STAT 730 Chapter 4: Estimation

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 730: Multivariate Analysis

We have iid data, at least initially. Each datum comes from a pdf or pmf indexed by $\boldsymbol{\theta}$:

$$
\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \stackrel{i i d}{\sim} f\left(\mathbf{x}_{i} ; \boldsymbol{\theta}\right) .
$$

The likelihood of $\boldsymbol{\theta}$ is simply the joint distribution of \mathbf{X}, as a function of $\boldsymbol{\theta}$:

$$
L(\mathbf{X} ; \boldsymbol{\theta})=\prod_{i=1}^{n} f\left(\mathbf{x}_{i} ; \boldsymbol{\theta}\right)
$$

The log-likelihood is the log of the likelihood:

$$
I(\mathbf{X} ; \boldsymbol{\theta})=\sum_{i=1}^{n} \log f\left(\mathbf{x}_{i} ; \boldsymbol{\theta}\right)
$$

Log-likelihood of multivariate normal data

Note that

$$
\begin{aligned}
\sum_{i=1}^{n}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)^{\prime} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right) & =\sum_{i=1}^{n}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}+\overline{\mathbf{x}}-\boldsymbol{\mu}\right)^{\prime} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}+\overline{\mathbf{x}}-\boldsymbol{\mu}\right) \\
& =\sum_{i=1}^{n}\left(\mathbf{x}_{i}-\overline{\mathrm{x}}\right)^{\prime} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)+n(\overline{\mathbf{x}}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\overline{\mathbf{x}}-\boldsymbol{\mu})+0 \\
& =\operatorname{tr}\left\{\sum_{i=1}^{n}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{\prime} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)\right\}+n(\overline{\mathbf{x}}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\overline{\mathbf{x}}-\boldsymbol{\mu}) \\
& =\operatorname{tr}\left\{\sum_{i=1}^{n} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{\prime}\right\}+n(\overline{\mathbf{x}}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\overline{\mathbf{x}}-\boldsymbol{\mu}) \\
& =\operatorname{tr}\left\{n \boldsymbol{\Sigma}^{-1} \mathbf{S}\right\}+n(\overline{\mathbf{x}}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\overline{\mathbf{x}}-\boldsymbol{\mu}) .
\end{aligned}
$$

So

$$
\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \stackrel{i i d}{\sim} N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})
$$

implies

$$
I(\mathbf{X} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})=-\frac{n}{2} \log |2 \pi \boldsymbol{\Sigma}|-\frac{n}{2} \operatorname{tr} \boldsymbol{\Sigma}^{-1} \mathbf{S}-\frac{n}{2}(\overline{\mathbf{x}}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\overline{\mathbf{x}}-\boldsymbol{\mu}) .
$$

Matrix differentiation

Let $f: \mathbb{R}^{n \times p} \rightarrow \mathbb{R}$. Then $\frac{\partial f(\mathbf{X})}{\partial \mathbf{X}}$ is the $n \times p$ matrix with $i j$ th entry $\frac{\partial f(\mathbf{X})}{\partial x_{i j}}$.

If $\mathbf{x} \in \mathbb{R}^{n}$ is a vector, then $\frac{\partial f(\mathrm{x})}{\partial \mathbf{x}} \in \mathbb{R}^{n}$ is called the gradient. The (symmetric) matrix of second partials $\mathbf{H}=\left[\frac{\partial^{2} f(\mathbf{x})}{\partial x_{i} \partial x_{j}}\right]$ is called the Hessian.
If $\mathbf{h}(\mathbf{x})=\left[h_{1}(\mathbf{x}) \cdots h_{q}(\mathbf{x})\right] \in \mathbb{R}^{1 \times q}$ then $\frac{\partial \mathbf{h}(\mathbf{x})}{\partial \mathbf{x}}$ is the $p \times q$ matrix with ijth element $\frac{\partial h_{i}(\mathbf{x})}{\partial x_{j}}$.

Score function

In general, the score function is

$$
\mathbf{s}(\mathbf{X} ; \boldsymbol{\theta})=\frac{\partial}{\partial \boldsymbol{\theta}} I(\mathbf{X} ; \boldsymbol{\theta})=\frac{1}{L(\mathbf{X} ; \boldsymbol{\theta})} \frac{\partial}{\partial \theta} L(\mathbf{X} ; \boldsymbol{\theta})
$$

Note that if $\boldsymbol{\theta} \in \boldsymbol{\Theta} \subset \mathbb{R}^{p}$ then $\mathbf{s} \in \mathbb{R}^{p}$.
As a function of \mathbf{X}, \mathbf{s} is random. $V(\mathbf{s})=\mathbf{F}$ is called the Fisher information matrix.

Expectation of \mathbf{s}

thm: Let $\mathbf{t} \in \mathbb{R}^{q}$ be a function of \mathbf{X} and $\boldsymbol{\theta}$. Then under some regularity conditions

$$
E\left(\mathbf{s t}^{\prime}\right)=\frac{\partial}{\partial \boldsymbol{\theta}} E\left(\mathbf{t}^{\prime}\right)-E\left(\frac{\partial \mathbf{t}^{\prime}}{\partial \boldsymbol{\theta}}\right) .
$$

Proof: By definition $E\left\{\mathbf{t}(\mathbf{X} ; \boldsymbol{\theta})^{\prime}\right\}=\int \mathbf{t}(\mathbf{X} ; \boldsymbol{\theta})^{\prime} L(\mathbf{X} ; \boldsymbol{\theta}) d \mathbf{X}$.
Differentiate both sides, right side using product rule, subtract off first portion of right-hand side:

$$
\frac{\partial E\left\{\mathbf{t}(\mathbf{X} ; \boldsymbol{\theta})^{\prime}\right\}}{\partial \boldsymbol{\theta}}=\int[\frac{\partial \mathbf{t}(\mathbf{X} ; \boldsymbol{\theta})^{\prime}}{\partial \boldsymbol{\theta}} L(\mathbf{X} ; \boldsymbol{\theta})+\underbrace{\frac{\partial L(\mathbf{X} ; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}_{t}}_{\mathbf{s}(\mathbf{X} ; \boldsymbol{\theta}) L(\mathbf{X} ; \boldsymbol{\theta})} \mathbf{t}(\mathbf{X} ; \boldsymbol{\theta})^{\prime}] d \mathbf{X} . \square
$$

Note that $E\left(\mathbf{s t}^{\prime}\right) \in \mathbb{R}^{p \times q}$.

Corollaries

Corollary: $E(\mathbf{s})=\mathbf{0}$.
Proof: Let $\mathbf{t}=[1]$. \square
Corollary: Let $\mathbf{t}=\mathbf{t}(\mathbf{X})$ only and $E(\mathbf{t})=\boldsymbol{\theta}$ then $E\left(\mathbf{s t}^{\prime}\right)=\boldsymbol{I}_{p}$.
Proof: $\frac{\partial \mathbf{t}^{\prime}}{\boldsymbol{\theta}}=\mathbf{0} . \square$
Corollary: $\mathbf{F}=V(\mathbf{s})=-E\left(\frac{\partial \mathbf{s}^{\prime}}{\partial \boldsymbol{\theta}}\right)=-E\left(\left[\frac{\partial^{2} \log L(\mathbf{x} ; \boldsymbol{\theta})}{\partial \theta_{i} \partial \theta_{j}}\right]\right)$.

Information

The Fisher information \mathbf{F} is the expected matrix of negative 2 nd partials of $\log L(\mathbf{X} ; \boldsymbol{\theta})$. It has information on the average curvature of $L(\mathbf{X} ; \boldsymbol{\theta})$ at $\boldsymbol{\theta}$.
For example, if $x_{1}, \ldots, x_{n} \stackrel{i i d}{\sim} N\left(\mu, \sigma^{2}\right)$, where σ is known, then $\mathbf{F}=\left[\frac{n}{\sigma^{2}}\right]$. The larger this is, the more "peaked" $L(\mathbf{X} ; \boldsymbol{\theta})$ is at $\hat{\mu}=\bar{x}$. This happens when either n gets large or σ gets small.

Intuitively, when σ gets small there is more information for each piece of data for μ, so the curvature increases.

Maximization result

thm: Let $\mathbf{A}(p \times p)$ and $\mathbf{B}>0$ be symmetric. The maximum (minimum) of $\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}$ given $\mathbf{x}^{\prime} \mathbf{B} \mathbf{x}=1$ is given when \mathbf{x} is the e-vector corresponding to the largest (smallest) e-value of $\mathbf{B}^{-1} \mathbf{A}$. That is, $\max _{\mathbf{x}} \mathbf{x}^{\prime} \mathbf{A} \mathbf{x}=\lambda_{1}$ and $\min _{\mathrm{x}} \mathbf{x}^{\prime} \mathbf{A} \mathbf{x}=\lambda_{p}$ where $\lambda_{1} \geq \cdots \geq \lambda_{p}$ are e-values of $\mathbf{B}^{-1} \mathbf{A}$.

Proof: Let $\mathbf{y}=\mathbf{B}^{1 / 2} \mathbf{x}$. Want $\max _{\mathbf{y}} \mathbf{y}^{\prime} \mathbf{B}^{-1 / 2} \mathbf{A} \mathbf{B}^{-1 / 2} \mathbf{y}$ subject to $\mathbf{y}^{\prime} \mathbf{y}=1$. Now take $\mathbf{B}^{-1 / 2} \mathbf{A} \mathbf{B}^{-1 / 2}=\boldsymbol{\Gamma} \boldsymbol{\Lambda} \boldsymbol{\Gamma}^{\prime}$ and $\mathbf{z}=\boldsymbol{\Gamma}^{\prime} \mathbf{y}$. Then $\mathbf{z}^{\prime} \mathbf{z}=\mathbf{y}^{\prime} \mathbf{y}$ and we want $\max _{\mathbf{z}} \mathbf{z}^{\prime} \mathbf{\Lambda} \mathbf{z}=\sum_{i=1}^{p} \lambda_{i} z_{i}^{2}$ subject to $\mathbf{z}^{\prime} \mathbf{z}=1$. Then we have $\max \sum_{i=1}^{p} \lambda_{i} z_{i}^{2} \leq \lambda_{1} \sum_{i=1}^{p} z_{i}^{2}=\lambda_{1}$ and this bound is attained when $\mathbf{z}=(1,0, \ldots, 0)^{\prime}, \mathbf{y}=\gamma_{(1)}$, and $\mathbf{x}=\mathbf{B}^{-1 / 2} \gamma_{(1)}$. $\mathbf{B}^{-1} \mathbf{A}$ and $\mathbf{B}^{-1 / 2} \mathbf{A} \mathbf{B}^{-1 / 2}$ have the same e-values and $\mathbf{x}=\tilde{\gamma}_{(1)}=\mathbf{B}^{-1 / 2} \gamma_{(1)}$ is the e-vector of $\mathbf{B}^{-1} \mathbf{A}$ corresponding to λ_{1}. Minimization proceeds similarly.

Maximization result, continued

lemma: Let $\mathbf{a} \in \mathbb{R}^{p}$ s.t. $\mathbf{a} \neq \mathbf{0}$. Then $\|\mathbf{a}\|^{2}$ is the only nonzero e-value of $\mathbf{a a}^{\prime}$ with corresponding e-vector $\frac{\mathbf{a}}{\|\mathbf{a}\|}$. We will show this in class.

Corollary: For $\mathbf{x}^{\prime} \mathbf{B x}=1, \max _{\mathbf{x}} \mathbf{a}^{\prime} \mathbf{x}=\sqrt{\mathbf{a}^{\prime} \mathbf{B}^{-1} \mathbf{a}}$ and $\max _{\mathbf{x}}\left\{\left(\mathbf{a}^{\prime} \mathbf{x}\right)^{2} /\left(\mathbf{x}^{\prime} \mathbf{B} \mathbf{x}\right)\right\}=\mathbf{a}^{\prime} \mathbf{B}^{-1} \mathbf{a}$ and the maximum attained at $\mathbf{x}=\mathbf{B}^{-1} \mathbf{a} / \sqrt{\mathbf{a}^{\prime} \mathbf{B}^{-1} \mathbf{a}} . \quad$ Proof: Use $\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}=\mathbf{x}^{\prime}\left[\mathbf{a a}^{\prime}\right] \mathbf{x}$. \square
Corollary: $\max _{\mathbf{a} \neq \mathbf{0}} \frac{\mathbf{a}^{\prime} \mathbf{A a}}{\mathbf{a}^{\prime} \mathbf{B a}}=\lambda_{1}$ and $\min _{\mathbf{a} \neq \mathbf{0}} \frac{\mathbf{a}^{\prime} \mathbf{A} \mathbf{a}}{\mathbf{a}^{\prime} \mathbf{B a}}=\lambda_{p}$ as before, attained at $\mathbf{a}=\gamma_{(1)} \& \mathbf{a}=\gamma_{(p)}$ from $\mathbf{B}^{-1} \mathbf{A}$.

Proof: Proceeds exactly as in the theorem. \square

Cramér-Rao lower bound

How good can an unbiased estimated of $\boldsymbol{\theta}$ be?
thm: If $\mathbf{t}=\mathbf{t}(\mathbf{X})$ s.t. $E(\mathbf{t})=\boldsymbol{\theta}$ based on regular likelihood function, then $V(\mathbf{t}) \geq \mathbf{F}^{-1}$.
$\mathbf{A} \geq \mathbf{B} \Leftrightarrow \mathbf{a}^{\prime} \mathbf{A} \mathbf{a} \geq \mathbf{a}^{\prime} \mathbf{B a}$ for all \mathbf{a}. Standard covariance result gives $C\left(\mathbf{a}^{\prime} \mathbf{t}, \mathbf{c}^{\prime} \mathbf{s}\right)=\mathbf{a}^{\prime} C(\mathbf{t}, \mathbf{s}) \mathbf{c}=\mathbf{a}^{\prime} \mathbf{c}$ (corollary two slides ago) and $V\left(\mathbf{c}^{\prime} \mathbf{s}\right)=\mathbf{c}^{\prime} V(\mathbf{s}) \mathbf{c}=\mathbf{c}^{\prime} F \mathbf{c}$. Then

$$
\operatorname{corr}^{2}\left(\mathbf{a}^{\prime} \mathbf{t}, \mathbf{c}^{\prime} \mathbf{s}\right)=\frac{\left(\mathbf{a}^{\prime} \mathbf{c}\right)^{2}}{\mathbf{a}^{\prime} V(\mathbf{t}) \mathbf{a} \mathbf{c}^{\prime} \mathbf{F c}} \leq 1
$$

Maximizing this w.r.t. \mathbf{c} subject to $\mathbf{c}^{\prime} \mathbf{F c}=1$ (last slide) gives

$$
\frac{\mathbf{a}^{\prime} \mathbf{F}^{-1} \mathbf{a}}{\mathbf{a}^{\prime} V(\mathbf{t}) \mathbf{a}} \leq 1
$$

for all a. \square

Sufficiency

What statistics have all the information for $\boldsymbol{\theta}$?
def'n $\mathbf{t}=\mathbf{t}(\mathbf{X})$ is sufficient for $\boldsymbol{\theta} \Leftrightarrow L(\mathbf{X} ; \boldsymbol{\theta})=g(\mathbf{t} ; \boldsymbol{\theta}) h(\mathbf{X})$.
Note that \mathbf{s} depends on \mathbf{X} only through \mathbf{t}.
A sufficient statistic is minimal sufficient if it is a function of every other sufficient statistic. Rao-Blackwell (Lehmann-Scheffé elsewhere) theorem says if a minimal sufficient statistic is also complete, then any unbiased estimator that is a function of the minimal sufficient statistic is the unique minimum variance unbiased estimator (MVUE).

Recall: \mathbf{t} complete $\Leftrightarrow E\{g(\mathbf{t})\}=0$ all $\boldsymbol{\theta} \Rightarrow P_{\boldsymbol{\theta}}\{g(\mathbf{t})=0\}=1$ all $\boldsymbol{\theta}$. Hard to show in general, but exponential families often have complete statistics.
thm: $\overline{\mathbf{x}}$ and \mathbf{S} are complete for $N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

Normal example: sufficiency

For iid normal data

$$
\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \stackrel{i i d}{\sim} N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma}),
$$

we have
$L(\mathbf{X} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})=|2 \pi \boldsymbol{\Sigma}|^{-n / 2} \exp \left\{-\frac{n}{2} \operatorname{tr} \boldsymbol{\Sigma}^{-1} \mathbf{S}-\frac{n}{2}(\overline{\mathbf{x}}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\overline{\mathbf{x}}-\boldsymbol{\mu})\right\}$.

So ($\overline{\mathbf{x}}, \mathbf{S}$) are sufficient for $(\boldsymbol{\mu}, \boldsymbol{\Sigma})$; they are also minimally sufficient complete, although the book doesn't discuss this much. So $\overline{\mathbf{x}}$ is MVUE of $\boldsymbol{\mu}$ and $\frac{n}{n-1} \mathbf{S}$ is MVUE of $\boldsymbol{\Sigma}$.

Maximum likelihood estimation

def'n: The MLE $\hat{\boldsymbol{\theta}}$ is $\operatorname{argmax}_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} L(\mathbf{X} ; \boldsymbol{\theta})$.

- $\mathbf{s}=\mathbf{0}$ at $\hat{\boldsymbol{\theta}}$. Since \mathbf{s} is a function of a sufficient statistic, so is $\hat{\boldsymbol{\theta}}$. That is, $\hat{\boldsymbol{\theta}}=\operatorname{argmax}_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} g(\mathbf{t} ; \boldsymbol{\theta}) h(\mathbf{X})$, maximized at function of \mathbf{t}.
- If $f(\mathbf{x} ; \boldsymbol{\theta})$ satisfies regularity conditions then $\sqrt{n}(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}) \xrightarrow{D} N_{p}\left(\mathbf{0}, \mathbf{F}^{-1}\right)$ where \mathbf{F} is Fisher information for one observation. This is for iid data; a similar result holds for independent but not identically distributed, e.g. regression data.
- This implies $\hat{\boldsymbol{\theta}} \xrightarrow{P} \boldsymbol{\theta}$ under mild conditions.
- $\hat{\boldsymbol{\theta}}$ is asymptotically unbiased and efficient. Hence the popularity of MLEs. Note that moment-based estimators are also typically asymptotically unbiased but not necessarily efficient.

Minimization result

First note (p. 478) that

$$
\frac{\partial \mathbf{a}^{\prime} \mathbf{x}}{\partial \mathbf{x}}=\mathbf{a}, \quad \frac{\partial \mathbf{x}^{\prime} \mathbf{x}}{\partial \mathbf{x}}=2 \mathbf{x}, \quad \frac{\partial \mathbf{x}^{\prime} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}}=\left(\mathbf{A}+\mathbf{A}^{\prime}\right) \mathbf{x}, \quad \frac{\partial \mathbf{x}^{\prime} \mathbf{A} \mathbf{y}}{\partial \mathbf{x}}=\mathbf{A} \mathbf{y} .
$$

Any of these are shown by expanding the forms into sums, taking derivatives, then recognizing the sums as matrix products.
thm: The \mathbf{x} which minimizes $f(\mathbf{x})=(\mathbf{y}-\mathbf{A} \mathbf{x})^{\prime}(\mathbf{y}-\mathbf{A} \mathbf{x})$ solves $\mathbf{A}^{\prime} \mathbf{A x}=\mathbf{A}^{\prime} \mathbf{y}$.

Proof:

$$
\frac{\partial f}{\partial \mathbf{x}}=\frac{\partial}{\partial \mathbf{x}}\left[\mathbf{y}^{\prime} \mathbf{y}-2 \mathbf{x}^{\prime} \mathbf{A}^{\prime} \mathbf{y}+\mathbf{x}^{\prime} \mathbf{A}^{\prime} \mathbf{A} \mathbf{x}\right]=0-2 \mathbf{A}^{\prime} \mathbf{y}+2 \mathbf{A}^{\prime} \mathbf{A} \mathbf{x}
$$

Set equal to zero and solve. Note that the 2nd derivative matrix $2 \mathbf{A}^{\prime} \mathbf{A} \geq 0$ so sol' n is minimum. \square

Maximization result

thm For any $\mathbf{A}>0, f(\boldsymbol{\Sigma})=|\boldsymbol{\Sigma}|^{-n / 2} \exp \left\{-\frac{1}{2} \operatorname{tr} \boldsymbol{\Sigma}^{-1} \mathbf{A}\right\}$ is maximized by $\boldsymbol{\Sigma}=\frac{1}{n} \mathbf{A}$.

Proof: Write $\log f\left(\frac{1}{n} \mathbf{A}\right)-\log f(\boldsymbol{\Sigma})=\frac{1}{2} n p(a-1-\log g)$ where $a=\operatorname{tr} \boldsymbol{\Sigma}^{-1} \mathbf{A} / n p$ and $g=\left|\frac{1}{n} \boldsymbol{\Sigma}^{-1} \mathbf{A}\right|^{1 / p}$ are the arithmetic and geometric means of the e-values of $\frac{1}{n} \boldsymbol{\Sigma}^{-1} \mathbf{A}$. All e-values are positive and $a-1-\log g \geq 0$ so $f\left(\frac{1}{n} \mathbf{A}\right) \geq f(\boldsymbol{\Sigma})$ for all $\boldsymbol{\Sigma}>0$. \square

MLEs for normal data: unconstrained

Take $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \stackrel{\text { iid }}{\sim} N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Assume $\boldsymbol{\Sigma}>0$. Recall

$$
I(\mathbf{X} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})=-\frac{n}{2} \log |2 \pi \boldsymbol{\Sigma}|-\frac{n}{2} \operatorname{tr} \boldsymbol{\Sigma}^{-1} \mathbf{S}-\frac{n}{2}(\overline{\mathbf{x}}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\overline{\mathbf{x}}-\boldsymbol{\mu}) .
$$

First consider $\boldsymbol{\mu}$. As a function of $\boldsymbol{\mu}, I(\mathbf{X} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})$ is maximized (for any $\boldsymbol{\Sigma}$) when
$(\overline{\mathbf{x}}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\overline{\mathbf{x}}-\boldsymbol{\mu})=\left[\left(\boldsymbol{\Sigma}^{-1 / 2} \overline{\mathbf{x}}-\boldsymbol{\Sigma}^{-1 / 2} \boldsymbol{\mu}\right)\right]^{\prime}\left[\left(\boldsymbol{\Sigma}^{-1 / 2} \overline{\mathbf{x}}-\boldsymbol{\Sigma}^{-1 / 2} \boldsymbol{\mu}\right)\right]$ is minimized. (Either stare at it or take the first partials w.r.t. $\boldsymbol{\mu}$.) The minimization result two slides ago implies this occurs when $\boldsymbol{\Sigma}^{-1} \overline{\mathbf{x}}=\boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}$, so $\hat{\boldsymbol{\mu}}=\overline{\mathbf{x}}$. It remains to maximize $L(\mathbf{X} ; \hat{\boldsymbol{\mu}}, \boldsymbol{\Sigma})=c|2 \pi \boldsymbol{\Sigma}|^{n / 2} \exp \left\{-\frac{n}{2} \operatorname{tr} \boldsymbol{\Sigma}^{-1} \mathbf{S}\right\}$, but we have $\hat{\boldsymbol{\Sigma}}=\mathbf{S}$ from the last slide.

MLEs for normal data: constrained

If $\boldsymbol{\mu}=\boldsymbol{\mu}_{0}$ is known a priori, $\hat{\boldsymbol{\Sigma}}=\mathbf{S}+\left(\overline{\mathbf{x}}-\boldsymbol{\mu}_{0}\right)\left(\overline{\mathbf{x}}-\boldsymbol{\mu}_{0}\right)^{\prime}$ by maximizing $L\left(\mathbf{X} ; \boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}\right)=c|\boldsymbol{\Sigma}|^{-n / 2} \exp \left\{-\frac{n}{2} \operatorname{tr} \boldsymbol{\Sigma}^{-1}\left[\mathbf{S}+n\left(\overline{\mathbf{x}}-\boldsymbol{\mu}_{0}\right)\left(\overline{\mathbf{x}}-\boldsymbol{\mu}_{0}\right)^{\prime}\right]\right\}$.

If $\boldsymbol{\Sigma}=\boldsymbol{\Sigma}_{0}$ is known, $\hat{\boldsymbol{\mu}}=\overline{\mathbf{x}}$ as before.
We will use these results in simple hypothesis testing in Chapter 5.

Normal data: MLEs under various constraints

- Know $\boldsymbol{\mu}=\kappa \boldsymbol{\mu}_{0}$ where $\boldsymbol{\mu}_{0}$ is given. Then $\hat{\kappa}=\frac{\boldsymbol{\mu}_{0}^{\prime} \mathbf{S}^{-1} \overline{\mathrm{x}}}{\boldsymbol{\mu}_{0}^{\prime} \mathbf{S}^{-1} \boldsymbol{\mu}_{0}}$.
- Know $\mathbf{R} \boldsymbol{\mu}=\mathbf{r}$ (linear constraints) where (\mathbf{r}, \mathbf{R} are given. Then $\hat{\boldsymbol{\mu}}=\overline{\mathbf{x}}-\mathbf{S R}^{\prime}\left[\mathbf{R S R}^{\prime}\right]^{-1}(\mathbf{R} \overline{\mathbf{x}}-\mathbf{r})$.
Both of these assume $\boldsymbol{\Sigma}$ unknown; if $\boldsymbol{\Sigma}$ known - which will never happen - replace \mathbf{S} with $\boldsymbol{\Sigma}$ in the above expressions.
- Know $\boldsymbol{\Sigma}=\kappa \boldsymbol{\Sigma}_{0}$. Then $\hat{\boldsymbol{\mu}}=\overline{\mathbf{x}}$ and $\hat{\kappa}=\operatorname{tr} \boldsymbol{\Sigma}_{0}^{-1} \mathbf{S} / p$ (p. 107).
- Know $\boldsymbol{\Sigma}=\left[\begin{array}{cc}\boldsymbol{\Sigma}_{11} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Sigma}_{22}\end{array}\right]$, i.e. $\mathbf{x}_{i 1}$ indep. $\mathbf{x}_{i 2}$ for all

$$
\mathbf{x}_{i}^{\prime}=\left(\mathbf{x}_{i 1}^{\prime}, \mathbf{x}_{i 2}^{\prime}\right) \text {. Then } \hat{\boldsymbol{\Sigma}}=\left[\begin{array}{cc}
\mathbf{S}_{11} & \mathbf{0} \\
\mathbf{0} & \mathbf{S}_{22}
\end{array}\right] .
$$

- If have $\mathbf{X}_{i}\left(n_{i} \times p\right)$ indep. d.m. from $N_{p}\left(\boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}\right), i=1, \ldots, k$, then $\hat{\boldsymbol{\mu}}_{i}=\overline{\mathbf{x}}_{i}$ and $\hat{\boldsymbol{\Sigma}}=\frac{1}{n_{1}+\cdots+n_{k}} \sum_{i=1}^{k} n_{i} \mathbf{S}_{i}$.

Bayesian inference

Bayesian inference treats $\boldsymbol{\theta}$ as random and assigns $\boldsymbol{\theta}$ a prior distribution. Inference is then based on the distribution of $\boldsymbol{\theta}$ updated by the data, i.e. the posterior density

$$
p(\boldsymbol{\theta} \mid \mathbf{X})=\frac{p(\mathbf{X} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta})}{p(\mathbf{X})} \propto L(\mathbf{X} ; \boldsymbol{\theta}) p(\boldsymbol{\theta})
$$

For normal data

$$
\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \stackrel{i i d}{\sim} N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma}),
$$

$\boldsymbol{\mu}$ is typically thought about independently of $\boldsymbol{\Sigma}$ so $p(\boldsymbol{\mu}, \boldsymbol{\Sigma})=p(\boldsymbol{\mu}) p(\boldsymbol{\Sigma})$.

Bayesian inference: Priors on $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$

Common priors for $\boldsymbol{\mu}$ include $\boldsymbol{\mu} \sim N_{p}(\mathbf{m}, \mathbf{V})$ and the improper flat prior $p(\boldsymbol{\mu}) \propto 1$.

Common priors for $\boldsymbol{\Sigma}$ include $\boldsymbol{\Sigma}^{-1} \sim W_{p}(\mathbf{A}, a)$ and the improper prior $p(\boldsymbol{\Sigma}) \propto|\boldsymbol{\Sigma}|^{-(p+1) / 2}$.

The density of $\mathbf{M} \sim W_{p}(\mathbf{A}, m)$ is given by

$$
p(\mathbf{M})=\frac{|\mathbf{M}|^{(m-p-1) / 2} \exp \left(-\frac{1}{2} \operatorname{tr} \mathbf{A}^{-1} \mathbf{M}\right)}{2^{m p / 2} \pi^{p(p-1) / 4}|\mathbf{A}|^{m / 2} \prod_{i=1}^{p} \Gamma\left(\frac{1}{2}(m+1-i)\right)} .
$$

Bayesian inference: Gibbs sampling

Although it is possible to explicitly obtain the posterior for $\boldsymbol{\mu} \mid \mathbf{X}$ (it is a multivariate t distribution, p. 110), we shall use a more common approach to obtaining posterior inference, Gibbs sampling.

Gibbs sampling for normal data iteratively samples the two full conditional distributions $[\boldsymbol{\mu} \mid \boldsymbol{\Sigma}, \mathbf{X}]$ and $[\boldsymbol{\Sigma} \mid \boldsymbol{\mu}, \mathbf{X}]$. Let $\boldsymbol{\mu}^{0}$ be given. Then the j th iterate is sampled $\left[\boldsymbol{\Sigma}^{j} \mid \boldsymbol{\mu}^{j-1}, \mathbf{X}\right]$ then $\left[\boldsymbol{\mu}^{j} \mid \boldsymbol{\Sigma}^{j}, \mathbf{X}\right]$ for $j=1, \ldots, J$ where J is some large number. The iterates $\left\{\left(\boldsymbol{\mu}^{j}, \boldsymbol{\Sigma}^{j}\right)\right\}_{j=1}^{J}$ form a dependent sample from the joint posterior $[\boldsymbol{\mu}, \boldsymbol{\Sigma} \mid \mathbf{X}]$.

Bayesian inference: Gibbs sampling, normal model

Assume $\boldsymbol{\mu} \sim N_{p}(\mathbf{m}, \mathbf{V})$ indep. $\boldsymbol{\Sigma}^{-1} \sim W_{p}(\mathbf{A}, a)$. In your homework you will show

$$
\boldsymbol{\mu} \mid \boldsymbol{\Sigma}, \mathbf{X} \sim N_{p}\left(\left[n \boldsymbol{\Sigma}^{-1}+\mathbf{V}^{-1}\right]^{-1}\left[n \boldsymbol{\Sigma}^{-1} \overline{\mathbf{x}}+\mathbf{V}^{-1} \mathbf{m}\right],\left[n \boldsymbol{\Sigma}^{-1}+\mathbf{V}^{-1}\right]^{-1}\right)
$$

and

$$
\boldsymbol{\Sigma}^{-1} \mid \boldsymbol{\mu}, \mathbf{X} \sim W_{p}\left(\left[\mathbf{A}^{-1}+\sum_{i=1}^{n}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)^{\prime}\right]^{-1}, a+n\right) .
$$

