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The likelihood

We have iid data, at least initially. Each datum comes from a pdf
or pmf indexed by θ:

x1, . . . , xn
iid∼ f (xi ;θ).

The likelihood of θ is simply the joint distribution of X, as a
function of θ:

L(X;θ) =
n∏

i=1

f (xi ;θ).

The log-likelihood is the log of the likelihood:

l(X;θ) =
n∑

i=1

log f (xi ;θ).
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Log-likelihood of multivariate normal data

Note that

n∑
i=1

(xi − µ)′Σ−1(xi − µ) =
n∑

i=1

(xi − x̄ + x̄− µ)′Σ−1(xi − x̄ + x̄− µ)

=
n∑

i=1

(xi − x̄)′Σ−1(xi − x̄) + n(x̄− µ)′Σ−1(x̄− µ) + 0

= tr


n∑

i=1

(xi − x̄)′Σ−1(xi − x̄)

 + n(x̄− µ)′Σ−1(x̄− µ)

= tr


n∑

i=1

Σ−1(xi − x̄)(xi − x̄)′

 + n(x̄− µ)′Σ−1(x̄− µ)

= tr{nΣ−1S} + n(x̄− µ)′Σ−1(x̄− µ).

So
x1, . . . , xn

iid∼ Np(µ,Σ)

implies

l(X;µ,Σ) = −n
2 log |2πΣ| − n

2 trΣ−1S− n
2 (x̄− µ)′Σ−1(x̄− µ).
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Matrix differentiation

Let f : Rn×p → R. Then ∂f (X)
∂X is the n × p matrix with ijth entry

∂f (X)
∂xij

.

If x ∈ Rn is a vector, then ∂f (x)
∂x ∈ Rn is called the gradient. The

(symmetric) matrix of second partials H =
[
∂2f (x)
∂xi∂xj

]
is called the

Hessian.

If h(x) = [h1(x) · · · hq(x)] ∈ R1×q then ∂h(x)
∂x is the p × q matrix

with ijth element ∂hi (x)
∂xj

.
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Score function

In general, the score function is

s(X;θ) = ∂
∂θ l(X;θ) =

1

L(X;θ)
∂
∂θL(X;θ).

Note that if θ ∈ Θ ⊂ Rp then s ∈ Rp.

As a function of X, s is random. V (s) = F is called the Fisher
information matrix.
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Expectation of s

thm: Let t ∈ Rq be a function of X and θ. Then under some
regularity conditions

E (st′) =
∂

∂θ
E (t′)− E

(
∂t′

∂θ

)
.

Proof : By definition E{t(X;θ)′} =
∫

t(X;θ)′L(X;θ)dX.
Differentiate both sides, right side using product rule, subtract off
first portion of right-hand side:

∂E{t(X;θ)′}
∂θ =

∫ ∂t(X;θ)′

∂θ L(X;θ) + ∂L(X;θ)
∂θ︸ ︷︷ ︸

s(X;θ)L(X;θ)

t(X;θ)′

 dX.2

Note that E (st′) ∈ Rp×q.
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Corollaries

Corollary: E (s) = 0.

Proof : Let t = [1]. 2

Corollary: Let t = t(X) only and E (t) = θ then E (st′) = Ip.

Proof : ∂t′

θ = 0. 2

Corollary: F = V (s) = −E
(
∂s′

∂θ

)
= −E

([
∂2 log L(X;θ)

∂θi∂θj

])
.
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Information

The Fisher information F is the expected matrix of negative 2nd
partials of log L(X;θ). It has information on the average curvature
of L(X;θ) at θ.

For example, if x1, . . . , xn
iid∼ N(µ, σ2), where σ is known, then

F =
[
n
σ2

]
. The larger this is, the more “peaked” L(X;θ) is at

µ̂ = x̄ . This happens when either n gets large or σ gets small.

Intuitively, when σ gets small there is more information for each
piece of data for µ, so the curvature increases.
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Maximization result

thm: Let A(p × p) and B > 0 be symmetric. The maximum
(minimum) of x′Ax given x′Bx = 1 is given when x is the e-vector
corresponding to the largest (smallest) e-value of B−1A. That is,
maxx x′Ax = λ1 and minx x′Ax = λp where λ1 ≥ · · · ≥ λp are
e-values of B−1A.

Proof : Let y = B1/2x. Want maxy y′B−1/2AB−1/2y subject to
y′y = 1. Now take B−1/2AB−1/2 = ΓΛΓ′ and z = Γ′y. Then
z′z = y′y and we want maxz z′Λz =

∑p
i=1 λiz

2
i subject to z′z = 1.

Then we have max
∑p

i=1 λiz
2
i ≤ λ1

∑p
i=1 z

2
i = λ1 and this bound

is attained when z = (1, 0, . . . , 0)′, y = γ(1), and x = B−1/2γ(1).

B−1A and B−1/2AB−1/2 have the same e-values and
x = γ̃(1) = B−1/2γ(1) is the e-vector of B−1A corresponding to
λ1. Minimization proceeds similarly. 2
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Maximization result, continued

lemma: Let a ∈ Rp s.t. a 6= 0. Then ||a||2 is the only nonzero
e-value of aa′ with corresponding e-vector a

||a|| . We will show this
in class.

Corollary: For x′Bx = 1, maxx a′x =
√

a′B−1a and
maxx{(a′x)2/(x′Bx)} = a′B−1a and the maximum attained at

x = B−1a/
√

a′B−1a. Proof : Use x′Ax = x′[aa′]x. 2

Corollary: maxa6=0
a′Aa
a′Ba = λ1 and mina6=0

a′Aa
a′Ba = λp as before,

attained at a = γ(1) & a = γ(p) from B−1A.

Proof : Proceeds exactly as in the theorem. 2
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Cramér-Rao lower bound

How good can an unbiased estimated of θ be?

thm: If t = t(X) s.t. E (t) = θ based on regular likelihood
function, then V (t) ≥ F−1.

A ≥ B⇔ a′Aa ≥ a′Ba for all a. Standard covariance result gives
C (a′t, c′s) = a′C (t, s)c = a′c (corollary two slides ago) and
V (c′s) = c′V (s)c = c′Fc. Then

corr2(a′t, c′s) =
(a′c)2

a′V (t)a c′Fc
≤ 1.

Maximizing this w.r.t. c subject to c′Fc = 1 (last slide) gives

a′F−1a

a′V (t)a
≤ 1,

for all a. 2
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Sufficiency

What statistics have all the information for θ?

def’n t = t(X) is sufficient for θ ⇔ L(X;θ) = g(t;θ)h(X).

Note that s depends on X only through t.

A sufficient statistic is minimal sufficient if it is a function of every
other sufficient statistic. Rao-Blackwell (Lehmann-Scheffé
elsewhere) theorem says if a minimal sufficient statistic is also
complete, then any unbiased estimator that is a function of the
minimal sufficient statistic is the unique minimum variance
unbiased estimator (MVUE).

Recall: t complete ⇔ E{g(t)} = 0 all θ ⇒ Pθ{g(t) = 0} = 1 all
θ. Hard to show in general, but exponential families often have
complete statistics.

thm: x̄ and S are complete for Np(µ,Σ).
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Normal example: sufficiency

For iid normal data

x1, . . . , xn
iid∼ Np(µ,Σ),

we have

L(X;µ,Σ) = |2πΣ|−n/2 exp
{
−n

2 trΣ−1S− n
2 (x̄− µ)′Σ−1(x̄− µ)

}
.

So (x̄,S) are sufficient for (µ,Σ); they are also minimally sufficient
complete, although the book doesn’t discuss this much. So x̄ is
MVUE of µ and n

n−1S is MVUE of Σ.
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Maximum likelihood estimation

def’n: The MLE θ̂ is argmaxθ∈ΘL(X;θ).

s = 0 at θ̂. Since s is a function of a sufficient statistic, so is
θ̂. That is, θ̂ = argmaxθ∈Θg(t;θ)h(X), maximized at
function of t.

If f (x;θ) satisfies regularity conditions then
√
n(θ̂ − θ)

D→ Np(0,F−1) where F is Fisher information for
one observation. This is for iid data; a similar result holds for
independent but not identically distributed, e.g. regression
data.

This implies θ̂
P→ θ under mild conditions.

θ̂ is asymptotically unbiased and efficient. Hence the
popularity of MLEs. Note that moment-based estimators are
also typically asymptotically unbiased but not necessarily
efficient.
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Minimization result

First note (p. 478) that

∂a′x

∂x
= a,

∂x′x

∂x
= 2x,

∂x′Ax

∂x
= (A + A′)x,

∂x′Ay

∂x
= Ay.

Any of these are shown by expanding the forms into sums, taking
derivatives, then recognizing the sums as matrix products.

thm: The x which minimizes f (x) = (y − Ax)′(y − Ax) solves
A′Ax = A′y.

Proof :

∂f

∂x
=

∂

∂x
[y′y − 2x′A′y + x′A′Ax] = 0− 2A′y + 2A′Ax.

Set equal to zero and solve. Note that the 2nd derivative matrix
2A′A ≥ 0 so sol’n is minimum. 2
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Maximization result

thm For any A > 0, f (Σ) = |Σ|−n/2 exp{−1
2 tr Σ−1A} is

maximized by Σ = 1
nA.

Proof : Write log f ( 1
nA)− log f (Σ) = 1

2np(a− 1− log g) where

a = tr Σ−1A/np and g = | 1nΣ−1A|1/p are the arithmetic and
geometric means of the e-values of 1

nΣ−1A. All e-values are
positive and a− 1− log g ≥ 0 so f ( 1

nA) ≥ f (Σ) for all Σ > 0. 2

16 / 23



MLEs for normal data: unconstrained

Take x1, . . . , xn
iid∼ Np(µ,Σ). Assume Σ > 0. Recall

l(X;µ,Σ) = −n

2
log |2πΣ| − n

2
tr Σ−1S− n

2
(x̄− µ)′Σ−1(x̄− µ).

First consider µ. As a function of µ, l(X;µ,Σ) is maximized (for
any Σ) when
(x̄− µ)′Σ−1(x̄− µ) = [(Σ−1/2x̄−Σ−1/2µ)]′[(Σ−1/2x̄−Σ−1/2µ)]
is minimized. (Either stare at it or take the first partials w.r.t. µ.)
The minimization result two slides ago implies this occurs when
Σ−1x̄ = Σ−1µ, so µ̂ = x̄. It remains to maximize
L(X; µ̂,Σ) = c|2πΣ|n/2 exp{−n

2 tr Σ−1S}, but we have Σ̂ = S
from the last slide.
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MLEs for normal data: constrained

If µ = µ0 is known a priori, Σ̂ = S + (x̄− µ0)(x̄− µ0)′ by
maximizing
L(X;µ0,Σ) = c |Σ|−n/2 exp{−n

2 tr Σ−1[S + n(x̄− µ0)(x̄− µ0)′]}.

If Σ = Σ0 is known, µ̂ = x̄ as before.

We will use these results in simple hypothesis testing in Chapter 5.
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Normal data: MLEs under various constraints

Know µ = κµ0 where µ0 is given. Then κ̂ =
µ′0S−1x̄
µ′0S−1µ0

.

Know Rµ = r (linear constraints) where (r,R are given. Then
µ̂ = x̄− SR′[RSR′]−1(Rx̄− r).

Both of these assume Σ unknown; if Σ known – which will never
happen – replace S with Σ in the above expressions.

Know Σ = κΣ0. Then µ̂ = x̄ and κ̂ = tr Σ−1
0 S/p (p. 107).

Know Σ =

[
Σ11 0

0 Σ22

]
, i.e. xi1 indep. xi2 for all

x′i = (x′i1, x
′
i2). Then Σ̂ =

[
S11 0
0 S22

]
.

If have Xi (ni × p) indep. d.m. from Np(µi ,Σ), i = 1, . . . , k ,

then µ̂i = x̄i and Σ̂ = 1
n1+···+nk

∑k
i=1 niSi .
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Bayesian inference

Bayesian inference treats θ as random and assigns θ a prior
distribution. Inference is then based on the distribution of θ
updated by the data, i.e. the posterior density

p(θ|X) =
p(X|θ)p(θ)

p(X)
∝ L(X;θ)p(θ).

For normal data
x1, . . . , xn

iid∼ Np(µ,Σ),

µ is typically thought about independently of Σ so
p(µ,Σ) = p(µ)p(Σ).
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Bayesian inference: Priors on µ and Σ

Common priors for µ include µ ∼ Np(m,V) and the improper flat
prior p(µ) ∝ 1.

Common priors for Σ include Σ−1 ∼Wp(A, a) and the improper
prior p(Σ) ∝ |Σ|−(p+1)/2.

The density of M ∼Wp(A,m) is given by

p(M) =
|M|(m−p−1)/2 exp(−1

2 trA−1M)

2mp/2πp(p−1)/4|A|m/2
∏p

i=1 Γ( 1
2 (m + 1− i))

.
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Bayesian inference: Gibbs sampling

Although it is possible to explicitly obtain the posterior for µ|X (it
is a multivariate t distribution, p. 110), we shall use a more
common approach to obtaining posterior inference, Gibbs
sampling.

Gibbs sampling for normal data iteratively samples the two full
conditional distributions [µ|Σ,X] and [Σ|µ,X]. Let µ0 be given.
Then the jth iterate is sampled [Σj |µj−1,X] then [µj |Σj ,X] for
j = 1, . . . , J where J is some large number. The iterates
{(µj ,Σj)}Jj=1 form a dependent sample from the joint posterior
[µ,Σ|X].
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Bayesian inference: Gibbs sampling, normal model

Assume µ ∼ Np(m,V) indep. Σ−1 ∼Wp(A, a). In your homework
you will show

µ|Σ,X ∼ Np([nΣ−1 + V−1]−1[nΣ−1x̄ + V−1m], [nΣ−1 + V−1]−1),

and

Σ−1|µ,X ∼Wp

[A−1 +
n∑

i=1

(xi − µ)(xi − µ)′

]−1

, a + n

 .
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