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The likelihood

We have Jid data, at least initially. Each datum comes from a pdf
or pmf indexed by 6:
X1,...,Xp id f(xi; 0).

The likelihood of @ is simply the joint distribution of X, as a
function of 6:

L(X;0) = ﬁ f(xi; 0).
i=1

The log-likelihood is the log of the likelihood:

I(X; 0) = Zn: log f(x;; 0).
i=1

)
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Log-likelihood of multivariate normal data

Note that
P O B D L DR O S SO
i=1 i=1
= i(x,fi)/}: (xi —X)+nxX—p)x 1(xfl.lf)+0
i=1
= tr{Z(x, —%)'E 7 (- x)} n®—p)TH&— p)
= tr{zrl(x; —R)(x; —i)’} +oE— p) =7 % - @)
i=1
= tr{nZ_ls}Jrn(ifu)/}:_l(ifu.).
So y
II
X1y... ~ N ( Z)
implies

I(X; p, X) = —Zlog [27X| — 2trE 1S — 2(x — p)' T (x — p).



Matrix differentiation

Let f: R™P — R. Then a(x) is the n x p matrix with jjth entry
of (X)
(9X,'j )

If x € R" is a vector, then 8g(xx) € R" is called the gradient. The
(symmetric) matrix of second partials H = [gigij)} is called the

Hessian.

If h(x) = [h1(x) - - - he(x)] € R1¥9 then D) is the p x ¢ matrix

with ijth element Oh; (X).



Score function

In general, the score function is

s(X; 0) = ZI(X;0) =

Note that if @ € ® C RP then s € RP.

As a function of X, s is random. V/(s) = F is called the Fisher
information matrix.



Expectation of s

thm: Let t € RY be a function of X and 8. Then under some
regularity conditions

E(st') = %E(t’) - E <gg) :

| Proof|: By definition E{t(X;8)'} = [t(X; 8)'L(X;8)dX.
Differentiate both sides, right side using product rule, subtract off
first portion of right-hand side:

00
s(X;0)L(X;0)

Note that E(st’) € RP*9.
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Corollaries

Corollary: E(s) = 0.

|Proof |: Let t =[1]. O

Corollary: Let t = t(X) only and E(t) = 6 then E(st’) = Z,.

[Proof: 2 —0.

Corollary: F = V(s) = —E (%) = £ (| Z55x] ).



Information

The Fisher information F is the expected matrix of negative 2nd
partials of log L(X; 0). It has information on the average curvature
of L(X;0) at 6.

For example, if x1,...,x, i N(u,0?), where o is known, then

F = [5]. The larger this is, the more “peaked” L(X;0) is at

[t = Xx. This happens when either n gets large or o gets small.

Intuitively, when o gets small there is more information for each
piece of data for u, so the curvature increases.



Maximization result

thm: Let A(p x p) and B > 0 be symmetric. The maximum
(minimum) of x’Ax given xX'Bx = 1 is given when x is the e-vector
corresponding to the largest (smallest) e-value of B~1A. That is,
maxyx X'’Ax = A; and minyxX’Ax = X\, where \; > --- > ), are
e-values of B71A.

| Proof|: Let y = BY/2x. Want max, y'B~'/2AB~'/2y subject to
y'y = 1. Now take B~1/2AB~Y/2 = Al and z = I"y. Then

Z'z =y'y and we want max, zZ’Az = Y""_| \;z? subject to 2’z = 1.
Then we have max Y%, A\izZ < A1 3.7, z2 = \; and this bound
is attained when z = (1,0,...,0), y = Y@y, and x = B—1/2,7(1)_
B~'A and B-/2AB~1/2 have the same e-values and

x = 71y = B71/25(y) is the e-vector of B™'A corresponding to
A1. Minimization proceeds similarly. O



Maximization result, continued

lemma: Let a € RP s.t. a # 0. Then ||a||? is the only nonzero
e-value of aa’ with corresponding e-vector il We will show this

) la
in class.

Corollary: For x¥'Bx = 1, maxxa’x = va’B~1a and
maxx{(a'x)2/(x'Bx)} = a’B~!a and the maximum attained at
x =B 'a/Vva’B-la. |Proof| Use x’Ax = x'[aa’]x. O

Corollary: maxa-g ::% = A1 and ming»g ::% = \p as before,
attained at a = y(;) & a = 7(,,) from B™'A.

: Proceeds exactly as in the theorem. O
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Cramér-Rao lower bound

How good can an unbiased estimated of 8 be?

thm: If t = t(X) s.t. E(t) = 0 based on regular likelihood
function, then V(t) > F~1.

A > B < a’Aa > a’Ba for all a. Standard covariance result gives
C(a't,c's) = a'C(t,s)c = a’c (corollary two slides ago) and
V(c's) = c'V(s)c = c’Fc. Then

2 (a’c)?
corr (a/t,cls) = W S 1.

Maximizing this w.r.t. ¢ subject to ¢'Fc =1 (last slide) gives

a'Fla
<1,
a'V(t)a —

for alla. O
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What statistics have all the information for 87
def'n t = t(X) is sufficient for 8 < L(X; 0) = g(t; )h(X).
Note that s depends on X only through t.

A sufficient statistic is minimal sufficient if it is a function of every
other sufficient statistic. Rao-Blackwell (Lehmann-Scheffé
elsewhere) theorem says if a minimal sufficient statistic is also
complete, then any unbiased estimator that is a function of the
minimal sufficient statistic is the unique minimum variance
unbiased estimator (MVUE).

Recall: t complete < E{g(t)} =0 all 8 = Pg{g(t) =0} =1 all
6. Hard to show in general, but exponential families often have
complete statistics.

thm: X and S are complete for Ny(u, X).

12/23



Normal example: sufficiency

For iid normal data

X1y...yXpn %7, Np(uaz)a

we have

L(X; 1, E) = [27Z| " exp {—2rEZ 'S — 2(x — p) T H(x — )} .

So (X, S) are sufficient for (p, X); they are also minimally sufficient
complete, although the book doesn't discuss this much. So X is

MVUE of p and -5S is MVUE of X.
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Maximum likelihood estimation

def’n: The MLE 8 is argmaxg.gL(X; 8).
e s =0 at §. Since s is a function of a sufficient statistic, so is
0. That is, 8 = argmaxgcg(t; 8)h(X), maximized at
function of t.

e If f(x; @) satisfies regularity conditions then
V(6 —6) 2 N,(0, F~1) where F is Fisher information for
one observation. This is for /id data; a similar result holds for
independent but not identically distributed, e.g. regression
data.

e This implies 6 £ 0 under mild conditions.

0 0is asymptotically unbiased and efficient. Hence the
popularity of MLEs. Note that moment-based estimators are
also typically asymptotically unbiased but not necessarily
efficient.
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Minimization result

First note (p. 478) that

da’x Ox'x Ox' Ax , Ox' Ay
ox T r ax T ox = (A+A)x Ox =A

Any of these are shown by expanding the forms into sums, taking
derivatives, then recognizing the sums as matrix products.

thm: The x which minimizes f(x) = (y — Ax)’(y — Ax) solves
A'Ax = Aly.

| Proof]

f
g = aa[y’y —2xX'A'y + xX'A'Ax] = 0 — 2A'y + 2A'Ax.
X X

Set equal to zero and solve. Note that the 2nd derivative matrix
2A’A > 0 so sol'n is minimum. O
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Maximization result

thm For any A > 0, f(X) = |Z| "2 exp{—3tr Z~'A} is
maximized by ¥ = 1A,

: Write log f(£A) — log f(X) = 3np(a — 1 — log g) where
a=tr X 'A/np and g = |2 X 'A|V/P are the arithmetic and
geometric means of the e-values of %Z_lA. All e-values are
positive and a— 1 —log g > 0 so f(+A) > f(X) for all £ > 0. O
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MLEs for normal data: unconstrained

Take x1,...,X xn RN b(p, X). Assume X > 0. Recall

I(X; p, ) = —g log |27 E| — gtr >ls - g(x W)= R - p).
First consider p. As a function of w, /(X; u, X) is maximized (for
any X) when
(% — Y E 1% — p) = (T2 — - 2u)[(E1/2% — £1/2p)]
is minimized. (Either stare at it or take the first partials w.r.t. p.)
The minimization result two slides ago implies this occurs when
T lx=%"1u, so fr =% It remains to maximize
L(X; f1, X) = c[2nX|"/? exp{—2tr Z~'S}, but we have =5
from the last slide.
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MLEs for normal data: constrained

If o = pg is known a priori, £ =S + (X — o) (X — po)’ by
maximizing
L(X; s, T) = c[E|7"Z exp{—5tr T[S + n(X — po)(% — po)']}-

If ¥ =% is known, fi = X as before.

We will use these results in simple hypothesis testing in Chapter 5.
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Normal data: MLEs under various constraints

pnyS~1x
oS~ g
e Know Ru = r (linear constraints) where (r, R are given. Then
fi =% — SR'[RSR']"}(Rx —r).
Both of these assume X unknown: if X known — which will never
happen — replace S with X in the above expressions.

o Know X = kXg. Then i =% and # = tr £,'S/p (p. 107).

0 X

@ Know it = kg where pg is given. Then & =

e Know X = [ ] i.e. xj1 indep. x;» for all

Siu O
0 Sx» |
o If have X;(n; x p) indep. d.m. from N,(p; X), i=1,... k,

N & kK e
then fi; = Xj and X = [ ——— > i1 niSi.

x: = (x1,X},). Then ) - [
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Bayesian inference

Bayesian inference treats @ as random and assigns 6 a prior
distribution. Inference is then based on the distribution of 6
updated by the data, i.e. the posterior density

p(X[0)p(6)

p(o1x) = 20

x L(X; 0)p(0).

For normal data »
11
X1y.--5Xp ™~ Np(ua Z)a

u is typically thought about independently of X so
p(p, X) = p(p)p(X).

20/23



Bayesian inference: Priors on p and

Common priors for p include g ~ Ny(m, V) and the improper flat
prior p(p) o< 1.

Common priors for X include T~! ~ W,(A, a) and the improper
prior p(E) o |£|~(P+1/2,

The density of M ~ W,,(A, m) is given by

|M|(m=p=1)/2 exp(—3trA~1M)

M) = .
PN = g 2elo A A2 12, F((m + 1 1)
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Bayesian inference: Gibbs sampling

Although it is possible to explicitly obtain the posterior for p|X (it
is a multivariate t distribution, p. 110), we shall use a more
common approach to obtaining posterior inference, Gibbs
sampling.

Gibbs sampling for normal data iteratively samples the two full
conditional distributions [|E, X] and [E£|u, X]. Let p® be given.
Then the jth iterate is sampled [X/|p/~1, X] then [/ |X/, X] for

Jj=1,...,J where J is some large number. The iterates
{(W/,2) le form a dependent sample from the joint posterior
[, Z|X].



Bayesian inference: Gibbs sampling, normal model

Assume p ~ N,(m, V) indep. T ~ W,(A,a). In your homework
you will show

T X~ Ny([nE L+ VU nE %+ V im], [nZ 1+ VY,
K P

and

-1
n
X~ Wy | AT D (= p)(xi—p) | akn
i=1
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