STAT 730: Homework 2

1. MLE of multivariate normal. We will fill in details of a maximization theorem for $\boldsymbol{\Sigma}$ in Chapter 4 (p. 105). Let $\mathbf{A}>0$ and $\mathbf{B}>0$ be symmetric in all that follows.
(a) Show $\mathbf{A}>0 \Leftrightarrow$ all e-values of \mathbf{A} are positive.
(b) Show $\mathbf{A}^{-1}>0$.
(c) Show $\mathbf{A}^{-1 / 2} \mathbf{B A}^{-1 / 2}$ has the same e-values as $\mathbf{A}^{-1} \mathbf{B}$. Hint: let \mathbf{v} be an e-vector of $\mathbf{A}^{-1} \mathbf{B}$ and show $\mathbf{A}^{-1 / 2} \mathbf{B v}$ is an e-vector of $\mathbf{A}^{-1 / 2} \mathbf{B} \mathbf{A}^{-1 / 2}$.
(d) Show the e-values of $\mathbf{A}^{-1 / 2} \mathbf{B} \mathbf{A}^{-1 / 2}$ are all positive. Hint: $\mathbf{B}>0$.

Thus the e-values of $\mathbf{A}^{-1} \mathbf{B}$ are all positive by (c) and (d); (a) and (b) are just for fun.
2. Characeristic function of normal: Let $x \sim N(0,1)$.
(a) Show $E\left(x^{p}\right)=0$ if p odd and $E\left(x^{p}\right)=(p-1)(p-3)(p-5) \cdots 1$ if p is even. Hint: look at $\frac{1}{2} E\left(x^{p}\right)=I=\int_{0}^{\infty} x^{p} \frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{1}{2} x^{2}\right\} d x$ and make the change of variables $y=x^{2}$. Then use properties of $\Gamma(\cdot)$.
(b) Now use the Taylor's expansion $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ in $E\left\{e^{i t x}\right\}$, take expectation of each term, and simplify. This works because $\int_{a}^{b} i x^{p} f(x) d x=i \int_{a}^{b} x^{p} f(x) d x$ by definition and the Taylor's expansion holds for complex arguments. You should have $\phi_{x}(t)=e^{-t^{2} / 2}$.
(c) Let $y \sim N\left(\mu, \sigma^{2}\right)$. Show $\phi_{y}(t)=e^{i t \mu-\sigma^{2} t^{2} / 2}$. Hint: write $y=\sigma x+\mu$.
3. Details of delta method proof. Consider $\mathbf{f}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ where

$$
\mathbf{f}(\mathbf{x})=\left[\begin{array}{c}
f_{1}(\mathbf{x}) \\
\vdots \\
f_{q}(\mathbf{x})
\end{array}\right]
$$

For the i th component of \mathbf{f}, the multivariate Taylor's theorem gives us

$$
f_{i}(\mathbf{x})=f_{i}\left(\mathbf{x}_{0}\right)+\left[\left.D f_{i}(\mathbf{x})\right|_{\mathbf{x}=\mathbf{x}_{0}}\right]\left(\mathbf{x}-\mathbf{x}_{0}\right)+\left(\mathbf{x}-\mathbf{x}_{0}\right)^{\prime} \mathbf{H}_{i}(\mathbf{x})\left(\mathbf{x}-\mathbf{x}_{0}\right)
$$

where $\lim _{\mathbf{x} \rightarrow \mathbf{x}_{0}} \mathbf{H}_{i}(\mathbf{x})=\mathbf{0}$. Here, $D f_{i}(\mathbf{x})$ is the row-vector of first-partials $\left[\frac{\partial f_{i}}{\partial x_{1}} \cdots \frac{\partial f_{i}}{\partial x_{p}}\right]$.
(a) Use Cauchy-Schwartz to show the absolute value of last term in the expansion is bounded by $\left\|\mathrm{x}-\mathrm{x}_{0}\right\| \delta_{i}\left(\mathbf{x}-\mathrm{x}_{0}\right)$ where $\lim _{\mathrm{x} \rightarrow \mathrm{x}_{0}} \delta_{i}\left(\mathrm{x}-\mathrm{x}_{0}\right)=0$.
(b) In the proof of the Delta method, further argue that $\sqrt{n}\|\mathbf{t}-\boldsymbol{\mu}\|=O_{p}(1)$ and $\|\boldsymbol{\delta}(\mathbf{t}-\boldsymbol{\mu})\|=o_{p}(1)$.
4. Let $y_{1}, \ldots, y_{n} \stackrel{i i d}{\sim} N\left(\boldsymbol{\mu}, \sigma^{2}\right)$, i.e. $\mathbf{y} \sim N_{n}\left(\mu \mathbf{1}_{n}, \sigma^{2} \mathcal{I}_{n}\right)$. Show $\bar{y}=\frac{1}{n} \mathbf{1}_{n}^{\prime} \mathbf{y}$ is indep. of $s^{2}=$ $\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}$ using the property of multivariate normals where zero covariance implies independence. Do this by looking at Ay where $\mathbf{A}=\left[\begin{array}{c}\mathbf{1}_{n}^{\prime} \\ \mathcal{I}_{n}-\frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{\prime}\end{array}\right] \in \mathbb{R}^{(n+1) \times n}$ and making the appropriate argument.
5. Let $\phi_{\mathbf{x}}(\mathbf{t})$ be the c.f. of \mathbf{x}. Find the c.f. of $\mathbf{A x}+\mathbf{b}$, where \mathbf{A} and \mathbf{b} are conformable and fixed, in terms of $\phi_{\mathbf{x}}(\mathbf{t})$.
6. MKB 3.3.5.
7. MKB 4.2.3.

