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Multivariate regression, simplest model

In STAT 704–705 we consider the model

yi = β′xi + ui ,

where xi ∈ Rq and i = 1, . . . , n. Instead of having one response,
we may have p correlated responses in yi = (yi1, . . . , yip)′. Assume
V (yi ) = Σ. Your book entertains a separate regression model for
each element of yi . We will initially follow the book, but then
discuss a few departures to this model that are in common use and
easy to fit. Initially consider: yi1

...
yip

 =

 β′(1)xi
...

β′(p)xi

+

 ui1
...
uip

 ,
or

yi = B′xi + ui ,

where B = [β(1) · · ·β(p)] ∈ Rq×p.
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Simplest regression model, continued

If we knock these over on their side, i.e. take the transpose, we
have a 1× p row vector

y′i = x′iB + u′i .

Stacking everything up we have

Y︸︷︷︸
n×p

= X︸︷︷︸
n×q

B︸︷︷︸
q×p

+ U︸︷︷︸
n×p

,

where U is d.m. from Np(0,Σ).
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Log-likelihood of multivariate normal data

Assume rank(X) = q and n > p + q.

L(Y; B,Σ) =
n∏

i=1

|2πΣ|−1/2 exp{−1
2(yi − B′xi )

′Σ−1(yi − B′xi )},

implies

l(Y; B,Σ) = −n
2 log |2πΣ| − 1

2 tr{(Y − XB)Σ−1(Y − XB)′}.
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MLEs, simplest case

Let P = In − X(X′X)−1X′ = In − PX.

thm: MLEs are B̂ = (X′X)−1X′Y and Σ̂ = 1
nY′PY.

Proof : Write

l(B,Σ) = −n
2 log |2πΣ|−1

2 tr{Σ−1Σ̂}−1
2 tr{Σ−1 (B̂− B)′X′X(B̂− B)︸ ︷︷ ︸

indep. Σ, ≥ 0

}.

This is maximized when (B̂− B)′X′X(B̂− B) is minimized which
is at B = B̂. Plugging this into the log-likelihood we get

l(B̂,Σ) = −np
2 log(2π)− n

2 (log |Σ|+ trΣ−1Σ̂),

which is maximized at Σ = Σ̂ from the result in Chapter 4. 2

Note that (B̂, Σ̂) are sufficient for (B,Σ).
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MLEs, simplest case

thm: B̂ indep. Σ̂.

Proof : Σ̂ = 1
nY′PY = 1

n (Y − BX)′P(Y − BX︸ ︷︷ ︸
d.m. Np(0,Σ)

) and

B̂− B = (X′X)−1X(Y − BX︸ ︷︷ ︸
d.m. Np(0,Σ)

). Now note PY indep. B̂− B from

Craig’s theorem because [(X′X)−1X′]P = 0. 2
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MLEs, sampling distributions

nΣ̂ = (Y − BX)′P(Y − BX︸ ︷︷ ︸
d.m. Np(0,Σ)

), so Cochran’s theorem gives us

nΣ̂ ∼Wp(Σ, rank(P)︸ ︷︷ ︸
n−q

). Now note


y(1)
y(2)
...

y(p)

 ∼ Nnp




X 0 · · · 0
0 X · · · 0
...

...
. . .

...
0 0 · · · X




β(1)

β(2)

...
β(p)

 ,

σ11In σ12In · · · σ1pIn

σ21In σ22In · · · σ2pIn

...
...

. . .
...

σp1In σp2In · · · σppIn


 .

In matrix terms Yv ∼ Nnp([Ip ⊗ X]Bv ,Σ⊗ In).
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Sampling dist’n of B̂v

From last slide, Yv ∼ Nnp([Ip ⊗ X]Bv ,Σ⊗ In). We can show

B̂v = [Ip ⊗ (X′X)−1X′]Yv . So

B̂v ∼ Nqp([Ip ⊗ (X′X)−1X][Ip ⊗ X]Bv︸ ︷︷ ︸
Bv

, [Ip ⊗ (X′X)−1X][Σ⊗ In][Ip ⊗ (X′X)−1X]′︸ ︷︷ ︸
Σ⊗(X′X)−1

).

That is, the sampling distribution of B̂v is

B̂v ∼ Nqp(Bv ,Σ⊗ (X′X)−1).

Note then, marginally,

β̂(j) ∼ Nq(β(j), σjj [(X′X)−1]).

Since we also have nσ̂jj ∼ σjjχ2
n−q independent of β̂(j) we can

make t-statistics and obtain confidence intervals for elements of
β(j). Let βij be the ith element of β(j). Then

(β̂ij − βij)/
√

[(X′X)−1]jj√
nσ̂jj/(n − q)

∼ tn−q.
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ANOVA decomposition

Instead of sums of squares, we now have matrices of sums of
squares and cross products (SSCP). Let Ŷ = XB̂.

T = Y′Y − nȳȳ′ = Û′Û + [Ŷ′Ŷ − nȳȳ′] = E + R,

where Û = Y − XB̂. Here, E is the SSCP for error, R is the SSCP
for regression, and T is the total SSCP. Note also
T = Y′(In −P1n)Y, E = Y′(In −PX)Y and R = Y′(PX −P1n)Y
where PX = X(X′X)−1X′ and P1n = 1

n1n1′n.
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ANOVA decomposition

The E and R matrices cook up a test that nothing in the model is
important beyond p intercepts, i.e. H0 : B = [β10 · · ·βp0]. The test
statistics are based on ET−1, as we shall see shortly.

This is a bit different than univariate regression where we focus on
SSR/SSE . Instead we look at SSE/SSTO = 1/(1 + SSR

SSE ). Recall
that this has a beta distribution in the univariate case when H0 is
true. For the multivariate case we will have Wilks lambda from the
LRT, the product of betas.
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Hypotheses among elements of B

For the dental data of Pothoff and Roy (1964) there is only one
covariate, gender. There are 16 boys and 11 girls.

y′1
...

y′16
y′17
...

y′27


27×4

=

[
116 016

011 111

]
27×2

[
µm1 µm2 µm3 µm4

µf 1 µf 2 µf 3 µf 4

]
2×4

+



u′1
...

u′16
u′17
...

u′27


27×4

.

Of interest is testing (1) growth is linear, and (2) there is no
difference between boys and girls.

Growth is linear if H0 : µf 2 − µf 1 = µf 3 − µf 2 = µf 4 − µf 3 and
µm2 − µm1 = µm3 − µm2 = µm4 − µm3. This is written

[
µm1 µm2 µm3 µm4

µf 1 µf 2 µf 3 µf 4

]
−1 0
2 −1
−1 2
0 −1

 =

[
0 0
0 0

]
.
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Hypotheses among covariate groups

No difference between boys and girls is written H0 : µm1 = µf 1 and
µm2 = µf 2 and µm3 = µf 3 and µm4 = µf 4. In matrix terms

[
−1 1

] [ µm1 µm2 µm3 µm4

µf 1 µf 2 µf 3 µf 4

]
=
[

0 0 0 0
]
.

Both hypotheses are written H0 : CBM = D. The text considers
both LRT and UIT of this (very general) hypothesis.

Let’s derive LRT and UIT for a simpler hypothesis. Let

B =

[
B1((q − k)× p)
B2(k × p)

]
q×p

and consider H0 : B2 = 0. Similarly

let X = [X1X2]. H0 tests whether we can drop the last k
predictors in each of the p regressions. This test is the common
“big model / little model” test for regression, where the first
column of X is x(1) = 1n,
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LRT of H0 : B2 = 0

Under H0 : B2 = 0, Y − X1B1 d.m. Np(0,Σ).

We can show nΣ̂r = Y′(In − PX1)Y and nΣ̂f = Y′(In − PX)Y
where PX = X(X′X)−1X′ and PX1 = X1(X′1X1)−1X′1. Plugging
into the log-likelihood (p. 159) gives

λ2/n =
L∗0
L∗1

=
|Y′(In − PX)Y|
|Y′(In − PX1

)Y|
=

|Y′(In − PX)Y|
|Y′(In − PX)Y + Y′(PX − PX1

)Y|
=

|E|
|E + H|

.

Under H0, E = (Y − X1B1)′(In − PX)(Y − X1B1) and
H = (Y − X1B1)′(PX − PX1)(Y − X1B1). Cochran’s theorem tells
us that E ∼Wp(Σ, n − p) and H ∼Wp(Σ, k); Craig’s theorem
tells us they are independent, as (In − PX)′(PX − PX1) = 0.
Therefore,

λ2/n ∼ Λ(p, n − p, k),

Wilk’s lambda.
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UIT of H0 : B2 = 0

Since yi ∼ Np(B′xi ,Σ) we have

a′yi ∼ N(a′B′xi , a
′Σa) = N

(∑p
j=1 ajβ

′
(j)xi , a

′Σa
)

. This is tested

via (homework!)

(Ya)′(PX − PX1
)(Ya)

(Ya)′(In − PX)(Ya)
=

a′Y′(PX − PX1
)Ya

a′Y′(In − PX)Ya
∼

k

n − p
Fk,n−p ,

under H0a : last k elements of B′a are zero. Note that this holds
for all a⇔ B2 = 0. Maximizing over a gives λ1, the largest
e-value of HE−1. Page 84 implies that θ = λ1

1+λ1
, the largest

e-value of H(E + H)−1 is θ ∼ θ(p, k , n − p), Roy’s greatest root.
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General linear hypothesis for simplest model

LRT and UIT for the general hypothesis H0 : CBM = D are
derived on pp. 161–163. Here, C ∈ Rg×q and M ∈ Rp×r . Let
H = (CB̂M−D)′[C(X′X)−1C′]−1(CB̂M−D) and Ẽ = M′EM.
Then

(LRT ) : λ2/n =
|Ẽ|

|Ẽ + H|
∼ Λ(r , n − q, g),

and

(UIT ) : θ ∼ θ(r , n − q, g), θ is greatest e-value of H(Ẽ + H)−1.

Note that this test is for any design X in the model Y = XB + U,
including a MANOVA design where X = block-diag(1n1 , . . . , 1nk )
as in the dental data a few slides ago.
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Dental data hypothesis tests

library(reshape) # need to turn $\by$ into $\bY$.

library(car) # allows for multivariate linear hypotheses

library(heavy) # has dental data

data(dental)

d2=cast(melt(dental,id=c("Subject","age","Sex")),Subject+Sex~age)

names(d2)[3:6]=c("d8","d10","d12","d14")

r=lm(cbind(d8,d10,d12,d14)~0+Sex,data=d2) # no intercept!

model.matrix(cbind(d8,d10,d12,d14)~0+Sex,data=d2)

M=matrix(c(1,-2,1,0,0,1,-2,1),4,2)

C=matrix(c(1,-1),1,2)

linearHypothesis(r,hypothesis.matrix=C) # accept linear trends!

linearHypothesis(r,hypothesis.matrix=diag(2),P=M) # sexes different

The output includes Wilk’s lambda (LRT) and Roy’s greatest root
(UIT), as well as two additional tests: Pillai-Bartlett trace and
Hotelling-Lawley Trace. All four are based on HE−1.

16 / 38



Uh oh...

We accept linear trends for both boys and girls. Such a model
would help with interpretation and we could also investigate
whether growth rate is different in boys and girls.

Seems like we need a more general model...

yij = [β0 + τ0gi ] + [β1 + τ1gi ]tj + uij ,

where ui
iid∼ Np(0,Σ), tj = 8 + 2(j − 1), and gi is gender coded

0/1. This allows different linear growth for boys and girls. We may
want to then test H0 : τ1 = 0, i.e. the growth rate is the same.
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Different predictors for each outcome

We first generalize the simplest model by allowing different
predictors for each of the p outcomes.

Different predictors may be important for each measurement in
yi = (yi1, . . . , yip)′. This results in

y(j) = X(j)β(j) + u(j),

a different regression for each outcome y(j). Let β(j) ∈ Rqj and
take Yv ∼ Nnp(X∗Bv ,Σ⊗ In) where

X∗ =


X(1) 0 · · · 0

0 X(2) · · · 0
...

...
. . .

...
0 0 · · · X(p)


np×q+

. Then

B̂v = [X∗′(Σ−1 ⊗ In)X∗]−1X∗′(Σ−1 ⊗ In)Yv

is the MLE of Bv .
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Different predictors for each outcome, con’t

To estimate Σ, we need ŷij = E (yij) under the model. Let

Ŷv = X∗B̂v be the fitted values, the estimates of E (yij). We can

get the fitted vector ŷi as ŷi = [Ip ⊗ e′i ]Ŷ
v where ei = 0n with a

one at element i .

Then Σ̂ = 1
n

∑n
i=1(yi − ŷi )(yi − ŷi )

′ is the MLE of Σ.

This model is more general than the simplest model, but still does
not allow parameters to be shared across the p responses in
yi = (yi1, . . . , yip)′. Such models are important in fitting
longitudinal or spatial data models, commonly allowed in SAS’
proc mixed or in R’s gls and lme functions from the nlme

package.

This model is also a special case of the general linear model
coming up obtained by zeroing out some predictors.
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Rewriting the simplest model

Recall Yv ∼ Nnp([Ip ⊗ X]Bv ,Σ⊗ In). Instead we can write

yi
ind .∼ Np(Ip ⊗ xiB

v ,Σ).

If we stack these into one vector y′ = (y′1, . . . , y
′
n) we get y1

...
yn

 ∼ Nnp


 Ip ⊗ x′1

...
Ip ⊗ x′n

Bv ,In ⊗Σ

 .

We can define Xi = Ip ⊗ xi and stack these as well into
X′ = [X′1 · · ·X′n]np×pq. Then we have

y ∼ Nnp(Xβ,In ⊗Σ),

where β = Bv , in the form of a general linear model.
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Rewriting model w/ different predictors for each β(j)

Recall β(j) ∈ Rqj . Let

Xi = block-diag(xi1, . . . , xip)p×q+,

where xij is the set of qj predictors from the i subject for response
j and q+ =

∑p
j=1 qj . Then y1

...
yn

 ∼ Nnp


 X1

...
Xn

Bv ,In ⊗Σ

 ,

or simply
y ∼ Nnp(Xβ,In ⊗Σ),

where β = Bv , in the form of a general linear model.
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General linear model

In general, the different elements of yi can share parameters in β.
The model is then

y = Xβ + u, u ∼ Nnp(0,In ⊗Σ︸ ︷︷ ︸
Γ

).

Here, X does not necessarily have any special structure. Σ can be
unconstrained or have special structure, e.g. compound symmetry,
AR(1), spatial correlation etc.

Fitting proceeds by first ridding ourselves of the fixed effects. One
can show that maximizing l(X;β,Σ) over (β,Σ) is equivalent to
first maximizing l(X; Σ) (via Newton-Raphson), where

l(X; Σ) = − 1
2
log |Γ| − n

2
log(2π)− 1

2
y′[Inp − X(X′Γ−1X)−1X′Γ−1]′Γ−1[Inp − X(X′Γ−1X)−1X′Γ−1]y

yielding Σ̂, then β̂ = (X′Γ̂
−1

X)−1XΓ̂
−1

y is the generalized least
squares estimate (and MLE) of β.
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Wald tests in the general linear model

Say β ∈ Rq and M ∈ Rr×q where r < q. The linear hypothesis
H0 : Mβ = 0 is tested via

F ∗ = 1
r [Mβ̂]′[M(X′Γ̂

−1
X)−1M′]−1Mβ̂.

Since β̂
•∼ Nq(β, (X′Γ̂

−1
X)−1),

[Mβ̂]′[M(X′Γ̂
−1

X)−1M′]−1Mβ̂
•∼ χ2

r under H0. gls and lme

rather uses F ∗
•∼ Fr ,ν̂ where ν̂ is an estimate of the denominator

degrees of freedom; for gls this is n − q.

Aside: 1
n−qχ

2
n−q

P→ 1 by LLN, so the sampling distribution

converges to the scaled χ2
r anyway.
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gls and lme parameterization

For these functions Σ = VRV where V is diagonal and R is a
correlation matrix. The default is V = σIp, but this can be
relaxed to V = diag(σ1, . . . , σp) by adding

weights=varIdent(form=~1|time)

where time is j ∈ {1, . . . , p} in yij . The correlation structure R is
specified by, e.g.

cor=corSymm(form=~time|Subject)

where Subject is i ∈ {1, . . . , n}. A general unstructured Σ
requires both of these.

Possible R structures include corAR1 autoregressive process of
order 1, corARMA autoregressive moving average process,
corCAR1 AR(1) process for a continuous time covariate,
corCompSymm compound symmetry, corExp exponential spatial
correlation, corGaus Gaussian spatial correlation, corSymm

general correlation matrix, with no additional structure.

Some require additional covariate(s), e.g. latitude/longitude.
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Unbalanced data

The most general version of the model allows yi ∈ Rpi and assumes

y ∼ Np+(Xβ, block-diag(Σ1, . . . ,Σn).

For example Σi = σ2i [(1− ρi )Ipi + ρi1pi 1
′
pi

], compound symmetry
within each i .

When subjects are seen irregularly and/or at differing time points,
gls, lme, and SAS proc mixed still provide correct inference. An
alternative to the general linear model with unbalanced data is a
mixed model, discussed shortly.

A related problem is missing data. If data are MCAR (yij missing
does not depend on yij or xi ) or MAR (yij missing does not depend
on yij), likelihood-based methods are superior to multiple
imputation. Proceed as usual.
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General model in R

The function gls requires i (Subject, below) and j (time).

library(nlme)

dental$time=dental$age/2-3 # consecutive integers for each element of y_i

f1=gls(distance~factor(Sex)*age,data=dental,cor=corSymm(form=~time|Subject),

weights=varIdent(form=~1|time),method="ML") # unstructured correlation

f2=gls(distance~factor(Sex)*age,data=dental,cor=corSymm(form=~time|Subject),

method="ML") # same variances across time points

anova(f1,f2) # are different variances necessary across time points? LRT test for nested models

The first gls function fits yi = Xiβ + ui , where
yi1
yi2
yi3
yi4

 =


1 gi 8 8gi
1 gi 10 10gi
1 gi 12 12gi
1 gi 14 14gi


 β0
β1
β2

+


ui1
ui2
ui3
ui4

 ,

and V (ui ) = Σ. Here, Σ = VRV where R is a correlation matrix
and V = σdiag(1, p2, p3, p4). The 2nd fits the model where
V = σI4. Are the growth rates the same across gender?
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Simple model as general model

We can rewrite Y in the simple model as y and fit the simple
model using gls:

f3=gls(distance~factor(time)*factor(Sex),data=dental,cor=corSymm(form=~time|Subject),

weights=varIdent(form=~1|time),method="ML") # equivalent to simple regression model

summary(f3) # gives order of regression effects to figure out contrast matrix

model.matrix(distance~factor(time)*factor(Sex),data=dental)

Fits the model (j is time)

yij = β0 + β1I{j = 2}+ β2I{j = 3}+ β3I{j = 4}+ β4I{gi = F}
+β5I{j = 2}I{gi = F}+ β6I{j = 3}I{gi = F}+ β7I{j = 4}I{gi = F}+ uij ,

where ui
iid∼ N4(0,Σ) for i = 1, . . . , 27. In terms of the model

Y = XB + U we have

µm1 = β0 µf 1 = β0 + β4
µm1 = β0 + β1 µf 2 = β0 + β1 + β4 + β5
µm2 = β0 + β2 µf 3 = β0 + β2 + β4 + β6
µm4 = β0 + β3 µf 4 = β0 + β3 + β4 + β7

.

P-values are a bit different than using simpler model, but
conclusions are the same.
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Simple model as general model

To test linearity in the dental data we need

M =


0 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 2 −1 0 0 2 −1 0
0 −1 2 −1 0 −1 2 −1

. To test no difference between

girls and boys M =


0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 1 0 0 1

 R fills matrices by

columns first – be careful!

M1=t(matrix(c( 0, 2,-1, 0, 0, 0, 0, 0,

0,-1, 2,-1, 0, 0, 0, 0,

0, 2,-1, 0, 0, 2,-1, 0,

0,-1, 2,-1, 0,-1, 2,-1),8,4))

M2=t(matrix(c( 0, 0, 0, 0, 1, 0, 0, 0,

0, 0, 0, 0, 1, 1, 0, 0,

0, 0, 0, 0, 1, 0, 1, 0,

0, 0, 0, 0, 1, 0, 0, 1),8,4))

anova(f3,L=M1) # linear? different p-value than Wilk’s lambda or Roy’s root

anova(f3,L=M2) # boys vs. girls, again different p-value

There are cleverer ways to do this, e.g. using contrast, but this
“brute force” approach makes things transparent.
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Mixed effects model

Each child’s trajectory is approximately linear. We can postulate a
separate regression model for each child instead. We’ll fit a simpler
model with gender as a simple additive effect rather than separate
slopes.

yij = θ0i + θ1iaj + β2gi + uij , uij
iid∼ N(0, σ2),

for j = 1, . . . , 4. We further assume that the intercepts and slopes
come from a population

[
θi0
θi1

]
iid∼ N2


[
β0
β1

]
,

[
ω11 ω12

ω21 ω22

]
︸ ︷︷ ︸

Ω

 .

This is a mixed effects model, or mixed model for short. Note that
E (yij) = β0 + β1aj + β2gi , so the fixed effects are
β = (β0, β1, β2)′. The variance components are (ω11, ω12, ω22, σ

2).
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Mixed effects model

The mixed effects model is also called the Laird-Ware model, after
the groundbreaking 1982 Biometrics paper. It is common to
reparameterize the model so the random effects are mean-zero

yij = β0 + γi0︸ ︷︷ ︸
θi0

+β1aj + γ1iaj︸ ︷︷ ︸
θi1aj

+β2gi + uij ,

where γ i
iid∼ N2(0,Ω) are indep. {uij}. Then


yi1
yi2
yi3
yi4

 =


1 8 gi
1 10 gi
1 12 gi
1 14 gi


 β0
β1
β2

+


1 8
1 10
1 12
1 14

[ γi0
γi1

]
+


ui1
ui2
ui3
ui4

 ,

or succinctly yi = Xiβ + Ziγ i + ui . Note then that E (yi ) = Xiβ
and V (yi ) = ZiΩZ′i + σ2I4. The model induces correlation among
the elements of yi through the random effects.
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Laird-Ware model in R

f4=lme(distance~factor(Sex)+age,data=dental,random=~1+age|Subject,

method="ML")

f5=lme(distance~factor(Sex)+age,data=dental,random=~1+age|Subject,

weights=varExp(form=~age),method="ML")

anova(f5,f4) # test for homogeneity of variance akin to Breusch-Pagan

The first lme fits the model on the previous slide. The 2nd allows
the variability of the uij to change with j as a function of age.
Specifically, V (uij) = σ2eτaj yielding
V (ui ) = σ2diag(eτ8, eτ10, eτ12, eτ14).

This type of model is also called a “random coefficient” model.
lme allows for V (ui ) = Σ as before (rather than V (ui ) = σ2I4) in
which case V (yi ) = ZiΩZ′i + Σ. You need to be careful here; if Σ
is unstructured the model is not identifiable.
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AIC for model selection

The AIC (Akaike, 1974) is a widely accepted statistic for choosing
among models, both mean and covariance models. The AIC is
asymptotically justified as attempting to minimize the estimated
Kullback-Liebler distance between the true probability model and
several candidate models. As the true model is often more complex
than our simple statistical models, the AIC will tend to pick larger,
more complex models as more data are collected and more is
known about the true data generating mechanism.

The AIC is
AIC = 2p − 2l(X; θ̂),

where p is the number of parameters in θ; for these models p
includes both mean parameters and variance components (but not
random effects).
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AIC vs. BIC

The BIC (Schwarz, 1978) will pick the correct model as the sample
size increases (it is consistent) as long as the correct model is
among those under consideration. Since we do not know whether
the true model is among those we are considering, I tend to use
AIC and possibly err on the side of a more complex model, but one
that better predicts the actual data that we saw.

The BIC is
BIC = p log(n)− 2l(X; θ̂).

This penalizes for adding predictors moreso than AIC when n ≥ 8,
and so tends to give simpler models. Section 9.5 in Marden (2012)
(on the course webpage) gives more details if you are interested.

One troublesome aspect of the BIC is the sample size n. It is
unclear what to use for n when data are missing, censored, or
where data are highly dependent.
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Comments

SAS proc mixed fits all these models; repeated statement
specifies Σ & random statement specifies Ziγ i .

We can generalize to non-normal data, e.g. yij is Poisson or
Bernoulli, using conditional generalized linear mixed models
(GLMM) or else marginal models.

Marginal models typically use GEE to allow V (yi ) = Σ where

Yij ∼ Pois(eηij ) or yij ∼ Bern( e
ηij

1+e
ηij ) and ηi = Xiβ.

GLMM assumes ηi = Xiβ + Ziγ i .

R has many packages to do both. geepack fits marginal
models via GEE and lme4 fits GLMMs including crossed and
nested random effects.

nlme (original R package for mixed models) also fits nonlinear
models but not GLMM.

Marginal models can be fit in SAS proc genmod and GLMM
can be fit in SAS proc nlmixed and proc glimmix.
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Some notes on correlation

Multiple correlation coefficient (pp. 168–169)

Ry ·x = maxa∈Rq corr(y,Xa), attained by a = β̂ = PXy. R2 in
univariate regression y = Xβ + u is square of this. This idea is
generalized to Y = XB + U on pp. 170–171.

Dependence analysis (pp. 175–176). Want to keep k < q
predictors, can use subset {i1, . . . , ik} ⊂ {1, 2, . . . , q} that
maximizes Ry ·i1···ik , i.e. find subset most correlated with y.

Partial correlation in Y = XB + U. On p. 169 your book defines

rij·x =
[(In − PX)y(i)]

′[(In − PX)y(j)]

||(In − PX)y(i)|| ||(In − PX)y(j)||
=

σ̂ij√
σ̂ii σ̂jj

.

This is the partial correlation between measurements y(i) and y(j)
after adjusting for the predictors in X. It’s simply the correlation of
the residuals from each regression.

Interdependency analysis (pp. 179–180) is related to variance
inflation factors.
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Regression diagnostics

Consider the simple model we started with where each variable has
the same predictors. Recall that each of the p β̂(j) has sampling
distribution

β̂(j) ∼ Nq(β(j), σjj [(X′X)−1]).

The estimate of σjj used in F-tests is n
n−q σ̂jj = 1

n−qSSEj where
SSEj is the usual sum of squared errors from considering variable j
only. Tests on β(j) are carried out as if only the univariate
regression was considered.

Similarly, testing the assumptions of linear mean and constant
variance rely on univariate diagnostics (e.g. residual and influence
plots) for each of the p regressions. Multivariate normality on the
ûi can be checked using, e.g. mardiaTest.
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Last example, from Johnson & Wichern

# Col. 1: z1 = orders Col. 2: z2 = add-delete items

# Col. 3: Y1 = CPU time Col. 4: Y2 = disk input/output capacity

d=t(matrix(c(

123.5, 2.108, 141.5, 301.8,

146.1, 9.213, 168.9, 396.1,

133.9, 1.905, 154.8, 328.2,

128.5, 0.815, 146.5, 307.4,

151.5, 1.061, 172.8, 362.4,

136.2, 8.603, 160.1, 369.5,

92.0, 1.125, 108.5, 229.1),4,7))

colnames(d)=c("orders","add-delete","CPU time","input/output")

library(car)

library(MVN)

f=lm(d[,3:4]~d[,1:2]); fm=Manova(f)

mardiaTest(f$residuals,qqplot=T) # multivariate normality
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Example from Johnson & Wichern

# http://www.statmethods.net/stats/rdiagnostics.html

f1=lm(d[,3]~d[,1:2])

f2=lm(d[,4]~d[,1:2])

avPlots(f1) # added variable plots

avPlots(f2)

influencePlot(f1,id.method="identify")

influencePlot(f2,id.method="identify")

ncvTest(f1) # non-constant variance

ncvTest(f2)

vif(f1); vif(f2) # etc...

# partial correlation for CPU & I/O adjusting for orders/add-delete

cov2cor(fm$SSPE)

# original unadjusted correlation

cor(d[,3],d[,4])

38 / 38


