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Likelihood ratio test

def’n: Data X depend on θ. The likelihood ratio test statistic for
H0 : θ ∈ Ω0 vs. H1 : θ ∈ Ω1is

λ(X) =
L∗0
L∗1

=
maxθ∈Ω0 L(X;θ)

maxθ∈Ω1 L(X;θ)
.

def’n: The likelihood ratio test (LRT) of size α for testing H0 vs.
H1 rejects H0 when λ(X) < c where c solves
supθ∈Ω0

Pθ(λ(X) < c) = α.

A very important large sample result for LRTs is

thm: For a LRT, if Ω1 ⊂ Rq and Ω0 ⊂ Ω1 be r -dimensional where

r < q, then under some regularity conditions −2 log λ(X)
D→ χ2

q−r .
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One-sample normal H0 : µ = µ0

Let x1, . . . , xn
iid∼ Np(µ,Σ) where (µ,Σ) are unknown. We wish to

test H0 : µ = µ0.

Under H0, µ̂ = µ0 and Σ̂ = S + (x̄− µ0)(x̄− µ0)′. Under H1,
µ̂ = x̄ and Σ̂ = S. We will show in class that

−2 log λ(X) = n log{1 + (x̄− µ0)′S−1(x̄− µ0)}.

Recall that (n − 1)(x̄− µ0)′S−1(x̄− µ0) ∼ T 2(p, n − 1) when H0

is true and has a scaled F -distribution.
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Head lengths of 1st and 2nd sons

Frets (1921) considers data on the head length and breadth of 1st
and 2nd sons from n = 25 families. Let xi = (xi1, xi2)′ be the head
lengths (mm) of the first and second son in Frets’ data. To test
H0 : µ = (182, 182)′ (p. 126) we can use Michail Tsagris’
hotel1T2 function in R. Note that your text incorrectly has p = 3
rather than p = 2 in the denominator of the test statistic.

install.packages("calibrate")

library("calibrate")

data(heads)

source("http://www.stat.sc.edu/~hansont/stat730/paketo.R")

colMeans(heads)

hotel1T2(heads[,c(1,3)],c(182,182),R=1) # normal theory
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Bootstrapped p-value

The underlying assumption here is normality. If this assumption is
suspect and the sample sizes are small, we can sometimes perform
a nonparametric bootstrap.

The bootstrapped approximation to the sampling distribution
under H0 is simple to obtain. Simply resample the same number(s)
of vectors with replacement, forcing H0 upon the samples, and
compute the sample statistic over and over again. This provides a
Monte Carlo estimate of the sampling distribution.

Michail Tsagris’ function automatically obtains a bootstrapped
p-value via hotel1T2(heads[,c(1,3)],c(182,182),R=2000).
R is the number of bootstrapped samples used to compute the
p-value. The larger R is the more accurate the estimate, but the
longer it takes.

5 / 28



One-sample normal H0 : Σ = Σ0

Let x1, . . . , xn
iid∼ Np(µ,Σ) where (µ,Σ) are unknown. We wish to

test H0 : Σ = Σ0.

Under H0, µ̂ = x̄ and Σ̂ = Σ0. Under H1, µ̂ = x̄ and Σ̂ = S. We
will show in class that

−2 log λ(X) = n tr Σ−1
0 S− n log |Σ−1

0 S| − np.

Note that the statistic depends on the eigenvalues of Σ−1
0 S. Your

book discusses small sample results. For large samples we can use
the usual χ2

p(p+1)/2 approximation.

cov.equal(heads[,c(1,3)],diag(c(100,100))) # 1st hypothesis, p. 127

cov.equal(heads[,c(1,3)],matrix(c(100,50,50,100),2,2)) # 2nd hypothesis

A parametric bootstrapped p-value can also be obtained here.
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Parametric bootstrap

The parametric bootstrap conditions on sufficient statistics under
H0, typically nuisance parameters, to compute the p-value.
Conditioning on a sufficient statistic is a common approach in
hypothesis testing (e.g. Fisher’s test of homogeneity for 2× 2
tables). Since the sampling distribution relies on the underlying
parametric model, a parametric bootstrap may be sensitive to
parametric assumptions, unlike the nonparametric bootstrap.

Recall that MLEs are functions of sufficient statistics. The
parametric boostrap proceeds by simulating R samples
X∗r = [x∗r1 · · · x∗rn]′ of size n from the parametric model under the
MLE from H0 and computing λ(X∗r ). The p-value is
p̂ = 1

R

∑R
r=1 I{λ(X∗r ) < λ(X)}.

Let’s see how this works for the test of H0 : Σ = Σ0.
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Parametric bootstrap

Sigma0=matrix(c(100,50,50,100),2,2)

# Sigma0=matrix(c(100,0,0,100),2,2)

lambda=function(x,Sigma0){

n=dim(x)[1]; p=dim(x)[2]

S0inv=solve(Sigma0); S=(n-1)*cov(x)/n

n*sum(diag(S0inv%*%S))-n*det(S0inv%*%S)-n*p

}

ts=lambda(heads[,c(1,3)],Sigma0)

xd=heads[,c(1,3)]; n=dim(xd)[1]; p=dim(xd)[2]

xbar=colMeans(heads[,c(1,3)]); S0root=t(chol(Sigma0)) # MLEs under H0

R=2000; pval=0

for(i in 1:R){

xd=t(S0root%*%matrix(rnorm(p*n),p,n)+xbar)

if(lambda(xd,Sigma0)>ts){pval=pval+1}

}

cat("Parametric bootstrapped p-value = ",pval/R,"\n")

Note that parametric bootstraps can take a long time to complete
depending on the model, hypothesis, and sample size.
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Union-intersection test of H0 : µ = µ0

Often a multivariate hypothesis can be written as the union of
univariate hypotheses. H0 : µ = µ0 holds ⇔ H0a : a′µ = a′µ0

holds for every a ∈ Rp. In this sense, H0 = ∩a∈RpH0a.

For each a we have a simple univariate hypothesis, based on

univariate data a′x1, . . . , a′xn
iid∼ N(a′µ, a′Σa), and testable using

the usual t-test

ta =
a′x̄− a′µ0√

a′Sua/n
.

We reject H0a if |ta| > tn−1(1− α
2 ), which means we reject H0 if

any |ta| > tn−1(1− α
2 ), i.e. the union of all rejection regions,

which happens when maxa∈Rp |ta| > tn−1(1− α
2 ).
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UIT of H0 : µ = µ0, continued

Squaring both sides of maxa∈Rp |ta| > tn−1(1− α
2 ), the

multivariate test statistic can be rewritten

max
a∈Rp

t2
a = max

a∈Rp
(n − 1)

a′(x̄− µ0)(x̄− µ0)′a

a′Sa
= (n − 1)(x̄− µ0)′S−1(x̄− µ0),

the one-sample Hotelling’s T 2. We used a maximization result
from Chapter 4 here.

For H0 : µ = µ0, the LRT and the UIT give the same test statistic.
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H0 : Rµ = r

Here, r ∈ Rq. From Chapter 4 we have
µ̂ = x̄− SR′[RSR′]−1(Rx̄− r). We can then show

(n − 1)[λ(X)−2/n − 1] = (n − 1)(Rx̄− r)′(RSR′)−1(Rx̄− r).

Your book shows that (n − 1)[λ(X)−2/n − 1] ∼ T 2(q, n − 1). This
is a special case of the general test discussed in Chapter 6.

If µ′ = (µ′1,µ
′
2), then H0 : µ2 = 0 is this type of test where

R = [I 0] and r = 0.

H0 : µ = κµ0 where µ0 is given is also a special case. Here,
the k = p − 1 rows of R are orthogonal to µ0 and r = 0.

The UIT gives the same test statistic.
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Test for sphericity H0 : Σ = κIp

On p. 134, MKB derive

−2 log λ(X) = np log

{
1
p tr S

|S|1/p

}
.

Asymptotically, this is χ2
(p−1)(p+2)/2.

ts=function(x){

n=dim(x)[1]; p=dim(x)[2]

S=cov(x)*(n-1)/n

d=n*p*(log(sum(diag(S))/p)-log(det(S))/p)

cat("Asymptotic p-value = ",1-pchisq(d,0.5*(p-1)*(p+2)),"\n")

}

ts(heads)

A parametric bootstrap can also be employed. R has
mauchly.test built in for testing sphericity.
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Testing H0 : Σ12 = 0, i.e. x1i indep. x2i

Let x′i = (x′1i , x
′
2i ), where x1i ∈ Rp1 , x2i ∈ Rp2 and p1 < p2. We

can always rearrange elements via a permutation matrix to test any
subset is indpendent of another subset. Partition Σ and S
accordingly. MKB (p. 135) find

−2 log λ(X) = −n log

p1∏
i=1

(1− λi ) = −n log |I − S−1
11 S12S−1

22 S21|,

where λi are the e-values of S−1
11 S12S−1

22 S21.

Exactly, λ2/n ∼ Λ(p1, n − 1− p2, p2) assuming n − 1 ≥ p. When
both pi > 2 we can use
−(n − 1

2 (p + 3)) log |I − S−1
11 S12S−1

22 S21| ∼ χ2
p1p2

.

If p1 = 1 then −2 log λ = −n log(1− R2) where R2 is the sample
multiple correlation coefficient between x1i and x2i , discussed in
the next Chapter.

The UIT gives the largest e-value λ1 of S−1
11 S12S−1

22 S21 as the test
statistic, different from the LRT. 13 / 28



Head length/breadth data

Say we want to test that the head/breadths are independent
between sons. Let xi = (xi1, xi2, xi3, xi4)′ be the 1st son’s length &
breadth followed by the 2nd son’s. We want to test

H0 : Σ =

[
Σ11 0

0 Σ22

]
where all submatrices are 2× 2.

S=24*cov(heads)/25

S2=solve(S[1:2,1:2])%*%S[1:2,3:4]%*%solve(S[3:4,3:4])%*%S[3:4,1:2]

ts=det(diag(2)-S2) # ~WL(p1,n-1-p2,p2)=WL(2,22,2)

# p. 83 => (21/2)*(1-sqrt(ts))/sqrt(ts)~F(4,42)

1-pf((21/2)*(1-sqrt(ts))/sqrt(ts),4,42)

ats=-(25-0.5*7)*log(ts) # ~chisq(4) asymptotically

1-pchisq(ats,4) # asymptotics work great here!

What do we conclude about how head shape is related between 1st
and 2nd sons?
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H0 : Σ is diagonal

We may want to test that all variables are independent. Under H0

µ̂ = x̄ and Σ̂ = diag(s11, . . . , spp). Then

−2 log λ(X) = −n log |R|.

This is approximately χ2
p(p−1)/2 in large samples. The parametric

bootstrap can be used here as well.

1-pchisq(-25*log(det(cov2cor(S))),6)
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One-way MANOVA, LRT

Want to test H0 : µ1 = · · · = µk assuming Σ1 = · · · = Σk = Σ.

Under H0, µ̂ = x̄ and Σ̂0 = S from the entire sample. Under Ha,
µ̂i = x̄i and Σ̂a = 1

n

∑k
i=1 niSi . Here, n = n1 + · · ·+ nk . Then

λ(X)2/n = |Σ̂a|
|Σ̂0|

= |W|
|T| = |WT−1|,

where T = nS is the total sums of squares and cross products
(SSCP) and W =

∑k
i=1 niSi is the SSCP for error, or within

groups SSCP. The SSCP for regression is B = T−W, or between
groups. Then

λ(X)2/n =
|W|
|B + W|

=
1

|Ip + W−1B|
.
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A bit different than usual F-test

When p = 1 we have

λ(X)2/n =
1

|Ip + W−1B|
=

1

1 + SSR
SSE

=
1

1 + k−1
n−pF

∗
,

where F ∗ = MSR
MSE .

The usual F -statistic is a monotone function of λ(X) and
vice-versa. For p = 1, λ(X) is distributed beta.
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ANOVA decomposition

Let X(n × p)′ = [X′1 · · ·X′k ] be the k d.m. stacked on top of each
other.

Recall that for p = 1

SSE =
k∑

i=1

ni∑
j=1

(xij − x̄i )
2 = X′[In − PZ]X

def
= X′C1X,

where PZ = Z(Z′Z)−1Z′ and Z = block-diag(1n1 , . . . , 1nk ).

For p > 1 it is the same!

E =
k∑

i=1

ni∑
j=1

(xij − x̄i )(xij − x̄i )
′ = X′[In − PZ]X = X′C1X.

Note that PZ = block-diag( 1
n1

1n11′n1
, . . . , 1

nk
1nk 1′nk ).
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ANOVA decomposition

Similarly, for p = 1

SSR =
k∑

i=1

ni∑
j=1

(x̄i − x̄)2 = X′[PZ − P1n ]X
def
= X′C2X,

where P1n = 1
n1n1′n. This generalizes for p > 1 to

B =
k∑

i=1

ni∑
j=1

(x̄i − x̄)(x̄i − x̄)′ = X′[PZ − P1n ]X = X′C2X.
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ANOVA decomposition

Finally, for p = 1 we have

SST =
k∑

i=1

ni∑
j=1

(xij − x̄)2 = X′[In − P1n ]X,

which generalizes for p > 1 to

T =
k∑

i=1

ni∑
j=1

(xij − x̄)(xij − x̄)′ = X′[In − P1n ]X.

Now note that

T = X′[In − P1n ]X = X′[In − PZ + PZ − P1n ]X

= X′[In − PZ]X + X′[PZ − P1n ]X

= E + B.
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One-way MANOVA, LRT

Note that X d.m. Np(µ,Σ) under H0 : µ1 = · · ·µk . Then
W = X′C1X, B = X′C2X, where C1 and C2 are projection
matrices of ranks n − k and k − 1, and C1C2 = 0. Using
Cochran’s theorem and Craig’s theorem,

W ∼Wp(Σ, n − k) indep. B ∼Wp(Σ, k − 1),

so then
λ2/n ∼ Λ(p, n − k, k − 1),

under H0 provided n ≥ p + k.

21 / 28



One-way MANOVA, UIT

On p. 139 your book argues that the test statistic for the UIT is
the largest e-value of W−1B.

The LRT and UIT lead to different test statistics, but they are
based on the same matrix. There are actually four statistics in
common use in multivariate regression settings.

Let λ1 > · · · > λp be e-values from W−1B. Then Roy’s greatest
root is λ1, Wilk’s lambda is

∏p
i=1

1
1+λi

, Pillai-Bartlett trace is∑p
i=1

λi
1−λi , and Hotelling-Lawley trace is

∑p
i=1 λi . Note that the

one-way model is a special case of the general regression model in
Chapter 6. MANOVA is further explored in Chapter 12.

The Hotelling’s two-sample test of H0 : µ1 = µ2 is a special case of
MANOVA where k = 2. In this case, Wilk’s lambda boils down to

λ2/n = 1 + n1n2(x̄1 − x̄2)′S−1
u (x̄1 − x̄2).

The last term differs from the Hotelling’s two-sample test statistic
by a factor of n.
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Behrens-Fisher problem

How to compare two means H0 : µ1 = µ2 when Σ1 6= Σ2? A
standard LRT approach works but requires numerical optimization
to obtain the MLEs; your book describes an iterative procedure.

The UIT approach fares better here. On pp. 143–144 a UIT test
procedure is described that yields a test statistic that is
approximately distributed Hotelling’s T 2 with df computed using
Welch’s (1947) approximation. Tsagris rather implements an
approach due to James (1954).
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Behrens-Fisher problem

An alternative, for k ≥ 2, is to test
H0 : µ1 = · · · = µk ,Σ1 = · · · = Σk (complete homogeneity) vs.
the alternative that the means and covariances are all different.
This is the hypothesis that data all come from one population vs.
k separate populations. MKB pp. 141–142 show
−2 log λ = n log | 1n

∑k
i=1 niSi | −

∑k
i=1 ni log |Si |. This is

asymptotically χ2
p(k−1)(p+3)/2.

The James (1954) approach can be extended to k ≥ 2; Tsagris
implements this in maovjames.
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Dental data

library(reshape) # need to turn $\by$ into $\bY$.

library(car) # allows for multivariate linear hypotheses

library(heavy) # has dental data

data(dental)

d2=cast(melt(dental,id=c("Subject","age","Sex")),Subject+Sex~age)

names(d2)[3:6]=c("d8","d10","d12","d14")

# Hotelling’s T-test, exact p-value and bootstrapped

hotel2T2(d2[d2$Sex==’Male’,3:6],d2[d2$Sex==’Female’,3:6],R=1)

hotel2T2(d2[d2$Sex==’Male’,3:6],d2[d2$Sex==’Female’,3:6],R=2000)

# MANOVA gives same p-value as Hotelling’s parametric test

f=lm(cbind(d8,d10,d12,d14)~Sex,data=d2)

summary(Anova(f))

# James’ T-tests do not assume the same covariance matrices

james(d2[d2$Sex==’Male’,3:6],d2[d2$Sex==’Female’,3:6],R=1)

james(d2[d2$Sex==’Male’,3:6],d2[d2$Sex==’Female’,3:6],R=2000)
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Iris data

Here’s a one-way MANOVA on the iris data.

library(car)

scatterplotMatrix(~Sepal.Length+Sepal.Width+Petal.Length+Petal.Width|Species,

data=iris,smooth=FALSE,reg.line=F,ellipse=T,by.groups=T,diagonal="none")

f=lm(cbind(Sepal.Length,Sepal.Width,Petal.Length,Petal.Width)~Species,

data=iris)

summary(Anova(f))

f=manova(cbind(Sepal.Length,Sepal.Width,Petal.Length,Petal.Width)~Species,

data=iris)

summary(f) # can ask for other tests besides Pillai

maovjames(iris[,1:4],as.numeric(iris$Species),R=1000) # bootstrapped
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Homogeneity of covariance

Now we test H0 : Σ1 = · · · = Σk in the general model with
differing means and covariances. Your book argues

−2 log λ(X) = n log |S| −
k∑

i=1

ni log |Si | =
k∑

i=1

ni log |S−1
i S|.

Asymptotically, this has a χ2
p(p+1)(k−1)/2 distribution. Using

Tsagris’ functions, try

cov.likel(iris[1:4],as.numeric(iris$Species))

cov.Mtest(iris[1:4],as.numeric(iris$Species)) # Box’s M-test

Your book discusses that the test can be improved in smaller
samples (Box, 1949).
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Non-normal data

MKB suggest the use of multivariate skew and kurtosis as
statistics for assessing multivariate normality. (p. 149).

They further point out that, broadly, for non-normal data the
normal-theory tests on means are sensitive to β1,p whereas tests on
covariance are sensitive to β2,p.
Both tests, along with some others, are performed in the the MVN
package. They are also in the psych package.

library(MVN)

cork=read.table("http://www.stat.sc.edu/~hansont/stat730/cork.txt",header=T)

mardiaTest(cork,qqplot=T)

Another option is to examine the sample Mahalanobis distances
D2
i = (xi − x̄)′S−1(xi − x̄), or stratified versions of these for

multi-sample situations. These are approximately χ2
p. The

mardiaTest function provides a Q-Q plot of the M-distances
compared to what is expected under multivariate normality.
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