{\beta}_{1}\right)$ is a d.m. under H_{0}.
(b) Show $S S R_{d}=S S R_{f}-S S R_{r}$ where $S S R_{r}=\mathbf{y}^{\prime}\left[\mathbf{P}_{\mathbf{x}_{1}}-\mathbf{P}_{\mathbf{1}_{n}}\right] \mathbf{y}$ and $S S R_{f}=$ $\mathbf{y}^{\prime}\left[\mathbf{P}_{\mathbf{X}}-\mathbf{P}_{\mathbf{1}_{n}}\right] \mathbf{y}$. This is the difference in SSR from the full and reduced models (it is also the difference in the SSE). To see this, e.g., $S S R_{f}=\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}=$ $\left\|\hat{\mathbf{y}}-\mathbf{1}_{n} \bar{y}\right\|^{2}=\left\|\mathbf{X} \hat{\boldsymbol{\beta}}-\mathbf{1}_{n} \bar{y}\right\|^{2}=\left\|\left(\mathbf{P}_{\mathbf{X}}-\mathbf{P}_{\mathbf{1}_{n}}\right) \mathbf{y}\right\|^{2}=\mathbf{y}^{\prime}\left[\mathbf{P}_{\mathbf{X}}-\mathbf{P}_{\mathbf{1}_{n}}\right] \mathbf{y}$, using $\mathbf{P}_{\mathbf{X}}-\mathbf{P}_{\mathbf{1}_{n}}$ idempotent \& symmetric.
(c) Similarly, show $S S E_{f}=\mathbf{y}^{\prime}\left[\mathcal{I}_{n}-\mathbf{P}_{\mathbf{x}}\right] \mathbf{y}$ has a scaled χ^{2} distribution under H_{0} using Cochran's theorem.
(d) Show $S S R_{d}$ indep. of $S S E_{f}$ using the "partitioning sums of squares", i.e. Craig's theorem.
(e) Finally, show $F^{*}=\frac{S S R_{d} / k}{S S E_{f} /(n-p)} \sim F_{k, n-p}$ under H_{0}.
2. Using the previous "big model / little model" result, show that the F-test in the usual ANOVA table for univariate multiple regression has a $F_{p-1, n-p}$ distribution.
3. Show $E\left(\mathbf{x}^{\prime} \mathbf{A x}\right)=\operatorname{tr} \mathbf{A} \boldsymbol{\Sigma}+\boldsymbol{\mu}^{\prime} \mathbf{A} \boldsymbol{\mu}$ where $\mathbf{x} \sim(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is random and \mathbf{A} is conformable. Hint: $E\{\operatorname{tr}(\cdot)\}=\operatorname{tr}\{E(\cdot)\}$ and $\operatorname{tr} \mathbf{A B}=\operatorname{tr} \mathbf{B} \mathbf{A}$. Now find $E\left(S S R_{f}\right)$ when the full model holds; under H_{a} in the previous problem.
4. Show $\frac{\partial \mathbf{a}^{\prime} \mathbf{x}}{\partial \mathbf{x}}=\mathbf{a}$ and $\frac{\partial \mathbf{x}^{\prime} \mathbf{A x}}{\partial \mathbf{x}}=\left(\mathbf{A}+\mathbf{A}^{\prime}\right) \mathbf{x}$.
5. Let $\mathbf{A}=\left[a_{i j}\right]$, all elements distinct. Show $\frac{\partial|\mathbf{A}|}{\partial a_{i j}}=A_{i j}$ where $A_{i j}$ is the $i j$ th cofactor of A. Hint: use (I) on p. 457 plus a careful argument. Note: the result for symmetric A is considerably more difficult.
6. Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \stackrel{i i d}{\sim} N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ under the priors $\boldsymbol{\mu} \sim N_{p}(\mathbf{m}, \mathbf{V})$ indep. $\boldsymbol{\Sigma}^{-1} \sim W_{p}(\mathbf{A}, a)$. Show

$$
\boldsymbol{\mu} \mid \boldsymbol{\Sigma}, \mathbf{X} \sim N_{p}\left(\left[n \boldsymbol{\Sigma}^{-1}+\mathbf{V}^{-1}\right]^{-1}\left[n \boldsymbol{\Sigma}^{-1} \overline{\mathbf{x}}+\mathbf{V}^{-1} \mathbf{m}\right],\left[n \boldsymbol{\Sigma}^{-1}+\mathbf{V}^{-1}\right]^{-1}\right)
$$

and

$$
\boldsymbol{\Sigma}^{-1} \mid \boldsymbol{\mu}, \mathbf{X} \sim W_{p}\left(\left[\mathbf{A}^{-1}+\sum_{i=1}^{n}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)^{\prime}\right]^{-1}, a+n\right)
$$

7. MKB 4.2.5.
8. MKB 4.2.12.
