STAT 730: Homework 2

- 1. MLE of multivariate normal. We will fill in details of a maximization theorem for Σ in Chapter 4 (p. 105). Let $\mathbf{A} > 0$ and $\mathbf{B} > 0$ be symmetric in all that follows.
 - (a) Show $\mathbf{A} > 0 \Leftrightarrow$ all e-values of \mathbf{A} are positive.
 - (b) Show $A^{-1} > 0$.
 - (c) Show $\mathbf{A}^{-1/2}\mathbf{B}\mathbf{A}^{-1/2}$ has the same e-values as $\mathbf{A}^{-1}\mathbf{B}$. Hint: let \mathbf{v} be an e-vector of $\mathbf{A}^{-1}\mathbf{B}$ and show $\mathbf{A}^{-1/2}\mathbf{B}\mathbf{v}$ is an e-vector of $\mathbf{A}^{-1/2}\mathbf{B}\mathbf{A}^{-1/2}$.
 - (d) Show the e-values of $\mathbf{A}^{-1/2}\mathbf{B}\mathbf{A}^{-1/2}$ are all positive. Hint: $\mathbf{B} > 0$.

Thus the e-values of $\mathbf{A}^{-1}\mathbf{B}$ are all positive by (c) and (d); (a) and (b) are just for fun.

- 2. Characeristic function of normal: Let $x \sim N(0, 1)$.
 - (a) Show $E(x^p) = 0$ if p odd and $E(x^p) = (p-1)(p-3)(p-5)\cdots 1$ if p is even. Hint: look at $\frac{1}{2}E(x^p) = I = \int_0^\infty x^p \frac{1}{\sqrt{2\pi}} \exp\{-\frac{1}{2}x^2\} dx$ and make the change of variables $y = x^2$. Then use properties of $\Gamma(\cdot)$.
 - (b) Now use the Taylor's expansion $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ in $E\{e^{itx}\}$, take expectation of each term, and simplify. This works because $\int_a^b ix^p f(x)dx = i \int_a^b x^p f(x)dx$ by definition and the Taylor's expansion holds for complex arguments. You should have $\phi_x(t) = e^{-t^2/2}$.
 - (c) Let $y \sim N(\mu, \sigma^2)$. Show $\phi_y(t) = e^{it\mu \sigma^2 t^2/2}$. Hint: write $y = \sigma x + \mu$.
- 3. Details of delta method proof. Consider $\mathbf{f} : \mathbb{R}^p \to \mathbb{R}^q$ where

$$\mathbf{f}(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) \\ \vdots \\ f_q(\mathbf{x}) \end{bmatrix}.$$

For the *i*th component of \mathbf{f} , the multivariate Taylor's theorem gives us

$$f_i(\mathbf{x}) = f_i(\mathbf{x}_0) + [Df_i(\mathbf{x})|_{\mathbf{x}=\mathbf{x}_0}](\mathbf{x}-\mathbf{x}_0) + (\mathbf{x}-\mathbf{x}_0)'\mathbf{H}_i(\mathbf{x})(\mathbf{x}-\mathbf{x}_0),$$

where $\lim_{\mathbf{x}\to\mathbf{x}_0}\mathbf{H}_i(\mathbf{x}) = \mathbf{0}$. Here, $Df_i(\mathbf{x})$ is the row-vector of first-partials $\left[\frac{\partial f_i}{\partial x_1}\cdots \frac{\partial f_i}{\partial x_p}\right]$.

- (a) Use Cauchy-Schwartz to show the absolute value of last term in the expansion is bounded by $||\mathbf{x} \mathbf{x}_0||\delta_i(\mathbf{x} \mathbf{x}_0)$ where $\lim_{\mathbf{x}\to\mathbf{x}_0} \delta_i(\mathbf{x} \mathbf{x}_0) = 0$.
- (b) In the proof of the Delta method, further argue that $\sqrt{n}||\mathbf{t} \boldsymbol{\mu}|| = O_p(1)$ and $||\boldsymbol{\delta}(\mathbf{t} \boldsymbol{\mu})|| = o_p(1)$.
- 4. Let $y_1, \ldots, y_n \stackrel{iid}{\sim} N(\boldsymbol{\mu}, \sigma^2)$, i.e. $\mathbf{y} \sim N_n(\boldsymbol{\mu} \mathbf{1}_n, \sigma^2 \boldsymbol{\mathcal{I}}_n)$. Show $\bar{y} = \frac{1}{n} \mathbf{1}'_n \mathbf{y}$ is indep. of $s^2 = \frac{1}{n} \sum_{i=1}^n (y_i \bar{y})^2$ using the property of multivariate normals where zero covariance implies independence. Do this by looking at $\mathbf{A}\mathbf{y}$ where $\mathbf{A} = \begin{bmatrix} \mathbf{1}'_n \\ \boldsymbol{\mathcal{I}}_n \frac{1}{n} \mathbf{1}_n \mathbf{1}'_n \end{bmatrix} \in \mathbb{R}^{(n+1) \times n}$ and making the appropriate argument.
- 5. Let $\phi_{\mathbf{x}}(\mathbf{t})$ be the c.f. of \mathbf{x} . Find the c.f. of $\mathbf{A}\mathbf{x} + \mathbf{b}$, where \mathbf{A} and \mathbf{b} are conformable and fixed, in terms of $\phi_{\mathbf{x}}(\mathbf{t})$.
- 6. MKB 3.3.5.
- 7. MKB 4.2.3.