STAT 730 Chapter 5: Hypothesis Testing

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 730: Multivariate Analysis

Likelihood ratio test

def'n: Data \mathbf{X} depend on $\boldsymbol{\theta}$. The likelihood ratio test statistic for $H_{0}: \boldsymbol{\theta} \in \Omega_{0}$ vs. $H_{1}: \boldsymbol{\theta} \in \Omega_{1}$ is

$$
\lambda(\mathbf{X})=\frac{L_{0}^{*}}{L_{1}^{*}}=\frac{\max _{\boldsymbol{\theta} \in \Omega_{0}} L(\mathbf{X} ; \boldsymbol{\theta})}{\max _{\boldsymbol{\theta} \in \Omega_{1}} L(\mathbf{X} ; \boldsymbol{\theta})}
$$

def'n: The likelihood ratio test (LRT) of size α for testing H_{0} vs. H_{1} rejects H_{0} when $\lambda(\mathbf{X})<c$ where c solves $\sup _{\boldsymbol{\theta} \in \Omega_{0}} P_{\boldsymbol{\theta}}(\lambda(\mathbf{X})<c)=\alpha$.

A very important large sample result for LRTs is
thm: For a LRT, if $\Omega_{1} \subset \mathbb{R}^{q}$ and $\Omega_{0} \subset \Omega_{1}$ be r-dimensional where $r<q$, then under some regularity conditions $-2 \log \lambda(\mathbf{X}) \xrightarrow{D} \chi_{q-r}^{2}$.

One-sample normal $H_{0}: \mu=\mu_{0}$

Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \stackrel{i i d}{\sim} N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ where $(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ are unknown. We wish to test $H_{0}: \boldsymbol{\mu}=\boldsymbol{\mu}_{0}$.
Under $H_{0}, \hat{\boldsymbol{\mu}}=\boldsymbol{\mu}_{0}$ and $\hat{\boldsymbol{\Sigma}}=\mathbf{S}+\left(\overline{\mathbf{x}}-\boldsymbol{\mu}_{0}\right)\left(\overline{\mathbf{x}}-\boldsymbol{\mu}_{0}\right)^{\prime}$. Under H_{1}, $\hat{\boldsymbol{\mu}}=\overline{\mathbf{x}}$ and $\hat{\boldsymbol{\Sigma}}=\mathbf{S}$. We will show in class that

$$
-2 \log \lambda(\mathbf{X})=n \log \left\{1+\left(\overline{\mathbf{x}}-\boldsymbol{\mu}_{0}\right)^{\prime} \mathbf{S}^{-1}\left(\overline{\mathbf{x}}-\boldsymbol{\mu}_{0}\right)\right\}
$$

Recall that $(n-1)\left(\overline{\mathbf{x}}-\boldsymbol{\mu}_{0}\right)^{\prime} \mathbf{S}^{-1}\left(\overline{\mathbf{x}}-\boldsymbol{\mu}_{0}\right) \sim T^{2}(p, n-1)$ when H_{0} is true and has a scaled F-distribution.

Head lengths of 1st and 2nd sons

Frets (1921) considers data on the head length and breadth of 1st and 2 nd sons from $n=25$ families. Let $\mathbf{x}_{i}=\left(\mathbf{x}_{i 1}, \mathbf{x}_{i 2}\right)^{\prime}$ be the head lengths (mm) of the first and second son in Frets' data. To test $H_{0}: \boldsymbol{\mu}=(182,182)^{\prime}$ (p. 126) we can use Michail Tsagris'
hotel1T2 function in R. Note that your text incorrectly has $p=3$ rather than $p=2$ in the denominator of the test statistic.

```
install.packages("calibrate")
library("calibrate")
data(heads)
source("http://www.stat.sc.edu/~hansont/stat730/paketo.R")
colMeans(heads)
hotel1T2(heads[,c(1,3)],c(182,182),R=1) # normal theory
```


Bootstrapped p-value

The underlying assumption here is normality. If this assumption is suspect and the sample sizes are small, we can sometimes perform a nonparametric bootstrap.

The bootstrapped approximation to the sampling distribution under H_{0} is simple to obtain. Simply resample the same number(s) of vectors with replacement, forcing H_{0} upon the samples, and compute the sample statistic over and over again. This provides a Monte Carlo estimate of the sampling distribution.

Michail Tsagris' function automatically obtains a bootstrapped p-value via hotel1T2 (heads [, $c(1,3)], c(182,182), R=2000)$. R is the number of bootstrapped samples used to compute the p-value. The larger R is the more accurate the estimate, but the longer it takes.

One-sample normal $H_{0}: \boldsymbol{\Sigma}=\boldsymbol{\Sigma}_{0}$

Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \stackrel{i i d}{\sim} N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ where $(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ are unknown. We wish to test $H_{0}: \boldsymbol{\Sigma}=\boldsymbol{\Sigma}_{0}$.

Under $H_{0}, \hat{\boldsymbol{\mu}}=\overline{\mathbf{x}}$ and $\hat{\boldsymbol{\Sigma}}=\boldsymbol{\Sigma}_{0}$. Under $H_{1}, \hat{\boldsymbol{\mu}}=\overline{\mathbf{x}}$ and $\hat{\boldsymbol{\Sigma}}=\mathbf{S}$. We will show in class that

$$
-2 \log \lambda(\mathbf{X})=n \operatorname{tr} \boldsymbol{\Sigma}_{0}^{-1} \mathbf{S}-n \log \left|\boldsymbol{\Sigma}_{0}^{-1} \mathbf{S}\right|-n p
$$

Note that the statistic depends on the eigenvalues of $\boldsymbol{\Sigma}_{0}^{-1} \mathbf{S}$. Your book discusses small sample results. For large samples we can use the usual $\chi_{p(p+1) / 2}^{2}$ approximation.
cov.equal (heads $[, c(1,3)], \operatorname{diag}(c(100,100))) \quad \#$ 1st hypothesis, p. 127 cov.equal (heads $[, c(1,3)]$, matrix $(c(100,50,50,100), 2,2))$ \# 2nd hypothesis

A parametric bootstrapped p -value can also be obtained here.

The parametric bootstrap conditions on sufficient statistics under H_{0}, typically nuisance parameters, to compute the p-value.
Conditioning on a sufficient statistic is a common approach in hypothesis testing (e.g. Fisher's test of homogeneity for 2×2 tables). Since the sampling distribution relies on the underlying parametric model, a parametric bootstrap may be sensitive to parametric assumptions, unlike the nonparametric bootstrap.

Recall that MLEs are functions of sufficient statistics. The parametric boostrap proceeds by simulating R samples $\mathbf{X}_{r}^{*}=\left[\mathbf{x}_{r 1}^{*} \cdots \mathbf{x}_{r n}^{*}\right]^{\prime}$ of size n from the parametric model under the MLE from H_{0} and computing $\lambda\left(\mathbf{X}_{r}^{*}\right)$. The p -value is $\hat{p}=\frac{1}{R} \sum_{r=1}^{R} I\left\{\lambda\left(\mathbf{X}_{r}^{*}\right)<\lambda(\mathbf{X})\right\}$.
Let's see how this works for the test of $H_{0}: \boldsymbol{\Sigma}=\boldsymbol{\Sigma}_{0}$.

```
Sigma0=matrix(c(100,50,50,100),2,2)
# Sigma0=matrix(c(100,0,0,100),2,2)
lambda=function(x,Sigma0){
    n=dim(x)[1]; p=dim(x) [2]
    SOinv=solve(Sigma0); S=(n-1)*\operatorname{cov}(x)/n
    n*sum(diag(SOinv%*%S)) -n*det(SOinv%*%S)-n*p
}
ts=lambda(heads[,c(1,3)],Sigma0)
xd=heads[,c(1,3)]; n=dim(xd) [1]; p=dim(xd) [2]
xbar=colMeans(heads[,c(1,3)]); SOroot=t(chol(Sigma0)) # MLEs under H0
R=2000; pval=0
for(i in 1:R){
    xd=t(SOroot%*%matrix(rnorm(p*n),p,n)+xbar)
    if(lambda(xd,Sigma0)>ts){pval=pval+1}
}
cat("Parametric bootstrapped p-value = ",pval/R,"\n")
```

Note that parametric bootstraps can take a long time to complete depending on the model, hypothesis, and sample size.

Union-intersection test of $H_{0}: \mu=\mu_{0}$

Often a multivariate hypothesis can be written as the union of univariate hypotheses. $H_{0}: \boldsymbol{\mu}=\boldsymbol{\mu}_{0}$ holds $\Leftrightarrow H_{0 \mathbf{a}}: \mathbf{a}^{\prime} \boldsymbol{\mu}=\mathbf{a}^{\prime} \boldsymbol{\mu}_{0}$ holds for every $\mathbf{a} \in \mathbb{R}^{p}$. In this sense, $H_{0}=\cap_{\mathbf{a} \in \mathbb{R}^{p}} H_{0 \mathbf{a}}$.

For each a we have a simple univariate hypothesis, based on univariate data $\mathbf{a}^{\prime} \mathbf{x}_{1}, \ldots, \mathbf{a}^{\prime} \mathbf{x}_{n} \stackrel{i i d}{\sim} N\left(\mathbf{a}^{\prime} \boldsymbol{\mu}, \mathbf{a}^{\prime} \boldsymbol{\Sigma} \mathbf{a}\right)$, and testable using the usual t-test

$$
t_{\mathbf{a}}=\frac{\mathbf{a}^{\prime} \overline{\mathbf{x}}-\mathbf{a}^{\prime} \boldsymbol{\mu}_{0}}{\sqrt{\mathbf{a}^{\prime} \mathbf{S}_{u} \mathbf{a} / n}}
$$

We reject $H_{0 \mathbf{a}}$ if $\left|t_{\mathbf{a}}\right|>t_{n-1}\left(1-\frac{\alpha}{2}\right)$, which means we reject H_{0} if any $\left|t_{\mathbf{a}}\right|>t_{n-1}\left(1-\frac{\alpha}{2}\right)$, i.e. the union of all rejection regions, which happens when $\max _{\mathbf{a} \in \mathbb{R}^{p}}\left|t_{\mathbf{a}}\right|>t_{n-1}\left(1-\frac{\alpha}{2}\right)$.

UIT of $H_{0}: \mu=\mu_{0}$, continued

Squaring both sides of $\max _{\mathbf{a} \in \mathbb{R}^{p}}\left|t_{\mathbf{a}}\right|>t_{n-1}\left(1-\frac{\alpha}{2}\right)$, the multivariate test statistic can be rewritten

$$
\max _{\mathbf{a} \in \mathbb{R}^{P}} t_{\mathbf{a}}^{2}=\max _{\mathbf{a} \in \mathbb{R}^{\rho}}(n-1) \frac{\mathbf{a}^{\prime}\left(\overline{\mathbf{x}}-\boldsymbol{\mu}_{0}\right)\left(\overline{\mathbf{x}}-\boldsymbol{\mu}_{0}\right)^{\prime} \mathbf{a}}{\mathbf{a}^{\prime} \mathbf{S a}}=(n-1)\left(\overline{\mathbf{x}}-\boldsymbol{\mu}_{0}\right)^{\prime} \mathbf{S}^{-1}\left(\overline{\mathbf{x}}-\boldsymbol{\mu}_{0}\right),
$$

the one-sample Hotelling's T^{2}. We used a maximization result from Chapter 4 here.

For $H_{0}: \boldsymbol{\mu}=\boldsymbol{\mu}_{0}$, the LRT and the UIT give the same test statistic.

Here, $\mathbf{r} \in \mathbb{R}^{q}$. From Chapter 4 we have
$\hat{\boldsymbol{\mu}}=\overline{\mathbf{x}}-\mathbf{S R}^{\prime}\left[\mathbf{R S R}^{\prime}\right]^{-1}(\mathbf{R} \overline{\mathbf{x}}-\mathbf{r})$. We can then show

$$
(n-1)\left[\lambda(\mathbf{X})^{-2 / n}-1\right]=(n-1)(\mathbf{R} \overline{\mathbf{x}}-\mathbf{r})^{\prime}\left(\mathbf{R S} \mathbf{R}^{\prime}\right)^{-1}(\mathbf{R} \overline{\mathbf{x}}-\mathbf{r})
$$

Your book shows that $(n-1)\left[\lambda(\mathbf{X})^{-2 / n}-1\right] \sim T^{2}(q, n-1)$. This is a special case of the general test discussed in Chapter 6.

- If $\boldsymbol{\mu}^{\prime}=\left(\boldsymbol{\mu}_{1}^{\prime}, \boldsymbol{\mu}_{2}^{\prime}\right)$, then $H_{0}: \boldsymbol{\mu}_{2}=\mathbf{0}$ is this type of test where $\mathbf{R}=\left[\begin{array}{ll}\mathcal{I} & \mathbf{0}\end{array}\right]$ and $\mathbf{r}=\mathbf{0}$.
- $H_{0}: \boldsymbol{\mu}=\kappa \boldsymbol{\mu}_{0}$ where $\boldsymbol{\mu}_{0}$ is given is also a special case. Here, the $k=p-1$ rows of \mathbf{R} are orthogonal to μ_{0} and $\mathbf{r}=\mathbf{0}$.

The UIT gives the same test statistic.

Test for sphericity $H_{0}: \boldsymbol{\Sigma}=\kappa \boldsymbol{I}_{p}$

On p. 134, MKB derive

$$
-2 \log \lambda(\mathbf{X})=n p \log \left\{\frac{\frac{1}{p} \operatorname{tr} \mathbf{s}}{|\mathbf{S}|^{1 / p}}\right\} .
$$

Asymptotically, this is $\chi_{(p-1)(p+2) / 2}^{2}$.

```
ts=function(x){
    n=dim(x) [1]; p=dim(x) [2]
    S=cov(x)*(n-1)/n
    d=n*p*(log(sum(diag(S))/p)-log(\operatorname{det}(S))/p)
    cat("Asymptotic p-value = ",1-pchisq(d,0.5*(p-1)*(p+2)),"\n")
}
ts(heads)
```

A parametric bootstrap can also be employed. R has mauchly.test built in for testing sphericity.

Testing $H_{0}: \boldsymbol{\Sigma}_{12}=\mathbf{0}$, i.e. $\mathbf{x}_{1 i}$ indep. $\mathbf{x}_{2 i}$

Let $\mathbf{x}_{i}^{\prime}=\left(\mathbf{x}_{1}^{\prime}, \mathbf{x}_{2 i}^{\prime}\right)$, where $\mathbf{x}_{1 i} \in \mathbb{R}^{p_{1}}, \mathbf{x}_{2 i} \in \mathbb{R}^{p_{2}}$ and $p_{1}<p_{2}$. We can always rearrange elements via a permutation matrix to test any subset is indpendent of another subset. Partition $\boldsymbol{\Sigma}$ and \mathbf{S} accordingly. MKB (p. 135) find

$$
-2 \log \lambda(\mathbf{X})=-n \log \prod_{i=1}^{p_{1}}\left(1-\lambda_{i}\right)=-n \log \left|\mathcal{I}-\mathbf{S}_{11}^{-1} \mathbf{S}_{12} \mathbf{S}_{22}^{-1} \mathbf{S}_{21}\right|
$$

where λ_{i} are the e-values of $\mathbf{S}_{11}^{-1} \mathbf{S}_{12} \mathbf{S}_{22}^{-1} \mathbf{S}_{21}$.
Exactly, $\lambda^{2 / n} \sim \Lambda\left(p_{1}, n-1-p_{2}, p_{2}\right)$ assuming $n-1 \geq p$. When both $p_{i}>2$ we can use $-\left(n-\frac{1}{2}(p+3)\right) \log \left|\mathcal{I}-\mathbf{S}_{11}^{-1} \mathbf{S}_{12} \mathbf{S}_{22}^{-1} \mathbf{S}_{21}\right| \sim \chi_{p_{1} p_{2}}^{2}$.
If $p_{1}=1$ then $-2 \log \lambda=-n \log \left(1-R^{2}\right)$ where R^{2} is the sample multiple correlation coefficient between $x_{1 i}$ and $\mathbf{x}_{2 i}$, discussed in the next Chapter.
The UIT gives the largest e-value λ_{1} of $\mathbf{S}_{11}^{-1} \mathbf{S}_{12} \mathbf{S}_{22}^{-1} \mathbf{S}_{21}$ as the test statistic, different from the LRT.

Head length/breadth data

Say we want to test that the head/breadths are independent between sons. Let $\mathbf{x}_{i}=\left(x_{i 1}, x_{i 2}, x_{i 3}, x_{i 4}\right)^{\prime}$ be the 1 st son's length \& breadth followed by the 2nd son's. We want to test $H_{0}: \boldsymbol{\Sigma}=\left[\begin{array}{cc}\boldsymbol{\Sigma}_{11} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Sigma}_{22}\end{array}\right]$ where all submatrices are 2×2.

S=24*cov(heads) $/ 25$
S2=solve (S [1:2, 1:2]) $\% * \%$ S [1:2, 3:4] \% *\%solve (S [3:4, 3:4]) $\% * \%$ [3:4, 1:2]
$\mathrm{ts}=\operatorname{det}(\operatorname{diag}(2)-\mathrm{S} 2) \quad \#^{\sim} \mathrm{WL}(\mathrm{p} 1, \mathrm{n}-1-\mathrm{p} 2, \mathrm{p} 2)=\mathrm{WL}(2,22,2)$
\# p. 83 => (21/2)*(1-sqrt(ts))/sqrt(ts) $\sim(4,42)$
$1-\mathrm{pf}((21 / 2) *(1-\mathrm{sqrt}(\mathrm{ts})) / \mathrm{sqrt}(\mathrm{ts}), 4,42)$
ats=-(25-0.5*7)*log(ts) \# ~chisq(4) asymptotically
1-pchisq(ats,4) \# asymptotics work great here!
What do we conclude about how head shape is related between 1st and 2 nd sons?

$H_{0}: \boldsymbol{\Sigma}$ is diagonal

We may want to test that all variables are independent. Under H_{0} $\hat{\boldsymbol{\mu}}=\overline{\mathbf{x}}$ and $\hat{\boldsymbol{\Sigma}}=\operatorname{diag}\left(s_{11}, \ldots, s_{p p}\right)$. Then

$$
-2 \log \lambda(\mathbf{X})=-n \log |\mathbf{R}| .
$$

This is approximately $\chi_{p(p-1) / 2}^{2}$ in large samples. The parametric bootstrap can be used here as well.

1-pchisq(-25*log(det(cov2cor(S))),6)

One-way MANOVA, LRT

Want to test $H_{0}: \boldsymbol{\mu}_{1}=\cdots=\boldsymbol{\mu}_{k}$ assuming $\boldsymbol{\Sigma}_{1}=\cdots=\boldsymbol{\Sigma}_{k}=\boldsymbol{\Sigma}$.
Under $H_{0}, \hat{\boldsymbol{\mu}}=\overline{\mathbf{x}}$ and $\hat{\boldsymbol{\Sigma}}_{0}=\mathbf{S}$ from the entire sample. Under H_{a}, $\hat{\boldsymbol{\mu}}_{i}=\overline{\mathbf{x}}_{i}$ and $\hat{\boldsymbol{\Sigma}}_{a}=\frac{1}{n} \sum_{i=1}^{k} n_{i} \mathbf{S}_{i}$. Here, $n=n_{1}+\cdots+n_{k}$. Then

$$
\lambda(\mathbf{X})^{2 / n}=\frac{\left|\hat{\boldsymbol{\Sigma}}_{a}\right|}{\left|\hat{\boldsymbol{\Sigma}}_{0}\right|}=\frac{|\mathbf{W}|}{|\mathbf{T}|}=\left|\mathbf{W T}^{-1}\right|,
$$

where $\mathbf{T}=n \mathbf{S}$ is the total sums of squares and cross products (SSCP) and $\mathbf{W}=\sum_{i=1}^{k} n_{i} \mathbf{S}_{i}$ is the SSCP for error, or within groups SSCP. The SSCP for regression is $\mathbf{B}=\mathbf{T}-\mathbf{W}$, or between groups. Then

$$
\lambda(\mathbf{X})^{2 / n}=\frac{|\mathbf{W}|}{|\mathbf{B}+\mathbf{W}|}=\frac{1}{\left|\mathcal{I}_{p}+\mathbf{W}^{-1} \mathbf{B}\right|}
$$

A bit different than usual F-test

When $p=1$ we have

$$
\lambda(\mathbf{X})^{2 / n}=\frac{1}{\left|\mathcal{I}_{p}+\mathbf{W}^{-1} \mathbf{B}\right|}=\frac{1}{1+\frac{S S R}{S S E}}=\frac{1}{1+\frac{k-1}{n-p} F^{*}},
$$

where $F^{*}=\frac{M S R}{M S E}$.
The usual F-statistic is a monotone function of $\lambda(\mathbf{X})$ and vice-versa. For $p=1, \lambda(\mathbf{X})$ is distributed beta.

ANOVA decomposition

Let $\mathbf{X}(n \times p)^{\prime}=\left[\mathbf{X}_{1}^{\prime} \cdots \mathbf{X}_{k}^{\prime}\right]$ be the k d.m. stacked on top of each other.

Recall that for $p=1$

$$
S S E=\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(x_{i j}-\bar{x}_{i}\right)^{2}=\mathbf{X}^{\prime}\left[\mathcal{I}_{n}-\mathbf{P}_{\mathbf{Z}}\right] \mathbf{X} \stackrel{\text { def }}{=} \mathbf{X}^{\prime} \mathbf{C}_{1} \mathbf{X}
$$

where $\mathbf{P}_{\mathbf{Z}}=\mathbf{Z}\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1} \mathbf{Z}^{\prime}$ and $\mathbf{Z}=\operatorname{block}-\operatorname{diag}\left(\mathbf{1}_{n_{1}}, \ldots, \mathbf{1}_{n_{k}}\right)$.
For $p>1$ it is the same!

$$
\mathbf{E}=\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(\mathbf{x}_{i j}-\overline{\mathbf{x}}_{i}\right)\left(\mathbf{x}_{i j}-\overline{\mathbf{x}}_{i}\right)^{\prime}=\mathbf{X}^{\prime}\left[\mathcal{I}_{n}-\mathbf{P}_{\mathbf{Z}}\right] \mathbf{X}=\mathbf{X}^{\prime} \mathbf{C}_{1} \mathbf{X}
$$

Note that $\mathbf{P}_{\mathbf{Z}}=\operatorname{block}-\operatorname{diag}\left(\frac{1}{n_{1}} \mathbf{1}_{n_{1}} \mathbf{1}_{n_{1}}^{\prime}, \ldots, \frac{1}{n_{k}} \mathbf{1}_{n_{k}} \mathbf{1}_{n_{k}}^{\prime}\right)$.

ANOVA decomposition

Similarly, for $p=1$

$$
S S R=\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(\bar{x}_{i}-\bar{x}\right)^{2}=\mathbf{X}^{\prime}\left[\mathbf{P}_{\mathbf{Z}}-\mathbf{P}_{\mathbf{1}_{n}}\right] \mathbf{X} \stackrel{\text { def }}{=} \mathbf{X}^{\prime} \mathbf{C}_{2} \mathbf{X}
$$

where $\mathbf{P}_{\mathbf{1}_{n}}=\frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{\prime}$. This generalizes for $p>1$ to

$$
\mathbf{B}=\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(\overline{\mathbf{x}}_{i}-\overline{\mathbf{x}}\right)\left(\overline{\mathbf{x}}_{i}-\overline{\mathbf{x}}\right)^{\prime}=\mathbf{X}^{\prime}\left[\mathbf{P}_{\mathbf{Z}}-\mathbf{P}_{\mathbf{1}_{n}}\right] \mathbf{X}=\mathbf{X}^{\prime} \mathbf{C}_{2} \mathbf{X}
$$

ANOVA decomposition

Finally, for $p=1$ we have

$$
S S T=\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(x_{i j}-\bar{x}\right)^{2}=\mathbf{X}^{\prime}\left[\mathcal{I}_{n}-\mathbf{P}_{\mathbf{1}_{n}}\right] \mathbf{X}
$$

which generalizes for $p>1$ to

$$
\mathbf{T}=\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(\mathbf{x}_{i j}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{i j}-\overline{\mathbf{x}}\right)^{\prime}=\mathbf{X}^{\prime}\left[\mathcal{I}_{n}-\mathbf{P}_{\mathbf{1}_{n}}\right] \mathbf{X}
$$

Now note that

$$
\begin{aligned}
\mathbf{T} & =\mathbf{X}^{\prime}\left[\mathcal{I}_{n}-\mathbf{P}_{\mathbf{1}_{n}}\right] \mathbf{X}=\mathbf{X}^{\prime}\left[\mathcal{I}_{n}-\mathbf{P}_{\mathbf{Z}}+\mathbf{P}_{\mathbf{Z}}-\mathbf{P}_{\mathbf{1}_{n}}\right] \mathbf{X} \\
& =\mathbf{X}^{\prime}\left[\mathcal{I}_{n}-\mathbf{P}_{\mathbf{Z}}\right] \mathbf{X}+\mathbf{X}^{\prime}\left[\mathbf{P}_{\mathbf{Z}}-\mathbf{P}_{\mathbf{1}_{n}}\right] \mathbf{X} \\
& =\mathbf{E}+\mathbf{B}
\end{aligned}
$$

One-way MANOVA, LRT

Note that \mathbf{X} d.m. $N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ under $H_{0}: \boldsymbol{\mu}_{1}=\cdots \boldsymbol{\mu}_{k}$. Then $\mathbf{W}=\mathbf{X}^{\prime} \mathbf{C}_{1} \mathbf{X}, \mathbf{B}=\mathbf{X}^{\prime} \mathbf{C}_{2} \mathbf{X}$, where \mathbf{C}_{1} and \mathbf{C}_{2} are projection matrices of ranks $n-k$ and $k-1$, and $\mathbf{C}_{1} \mathbf{C}_{2}=\mathbf{0}$. Using Cochran's theorem and Craig's theorem,

$$
\mathbf{W} \sim W_{p}(\boldsymbol{\Sigma}, n-k) \text { indep. } \mathbf{B} \sim W_{p}(\boldsymbol{\Sigma}, k-1)
$$

so then

$$
\lambda^{2 / n} \sim \Lambda(p, n-k, k-1)
$$

under H_{0} provided $n \geq p+k$.

One-way MANOVA, UIT

On p. 139 your book argues that the test statistic for the UIT is the largest e-value of $\mathbf{W}^{-1} \mathbf{B}$.

The LRT and UIT lead to different test statistics, but they are based on the same matrix. There are actually four statistics in common use in multivariate regression settings.

Let $\lambda_{1}>\cdots>\lambda_{p}$ be e-values from $\mathbf{W}^{-1} \mathbf{B}$. Then Roy's greatest root is λ_{1}, Wilk's lambda is $\prod_{i=1}^{p} \frac{1}{1+\lambda_{i}}$, Pillai-Bartlett trace is $\sum_{i=1}^{p} \frac{\lambda_{i}}{1-\lambda_{i}}$, and Hotelling-Lawley trace is $\sum_{i=1}^{p} \lambda_{i}$. Note that the one-way model is a special case of the general regression model in Chapter 6. MANOVA is further explored in Chapter 12.

The Hotelling's two-sample test of $H_{0}: \mu_{1}=\boldsymbol{\mu}_{2}$ is a special case of MANOVA where $k=2$. In this case, Wilk's lambda boils down to

$$
\lambda^{2 / n}=1+n_{1} n_{2}\left(\overline{\mathbf{x}}_{1}-\overline{\mathbf{x}}_{2}\right)^{\prime} \mathbf{S}_{u}^{-1}\left(\overline{\mathbf{x}}_{1}-\overline{\mathbf{x}}_{2}\right) .
$$

The last term differs from the Hotelling's two-sample test statistic by a factor of n.

Behrens-Fisher problem

How to compare two means $H_{0}: \boldsymbol{\mu}_{1}=\boldsymbol{\mu}_{2}$ when $\boldsymbol{\Sigma}_{1} \neq \boldsymbol{\Sigma}_{2}$? A standard LRT approach works but requires numerical optimization to obtain the MLEs; your book describes an iterative procedure.

The UIT approach fares better here. On pp. 143-144 a UIT test procedure is described that yields a test statistic that is approximately distributed Hotelling's T^{2} with $d f$ computed using Welch's (1947) approximation. Tsagris rather implements an approach due to James (1954).

Behrens-Fisher problem

An alternative, for $k \geq 2$, is to test
$H_{0}: \boldsymbol{\mu}_{1}=\cdots=\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{1}=\cdots=\boldsymbol{\Sigma}_{k}$ (complete homogeneity) vs. the alternative that the means and covariances are all different.
This is the hypothesis that data all come from one population vs.
k separate populations. MKB pp. 141-142 show
$-2 \log \lambda=n \log \left|\frac{1}{n} \sum_{i=1}^{k} n_{i} \mathbf{S}_{i}\right|-\sum_{i=1}^{k} n_{i} \log \left|\mathbf{S}_{i}\right|$. This is
asymptotically $\chi_{p(k-1)(p+3) / 2}^{2}$.
The James (1954) approach can be extended to $k \geq 2$; Tsagris implements this in maovjames.

```
library(reshape) # need to turn $\by$ into $\bY$.
library(car) # allows for multivariate linear hypotheses
library(heavy) # has dental data
data(dental)
d2=cast(melt(dental,id=c("Subject","age","Sex")),Subject+Sex~age)
names(d2)[3:6]=c("d8","d10","d12","d14")
# Hotelling's T-test, exact p-value and bootstrapped
hotel2T2(d2[d2$Sex=='Male', 3:6] ,d2[d2$Sex=='Female', 3:6] ,R=1)
hotel2T2(d2[d2$Sex=='Male', 3:6],d2[d2$Sex=='Female', 3:6] ,R=2000)
# MANOVA gives same p-value as Hotelling's parametric test
f=lm(cbind(d8,d10,d12,d14) ~Sex,data=d2)
summary(Anova(f))
# James' T-tests do not assume the same covariance matrices
james(d2[d2$Sex=='Male',3:6],d2[d2$Sex=='Female', 3:6],R=1)
james(d2[d2$Sex=='Male',3:6],d2[d2$Sex=='Female', 3:6] ,R=2000)
```


Here's a one-way MANOVA on the iris data.

```
library(car)
scatterplotMatrix(~Sepal.Length+Sepal.Width+Petal.Length+Petal.Width|Species,
    data=iris,smooth=FALSE,reg.line=F,ellipse=T,by.groups=T,diagonal="none")
f=lm(cbind(Sepal.Length,Sepal.Width,Petal.Length,Petal.Width) ~Species,
    data=iris)
summary(Anova(f))
f=manova(cbind(Sepal.Length,Sepal.Width,Petal.Length,Petal.Width)~
    data=iris)
summary(f) # can ask for other tests besides Pillai
maovjames(iris[,1:4],as.numeric(iris$Species), R=1000) # bootstrapped
```


Homogeneity of covariance

Now we test $H_{0}: \boldsymbol{\Sigma}_{1}=\cdots=\boldsymbol{\Sigma}_{k}$ in the general model with differing means and covariances. Your book argues

$$
-2 \log \lambda(\mathbf{X})=n \log |\mathbf{S}|-\sum_{i=1}^{k} n_{i} \log \left|\mathbf{S}_{i}\right|=\sum_{i=1}^{k} n_{i} \log \left|\mathbf{S}_{i}^{-1} \mathbf{S}\right| .
$$

Asymptotically, this has a $\chi_{p(p+1)(k-1) / 2}^{2}$ distribution. Using Tsagris' functions, try

```
cov.likel(iris[1:4],as.numeric(iris$Species))
cov.Mtest(iris[1:4],as.numeric(iris$Species)) # Box's M-test
```

Your book discusses that the test can be improved in smaller samples (Box, 1949).

Non-normal data

MKB suggest the use of multivariate skew and kurtosis as statistics for assessing multivariate normality. (p. 149).

They further point out that, broadly, for non-normal data the normal-theory tests on means are sensitive to $\beta_{1, p}$ whereas tests on covariance are sensitive to $\beta_{2, p}$.
Both tests, along with some others, are performed in the the MVN package. They are also in the psych package.

```
library(MVN)
cork=read.table("http://www.stat.sc.edu/~hansont/stat730/cork.txt",header=T)
mardiaTest(cork,qqplot=T)
```

Another option is to examine the sample Mahalanobis distances $D_{i}^{2}=\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{\prime} \mathbf{S}^{-1}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)$, or stratified versions of these for multi-sample situations. These are approximately χ_{p}^{2}. The mardiaTest function provides a Q-Q plot of the M-distances compared to what is expected under multivariate normality.

