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Motivation

A derived variable yi is created from a set of p variables
xi = (xi1, . . . , xip)′ as yi = g(xi ), e.g. yi = (xi1/xi2)xi3 . One often
seeks to summarize many variables with one or two “composite
scores” or “indexes” – e.g. yi1 & yi2 – that retain most of the
information in xi .

Principal components analysis (PCA) constructs derived variables
that are linear combinations yij = a′jxi + bj that accomplish this
task, where ||aj || = 1. Often we can live with only one or two of
these, e.g. (yi1, yi2) summarizes xi .

Marden (2013, Chapter 1) discusses PCA within the context of
projection pursuit.
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Population principal components

Let x ∼ (µ,Σ) and Σ = ΓΛΓ′ be the spectral decomposition
where Γ = [γ(1) · · ·γ(p)] are the orthonormal e-vectors of Σ and
Λ = diag(λ1, . . . , λp) such that λ1 ≥ · · · ≥ λp.

def’n: yj = γ ′(j)(x− µ) is the jth principal component of x and
γ(j) is the jth vector of principal loadings. There are p principal
components.
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Properties of principal components

thm: For x ∼ (µ,Σ) and y = Γ′(x− µ),

(a) E (yj) = 0,

(b) V (yj) = λj

(c) C (yi , yj) = 0 for i 6= j ,

(d) V (y1) ≥ · · · ≥ V (yp) ≥ 0,

(e)
∑p

j=1 V (yj) = tr Σ,

(f)
∏p

j=1 V (yj) = |Σ|.

Note that the PCA transformation is a rotation because Γ is an
orthonormal matrix. Restated: y is a rotation of x− µ in Rp.

When e-values have multiplicities ≥ 1 the PCA decomposition is
not unique. This rarely happens in practice. See Marden’s notes,
Chapter 13.
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Maximizing variability

A standardized linear combination (SLC) of x is a′x where
||a|| = 1.

thm: No SLC of x has a larger variance than V (y1) = λ1.

Proof : Consider a′x. Let a = Γc.

V (a′x) = a′Σa = [c′Γ′][ΓΛΓ′]Γc =

p∑
j=1

λjc
2
j ≤ λ1.

The maximum occurs at c = e1, i.e. a = γ(1). 2

If x ∼ Np(µ,Σ), γ(1) is the direction of the major axis of ellipsoids
of constant density.
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Successively maximizing variability

thm: Let a′x be a SLC independent of the first k principal
components, i.e. a′γ(j) = 0 for j = 1, . . . , k . Then V (a′x) is
maximized by a = γ(k+1), i.e. the (k + 1)th principal component.

Proof : Similar to previous theorem; see MKB p 216. 2

The principal component vectors γ(j) ∈ Rp are directions of
maximum variability of x. γ(1) points in the direction of maximum
variability – the major axis of an ellipse for normal x – then γ(2)

points in the direction of the 2nd greatest variability orthogonal to
γ(1), etc.
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Correlation

Take x ∼ (µ,Σ) = (µ,ΓΛΓ′) and y = Γ′(x− µ). Then

C(x, y) = C(x, Γ′(x− µ))

= C(x, x− µ)Γ

= ΣΓ = ΓΛΓ′Γ = ΓΛ

= [γ(1)λ1 · · ·γ(p)λp ].

So C (xi , yj) = γijλj . Since V (xi ) = σii and V (yj) = λj ,
ρ(xi , yj) = γij

√
λj/σii . Note that

ρ(xi , y1)2 + · · ·+ ρ(xi , yp)2 =

p∑
j=1

γ2ijλj
σii

= 1
σii

[ΓΛΓ′]ii = 1.

The p correlations ρ(xi , y1), . . . , ρ(xi , yp) lie on the unit sphere.
(ρ(xi , y1), ρ(xi , y2)) is how correlated xi is with the first two
principal components. If this point lies on the unit circle, then the
first two principal components explain all of xi .
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Dimension reduction

Start with the identity

x = µ + ΓΓ′(x− µ),

which can be written as the sum of projections onto orthogonal
lines

x = µ +

p∑
j=1

γ(j)[γ
′
(j)(x− µ)︸ ︷︷ ︸

yj

].

If we instead take k < p principal components we have

x ≈ µ + ΓkΓ′k(x− µ) = µ +
k∑

j=1

γ(j)yj ,

and x is approximated by a k-dimensional subspace (a hyperplane)
of Rp. If we are really lucky, most of the variability in x about its
mean can be explained by just the first principal component
x ≈ µ + γ(1)y1. Then we have reduced p dimensions to 1.
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Covariance vs. correlation matrix

If all variables in x are measured on the same or similar scales,
PCA on the covariance Σ is appropriate. If they are measured on
wildly different scales one can perform PCA on the correlation
matrix instead.

Note that the cork data, the open/closed book exam scores data,
the dental data, and the iris data have all p measurements on the
same scale; covariance PCA is appropraite for all of these. What is
different between the first and last two of these data sets?
Consideration of the last two leads to discriminant analysis, coming
up.
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Empirical version

Take x1, . . . , xn
iid∼ (µ,Σ). Estimate Σ̂ = S and µ̂ = x̄. These are

the MLEs under normality, and otherwise are MOM estimators.
Dimension reduction takes place via

x̃i = µ̂ +
k∑

j=1

γ̂(j)[γ̂
′
(j)(xi − µ̂)︸ ︷︷ ︸

ŷij

],

where S = Γ̂Λ̂Γ̂
′
. Each x̃i is xi projected orthogonally onto the

hyperplane defined by µ̂ + span{γ̂(1), . . . , γ̂(k)}.

Your book considers Y = (X− 1nx̄′)Γ̂, transforming the d.m. X
into the d.m. Y. Note that Sy = Ip (p. 217).

For k = 2, {(yi1, yi2)}ni=1, the first two principal components of
each xi , are often plotted. These are centered, rotated projections
of xi onto the “best” two-dimensional plane. Note
ŷij γ̂(j) = Pγ̂(j)(xi − µ̂).
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PCA biplots

A PCA biplot plots pairs of principal component scores, the most
common being the first two {(ŷi1, ŷi2)}ni=1, which explain

(λ̂1 + λ̂2)/tr S of the total variability.

Along with the first two principal components, a correlation biplot
also plots the the first two correlations (ρ̂(xi , y1), ρ̂(xi , y2)) for
i = 1, . . . , p.

A distance biplot instead simply plots the loadings of the first two
principal components. Each (ŷi1, ŷi2) is a projection of xi onto the
orthogonal γ̂(1) and γ̂(2) respectively. This plot shows how objects
group together and which variables primarily contribute to the
objects relative position. This plot is more useful when the objects
themselves are of interest and have names.
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Exam scores

The exam scores are all out of 100, so they’re on the same scale.

library(bootstrap)

data(scor)

scor # 1st 2 are closed, last 3 are open

plot(scor)

f=prcomp(scor)

summary(f)

biplot(f,scale=0)

# Distance biplot: PC’s along w/ the 1st two loadings times 0.8

# all PC1 loadings are negative = simple average

# 1st 2 PC2 loadings neg, next 3 pos = contrast open/closed book

plot(f$x[,1:2], # Tim’s versions...

xlab=paste("PC1: ",round(summary(f)$importance[2,1]*100),"%"),

ylab=paste("PC2: ",round(summary(f)$importance[2,2]*100),"%"))

corrs=(1/sqrt(diag(cov(scor))))*f$rotation[,1:2]%*%diag(f$sdev[1:2])

plot(corrs, # mechanics and statistics are explained well by PC1 & PC2

xlim=c(-1,1),ylim=c(-1,1),xlab="Component 1", ylab="Component 2",

main="Correlation plot")

text(corrs,colnames(scor),cex=0.6,pos=4,col="red")

ellipse(c(0,0),shape=diag(c(1,1)),radius=1,center.pch=0)
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What dimension k < p?

Define the total variance as tr S =
∑p

j=1 λ̂j . An often-used
approach is to define a proportion of the variability that we wish to
explain, say α, and then take

k̂ = min{k :
∑k

j=1 λ̂j
tr S

> α}.

One can also examine a “scree plot” which connects the points

{(k ,
∑k

j=1 λ̂j
tr S

)}pk=1. Scree is a sloping pile of rubble at the base of a

mountain. Look for the k̂ where the plot starts to “level off.”

Another option is to take k̂ = min{k : λ̂k <
1
p

∑p
j=1 λ̂j}.

13 / 33



PCA and regression

In a regression setting with many predictors

ri = β0 +

p∑
j=1

βjxij + ui ,

we often can summarize all predictors with a handful of k << p
principal components, say j ∈ {j1, . . . , jk}

ri = β0 +
k∑

s=1

βsyijs + ui .

Instead of finding k that maximize variability among the columns
of X, we need to find the ones that are most correlated with ri .

One useful aspect of PCA predictors is that they are uncorrelated
amongst themselves. There are no multicollinearity problems and
the Type III SS for each predictor adds up to the SSReg. One can
use standard model building techniques such as backwards
elimination via t-tests or use of Mallows’ Cp to pick among the p
principal components.

If the chosen indices have simplified form, e.g. an overall average,
weighted difference between open and closed book scores, etc.,
then the usual inrepretation of regression may hold.
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Exam data: scree plot and regression

f=prcomp(scor); plot(f,type="l") # scree plot

library(FactoMineR) # *great* function!!!!!

f2=PCA(scor) # can add graph=F

f2$eig

f2$var$coord

f2$ind$coord

# let’s regress statistics on PC’s from other 4

f=prcomp(scor[,1:4]); plot(f,type="l") # scree plot

r=lm(scor[,5]~f$x[,1:4]) # PC1, PC2, and PC4 needed

r=lm(scor[,5]~f$x[,c(1,2,4)])

summary(r)

f$rotation # interpretation? can the slc’s be simplified?
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Getting rid of variables

Suppose you run PCA on a correlation matrix from X ∈ Rn×p and
you want to keep k variables and discared p − k . MKB discuss a
few strategies; here’s one:

1 Find the element of γ̂(p) from R = Γ̂Λ̂Γ̂
′

that is largest in
absolute value; say i satisfies |γip| ≥ |γjp| for j = 1, . . . , p.
Remove column i , i.e. x(i), from X.

2 Now p ← p − 1 and repeat until p = k .

We are successively removing the the variable that figures most
prominantly in the least important PC.
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Example using correlation matrix: Cars from 2004

n = 387 automobile make/models from 2004.

c=read.csv("http://www.stat.sc.edu/~hansont/stat730/cars.txt")

rownames(c)

colnames(c) # last 11 are numerical with quite different scales

plot(c[,8:18])

f=prcomp(c[,8:18],scale=T) # scale=T uses correlation matrix R

f$rotation[,1:2] # interpretation of PC1? PC2?

biplot(f,scale=0) # what a mess!

# let’s use Retail, Horsepower, CityMPG, Length

v=c(8,12,13,17) # variable numbers corresponding to above

# let’s sample 20 cars

cars=sample(387,20,replace=T)

ss=c[cars,v] # ss=subset

f=prcomp(ss,scale=T)

biplot(f,scale=0) # better
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Getting rid of variables

Say we want k = 5.

prcomp(c[8:18],scale=T)$rotation[,11] # Dealer

prcomp(c[9:18],scale=T)$rotation[,10] # HighwayMPG

prcomp(c[c(9,10,11,12,13,15,16,17,18)],scale=T)$rotation[,9] # Engine

prcomp(c[c(9,11,12,13,15,16,17,18)],scale=T)$rotation[,8] # Wheelbase

prcomp(c[c(9,11,12,13,15,17,18)],scale=T)$rotation[,7] # Horsepower

prcomp(c[c(9,11,13,15,17,18)],scale=T)$rotation[,6] # Weight

prcomp(c[c(9,11,13,17,18)],scale=T)$rotation # done
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Normal data

Assume x1, . . . , xn
iid∼ Np(µ,Σ). When the e-values of Σ are

distinct all of the “hatted values” γ̂(1), . . . , γ̂(p) and λ̂1, . . . , λ̂p are
MLEs.

thm: Let Σ = ΓΛΓ′ have distinct e-values and Σ > 0. Let

S = Γ̂Λ̂Γ̂
′

where Γ̂ = [γ̂(1) · · · γ̂(p)] and Λ̂ = diag(λ̂1, . . . , λ̂p).

Define λ̂ = (λ̂1, . . . , λ̂p)′ and λ = (λ1, . . . , λp)′. Then
asymptotically

(a) λ̂ ∼ Np(λ, 2Λ2/n).

(b) γ̂(j) ∼ Np

(
γ(j),

λj
n

∑
s 6=j

λs
(λs−λj )2

γ(s)γ
′
(s)

)
.

(c) Elements of λ̂ indep. elements of Γ̂.

Anderson (1963) further provides C (γ̂(i), γ̂(j)).
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Inference on proportion of variance explained

Let ψ = λ1+···+λk
λ1+···+λp and ψ̂ = λ̂1+···+λ̂k

λ̂1+···+λ̂p
.

MKB show (pp. 233-234)

ψ̂
•∼ N(ψ,Vψ),

where

Vψ =
2tr Σ2

(n − 1)(tr Σ)2
(ψ2 − 2αψ + α), α =

λ21 + · · ·+ λ2k
λ21 + · · ·+ λ2p

.

Can be used to test H0 : ψ = ψ0 or find CI for ψ. Simply replace

Σ by S and λ1, . . . , λp by λ̂1, . . . , λ̂p to obtain se(ψ̂) =
√
V̂ψ.
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Testing last (p − k) e-values are equal

Doesn’t make sense to test that they’re zero if rank(S) = p.
Instead one can test that the last p − k e-values are all equal to
the same small number, i.e. the the scatter is directionless white
noise in the subspace orthogonal to µ + span{γ(1), . . . , γ(k)}.

Let a0 = 1
p−k (λ̂k+1 + · · ·+ λ̂p) and g0 = (λ̂k+1 · · · λ̂p)1/(p−k)

estimate the common value. Then(
n − 2p+11

6

)
(p − k) log(a0/g0) ∼ χ2

(p−k+2)(p−k−1)/2

in large samples when H0 : λk+1 = · · · = λp is true. Note that,
mathematically a0 ≥ g0 with equality only when λ̂k+1 = · · · = λ̂p
(a result of Jensen’s inequality and log(·) is concave), and the
more different the values are, the larger the ratio.
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Functional data, p >> n

One application of PCA is summarizing curves (or surfaces, or
images) as a mean plus a linear combination of simple basis
functions. Let’s focus on functions xi (t) over [a, b].

If we observe the functions on a regular grid of p points
t1 < t2 < · · · < tp where tj = a + (j − 1)b−ap−1 = a + (j − 1)∆ then

we have xi = (xi (t1), . . . , xi (tp))′ and we can write

xi (t) = µ̂(t) +

p∑
j=1

γ̂j(t)

p∑
j=1

γ̂j(tj)(xi (tj)− µ̂(tj))︸ ︷︷ ︸
ŷij

,

or

xi = µ̂ +

p∑
j=1

γ̂(j)[Γ̂
′
(j)(xi − µ̂)︸ ︷︷ ︸

ŷij

].
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Towards functional data

The idea is to take k << p and summarize curve i as

xi (t) ≈ µ̂(t) +
k∑

j=1

γ̂j(t)ŷij .

Note that on a fine grid, ∆ŷij ≈
∫ b
a γ̂j(t)[xi (t)− µ̂(t)]dt. The

curves γ̂1(t), . . . , γ̂k(t) are the first k principal curves satisfying

∆δjk =
∫ b
a γj(t)γk(t)dt. This is an example of an orthogonal basis

expansion of a set of functions, but where the basis is suggested
from an independent sample x1(t), · · · , xn(t) itself, rather than
sines/cosines, wavelets, B-splines etc.
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Functional PCA, more formally

Instead of xi = µ̂ +
∑p

j=1 γ̂(j)ŷij where ŷij = γ̂′(j)xi , we have

xi (t) = µ̂(t) +
∞∑
j=1

γ̂j(t)ŷij , ŷij =

∫ b

a
γ̂j(t)[xi (t)− µ̂(t)]dt.

Called Karhunen-Loève representation, treating xi (t) as stochastic
process.

The {γ̂j(t)}∞j=1 are e-functions satisfying
∫ b
a γ̂i (t)γ̂j(t)dt = δij ,

functional version of inner-product.

Instead of Σ, σ(s, t) = C (xi (s), xi (t)) =
∑∞

j=1 λjγj(s)γj(t).

Estimated by σ̂(s, t) = 1
n

∑n
i=1(xi (s)− µ̂(s))(xi (t)− µ̂(t)). Here,

µ̂(t) = 1
n

∑n
i=1 xi (t).
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Comments

Orthogonal directions γ̂j(t) successively maximize

V {
∫ b
a γj(t)xi (t)dt} = λ̂j .

As usual, λ̂j/
∑∞

k=1 λ̂k is proportion of total variability
explained by e-function “direction” γ̂j(t).

Pick k to truncate expansion as usual, e.g. scree plot. Start
with large k, so that

∑∞
j=k λ̂j is negligible, then work

backwards to get smallest k that explains most variability.

(λ̂1, γ̂1(t)), . . . , (λ̂k , γ̂k(t)) can be estimated using the usual
approximating matrix version of PCA already discussed, i.e.
finding e-system of Σ̂ = [σ̂(s, t)] where (s, t) are on regular
grid of [a, b]2.

Functional PCA very useful in classification, regression, etc.
One example next.
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Functional regression, univariate response

Have data {(xi (t), ri )}ni=1. Model is

ri = β0 +

∫ b

a
β(t)xi (t)dt + ui ,

where

β(t) =
k∑

j=1

βj γ̂j(t).

β(t) weights xi (t) more in some places and less in others.

Note

ri = β0 +
k∑

j=1

βj ŷij + ui ;

can fit using OLS & normal theory.
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Medfly data

Data on lifetime and daily number of eggs laid for n = 726
medflies that lived longer than four weeks. Egg-laying trajectories
can be choppy; thus used kernel-smoothed final trajectories for
enhanced interpretation.
##############################################################

# regression with functional predictors example

# lifetimes of n=726 medflies that lived longer than 4 weeks

# predictor is egg-laying trajectory for 4 weeks after birth

# uses discrete approximation, i.e. ordinary PCA

##############################################################

e=as.matrix(read.table("http://www.stat.sc.edu/~hansont/stat730/eggs28.dat",header=F))

t=scan("http://www.stat.sc.edu/~hansont/stat730/life28.dat")

mu=colMeans(e) # mu(t)

d=1:28 # Delta=1 day

f=prcomp(e) # automatically centers

f2=summary(f) # adds some nice statistics

plot(f,type="l") # keep 3 principal components?

# initial regression of log(t) onto PC1-PC10

r=lm(log(t)~f$x[,1:10]) # log(t) gives better fit than t

summary(r)

plot(r)

# PC1, PC2, PC4, PC6 highly correlated w/ log(t), use these
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Medfly data

# look at PCs correlated w/ survival and mu(t)

par(mfrow=c(2,3))

plot(ksmooth(d,mu,kernel="normal",bandwidth=2),type="l",

xlab="days",ylab="eggs",main=expression(paste(mu,"(t)")))

points(d,mu)

p=signif(f2$importance[2,1:6],2)*100

plot(ksmooth(d,f$rotation[,1],kernel="normal",bandwidth=2),

type="l",xlab="days",ylab=expression(gamma[1](t)),

main=paste("PC1:",bquote(.(p[1])),"% variation"))

points(d,f$rotation[,1])

plot(ksmooth(d,f$rotation[,2],kernel="normal",bandwidth=2),

type="l",xlab="days",ylab=expression(gamma[2](t)),

main=paste("PC2:",bquote(.(p[2])),"% variation"))

points(d,f$rotation[,2])

plot(ksmooth(d,f$rotation[,4],kernel="normal",bandwidth=2),

type="l",xlab="days",ylab=expression(gamma[4](t)),

main=paste("PC4:",bquote(.(p[4])),"% variation"))

points(d,f$rotation[,4])

plot(ksmooth(d,f$rotation[,6],kernel="normal",bandwidth=2),

type="l",xlab="days",ylab=expression(gamma[6](t)),

main=paste("PC6:",bquote(.(p[6])),"% variation"))

points(d,f$rotation[,6])
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Medfly data

# regression of log(t) onto PCs 1,2,4,6

r=lm(log(t)~f$x[,c(1,2,4,6)])

summary(r) # note only 8% of survival is explained by model

b=f$rotation[,c(1,2,4,6)]%*%r$coef[2:5]

plot(ksmooth(d,b,kernel="normal",bandwidth=2),

type="l",xlab="days",ylab=expression(beta(t)),

main="Regression effect")

points(d,b)

The next slide has µ̂(t), γ̂1(t), γ̂2(t), γ̂4(t), γ̂6(t), and β̂(t).
Interpretation?
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Functional regression, medfly data
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Fitting functional PCA in fda

Can also be fit using pca.fd function in fda package. Implements
various smoothing algorithms and many other things.

library(fda)

fd1=Data2fd(1:28,t(e)) # default undersmooths

par(mfrow=c(1,1))

plot(fd1) # all trajectories

par(mfrow=c(2,2))

for(i in 1:4){plot(fd1[i,]); points(d,e[i,])}

bsb=create.bspline.basis(c(1,28),nbasis=10,norder=4) # cubic

fd2=Data2fd(1:28,t(e),basisobj=bsb,lambda=1) # better

for(i in 1:4){plot(fd1[i,]); points(d,e[i,]); lines(fd2[i,])}

pc=pca.fd(fd2,nharm=4)

par(mfrow=c(2,2))

plot(pc) # plots mu(t)+c*gamma_i(t) where c^2=||mu(t)-mu.bar||^2

pc$harmonics # e-functions

pc$values # e-values

pc$scores # PCA scores

pc$varprop # proportion of variance explained
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First four flies with smoothed trajectories
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The
default smoothing is too “wiggly”, need to penalize the estimate,
here with a penalized B-spline.
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µ̂(t)± c γ̂(j)(t) for j = 1, 2, 3, 4
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Shows
what each PC does relative to the mean µ̂(t).
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