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Nice properties of multivariate normal random vectors

Multivariate normal easily generalizes univariate normal.
Much harder to generalize Poisson, gamma, exponential, etc.

Defined completely by first and second moments, i.e. mean
vector and covariance matrix.

If x ∼ Np(µ,Σ), then σij = 0 implies xi independent of xj .

a′x ∼ N(a′µ, a′Σa).

Central Limit Theorem says sample means are approximately
multivariate normal.

Simple geometry makes properties intuitive.
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Definition via Cramér-Wold

x is multivariate normal ⇔ a′x is normal for all a.

def’n x ∼ Np(µ,Σ) ⇔ a′x ∼ N(a′µ, a′Σa) for all a ∈ R
p.

thm: If x ∼ Np(µ,Σ) then its characteristic function is
φx(t) = exp(it′µ− 1

2t
′Σt).

Proof: Let y = t′x. Then the c.f. of y is

φy (s)
def
= E{e isy} = exp{isE (y)−1

2s
2var(y)} = exp{ist′µ−1

2s
2t′Σt}.

Then the c.f. of x is

φx(t)
def
= E{e it′x} = φy (1) = exp(it′µ− 1

2t
′Σt).2

Using the c.f. we see that if Σ = 0 then x = µ with probability
one, i.e. Np(µ, 0) = δµ.
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Linear transformations of x are also normal

thm: x ∼ Np(x,Σ), A ∈ R
q×p, and c ∈ R

q

⇒ Ax+ c ∼ Nq(Aµ+ c,AΣA′).

Proof : Let b ∈ R
q; then b′[Ax+ c] = [b′A]x+ b′c. Since [b′A]x

is univariate normal by def’n, [b′A]x+ b′c is also for any b. The
specific forms for the mean and covariance are standard results for
any Ax+ c (Chapter 2). 2

Corollary: Any subset of x is multivariate normal; the xi are
normal.

Note: you will show φy (t) = e itµ−σ2t2/2 for y ∼ N(µ, σ2) in your
HW.
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Normality and independence

Let x ∼ Np(µ,Σ) and x′ = (x′1, x
′
2) of dimension k and p − k .

Also partition µ
′ = (µ′

1,µ
′
2) and Σ =

[
Σ11 Σ12

Σ21 Σ22

]

. Then x1

indep. x2 ⇔ C (x1, x2) = Σ12 = Σ′
21 = 0.

Proof :

φx(t) = φx1(t1)φx2(t2) = exp(it′1µ1 + t′2µ2 − 1
2t

′
1Σ11t1 − 1

2t
′
2Σ22t2)

⇔ C (x1, x2) = 0.2
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Some results based on last two slides

Corollary: x ∼ Np(µ,Σ) ⇒ y = Σ−1/2(x− µ) ∼ Np(0,In) and

U = (x− µ)′Σ−1(x− µ) = y′y ∼ χ2
p.

Corollary: x ∼ Np(0,I) ⇒ a′x
||a|| ∼ N(0, 1) for a 6= 0.

thm: Let A ∈ R
n1×p, B ∈ R

n2×p, and x ∼ Np(µ,Σ). Then Ax

indep. Bx ⇔ AΣB′ = 0.

Last one is immediate from previous two slides by finding the

distribution of

[
A

B

]

x.

Corollary: x ∼ Np(µ, σ
2
I) and GG′ = I then Gx ∼ Np(Gµ, σ

2
I).

Also Gx indep. of (I − G′G)x.
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Conditional distribution of x2|x1

Let x ∼ Np(µ,Σ) and x′ = (x′1, x
′
2) of dimension k and p − k .

Also partition µ
′ = (µ′

1,µ
′
2) and Σ =

[
Σ11 Σ12

Σ21 Σ22

]

. Let

x2.1 = x2 −Σ21Σ
−1
11 x1.

[

x1
x2.1

]

=

[

Ik 0

−Σ21Σ
−1
11 Ip−k

]

x

∼ Np

([

µ1

µ2 −Σ21Σ
−1
11 µ1

]

,

[

Σ11 0

0 Σ22 −Σ21Σ
−1
11 Σ12

])

.

So x1 indep. x2.1. Then x2|x1 = x2.1 +Σ21Σ
−1
11 x1

︸ ︷︷ ︸

constant

has

distribution...
thm: x2|x1 ∼ Np−k(µ2 +Σ21Σ

−1
11 (x1 − µ1),Σ22 −Σ21Σ

−1
11 Σ12).

Very useful! Mean and variance results hold for non-normal x too.
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Transformations of normal data matrix

If x1, . . . , xn
iid∼ Np(µ,Σ), then X = [x1 · · · xn]′ is a n × p “normal

data matrix.”

General transformations are of the form AXB. An important
example is x̄′ = [ 1

n
1′n]X[I], the sample mean. One can show via

c.f. that...

thm: x1, . . . , xn
iid∼ Np(µ,Σ) ⇒ x̄ ∼ Np(µ,

1
n
Σ).
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General transformation theorem

thm: If X(n × p) is data matrix from Np(µ,Σ) and
Y(m × q) = AXB then Y is normal data matrix ⇔
(a) A1n = α1m for α ∈ R, or B′

µ = 0, and

(b) AA′ = βIp some β ∈ R, or B′ΣB = 0.

We will prove this in class. Some necessary results follow.

def’n: For any matrix X ∈ R
n×p, let

Xv =






x(1)
...

x(p)




 = (x′(1), . . . , x

′
(p))

′ ∈ R
np.
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Kronecker products

def’n Let A ∈ R
n×m and B ∈ R

p×q. Then

A⊗ B =








a11B a12B · · · a1mB

a21B a22B · · · a2mB
...

...
. . .

...
an1B an2B · · · anmB







∈ R

np×mq.

Let x1, . . . , xn
iid∼ Np(µ,Σ). Then C (xi , xj) = δijΣ, so








x1
x2
...
xn







∼ Nnp















µ

µ

...
µ







,








Σ 0 · · · 0

0 Σ · · · 0
...

...
. . .

...
0 0 · · · Σ















= Nnp(1n⊗µ,In⊗Σ).
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Kronecker products, dist’n of Xv

prop: Let x1, . . . , xn
iid∼ Np(µ,Σ). Then

Xv =











x(1)
x(2)
.
.
.

x(p)











∼ Nnp





















µ11n
µ21n
..
.

µp1n











,











σ11In σ12In · · · σ1pIn

σ21In σ22In · · · σ2pIn

..

.
..
.

. . .
..
.

σp1In σp2In · · · σppIn





















= Nnp(µ⊗ 1n,Σ⊗ In).

This is immediate from C (x(i), x(j)) = σijIn and E (x(j)) = µj1n
and the fact that Xv is a permutation matrix times the vector on
the previous slide (so it’s also normal).

Corollary: X(n × p) is n.d.m. from Np(µ,Σ) ⇔
Xv ∼ Nnp(µ⊗ 1n,Σ⊗ In).
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Kronecker products, VIII on p. 460

prop: (B′ ⊗ A)Xv = (AXB)v .

Proof : First note that

(B′ ⊗ A)Xv =











b11A b21A · · · bp1A

b12A b22A · · · bp2A

.

..
.
..

. . .
.
..

b1qA b2qA · · · bpqA





















x(1)
x(2)
..
.

x(p)











=











∑p
i=1 bi1Ax(i)

∑p
i=1 bi2Ax(i)

..

.
∑p

i=1 biqAx(i)











.

Now let’s find the jth column of Am×nXn×pBp×q. For any
Aa×bBb×c the jth column of AB is Ab(j). First
AXB = [Ax(1) · · ·Ax(p)]B. Thus the jth column of AXB is
[Ax(1) · · ·Ax(p)]b(j) =

∑p
i=1 bijAx(i). 2
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Proof of theorem

(B′ ⊗ A)Xv ∼ Nmq([B
′ ⊗ A][µ⊗ 1n]

︸ ︷︷ ︸

B′µ⊗A1n

, [B′ ⊗ A][Σ⊗ In][B
′ ⊗ A]′

︸ ︷︷ ︸

B′ΣB⊗AA′

).

This uses [A⊗ B][C⊗D] = AC⊗ BD and [A⊗ B]′ = A′ ⊗ B′.

Go back to the theorem, this implies it.

In particular, if Y = XB then Y is d.m. from Nq(B
′
µ,B′ΣB), as

A = In.
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Important later on in this Chapter...

thm: X is d.m. from Np(µ,Σ), Y = AXB, Z = CXD, then Y

indep. of Z ⇔ either (a) B′ΣD = 0 or (b) AC′ = 0.

You will prove this in your homework, see 3.3.5 (p.88).

Corollary: Let X = [X1X2] of dimensions n × k and n × (p − k).

Then X1 indep. X2.1 = X2 − X1Σ
−1
11 Σ12, X1 d.m. from

Nk(µ1,Σ11) and X2.1 d.m. from Np−k(µ2.1,Σ22.1) where
µ2.1 = µ2 −Σ21Σ

−1
11 µ1 and Σ22.1 = Σ22 −Σ21Σ

−1
11 Σ12.

Proof : X1 = XB where B′ = [Ik0] and X2.1 = XD where
D′ = [−Σ21Σ

−1
11 Ip−k ]. Now use above theorem. 2.

Corollary: x̄ indep. S.

Proof : Taking A = 1
n
1′n and C = H = In − 1

n
1n1

′
n in the

theorem gives x̄ indep. HX. 2.
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Wishart distribution

Note that S = X′[ 1
n
H]X. Quadratic functions of the form X′CX

are an ingredient in many multivariate test statistics.

def’n: M(p × p) = X′X where X(m × p) is a d.m. from Np(0,Σ)
has a Wishart distribution with scale matrix Σ and d.f. m.
Shorthand: M ∼ Wp(Σ,m).

Note that the ijth element of X′X is simply x′(i)x(j) =
∑m

k=1 xkixkj .

The ijth element of xkx
′
k is xkixkj . Therefore X′X =

∑m
k=1 xkx

′
k .

Then E (M) = E

[
m∑

k=1

xkx
′
k

]

︸ ︷︷ ︸

E(xk)=0

=
∑m

k=1Σ = mΣ.
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Quadratic form involving Wishart

thm: Let B ∈ R
p×q and M ∼ Wp(Σ,m). Then

B′MB ∼ Wq(B
′ΣB,m).

Proof : Let Y = XB. Result 3 slides back gives us Y is d.m. from
Nq(0,B

′ΣB). Then def’n Wishart tells us
Y′Y = B′X′XB = B′MB ∼ Wq(B

′ΣB,m). 2
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Simple results that follow this theorem

Corollary: Diagonal submatrices of M (square matrices that share
part of a diagonal with M) have a Wishart distribution.

Corollary: mii ∼ χ2
mσii .

Corollary: Σ−1/2MΣ−1/2 ∼ Wp(Ip,m).

Corollary: M ∼ Wp(Ip,m) and B(p × q) s.t. B′B = Iq then
B′MB ∼ Wq(Iq,m).

Corollary: M ∼ Wp(Σ,m) and a s.t. a′Σa 6= 0 ⇒ a′Ma
a′Σa

∼ χ2
m.

All use different B in the theorem on the previous slide plus minor
manipulation.
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Wisharts add!

thm M1 ∼ Wp(Σ,m1) indep. M2 ∼ Wp(Σ,m2) ⇒
M1 +M2 ∼ Wp(Σ,m1 +m2).

Proof : Let X =

[
X1

X2

]

. Then M1 +M2 = X′X. Now use the

def’n of Wishart. 2

We are just adding m2 more independent rows onto X1.
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Cochran’s theorem

thm: If X(n × p) d.m. from Np(0,Σ) and C(n × n) is symmetric
w/ eigenvalues λ1, . . . , λn then

(a) X′CX
D
=

∑n
i=1 λiMi where M1, . . . ,Mn

iid∼ Wp(Σ, 1).

(b) X′CX ∼ Wp(Σ, r) ⇔ C idempotent where r = trC = rankC.

(c) nS ∼ Wp(Σ, n − 1).

Proof The spectral decomposition of C is
C = [γ1 · · ·γn]Λ[γ1 · · ·γn]

′ =
∑n

i=1 λiγ iγ
′
i . Then

X′CX =
∑n

i=1 λi [X
′
γ i ][X

′
γ i ]

′ =
∑n

i=1 λi [γ
′
iX]

′[γ ′
iX]. General

transformation theorem (A = γ
′
i & B = Ip) tells us that γ

′
iX is

d.m. from Np(0,Σ) so (a) follows from def’n Wishart. Part (b): C
idempotent ⇒ there are r λi = 1 and n − r λi = 0, hence
tr C = λ1 + · · ·λn = r . Now use part (a). For part (c) note that H
is idempotent and rank n − 1. 2

This is a biggie. Lots of stuff that will be used later.
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Drum roll...

If x1, . . . , xn
iid∼ Np(µ,Σ) then

x̄ ∼ Np(µ,
1
n
Σ),

nS ∼ Wp(Σ, n − 1),

and x̄ indep. of S.

This is a generalization of the univariate p = 1 case where
x̄ ∼ N(µ, σ

2

n
) indep. of ns2 ∼ σ2χ2

n−1. This latter result is used to
cook up a tn−1 distribution:

x̄ − µ
√

s2/n
∼ tn−1,

by def’n. We’ll shortly generalize this to p dimensions, but first
one last result.
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Generalization of partitioning sums of squares

Here is Craig’s theorem.

thm X d.m. from Np(µ,Σ) and C1, . . . ,Ck are symmetric, then
X′C1X, . . . ,X

′CkX are indep. if CrCs = 0 for all r 6= s.

Proof : Let’s do it for two projection matrices. Write
X′C1X = X′M1Λ1Λ1M

′
1X and X′C2X = X′M2Λ2Λ2M

′
2X. Note

that ΛiΛi = Λi as the e-values are either 1 or 0. Theorem (slide
14) says Λ1M

′
1X indep. Λ2M

′
2X ⇔

[Λ1M
′
1][Λ2M

′
2]
′ = Λ1M

′
1M2Λ2 = 0. But

0 = C1C2 = M1Λ1M
′
1M2Λ2M

′
2 ⇒ Λ1M

′
1M2Λ2 = 0. 2

This will come in handy in finding the sampling distribution of
common test statistics under H0.
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Hotelling’s T 2

Recall, using obvious notation, N(0,1)√
χ2
ν
/ν

∼ tν . Used for one and

two-sample t tests for univariate outcomes. We’ll now generalize
this distribution.

def’n: Let d ∼ Np(0,Ip) indep. M ∼ Wp(Ip,m). Then
md′M−1d ∼ T 2(p,m).

thm: Let x ∼ Np(µ,Σ) indep. M ∼ Wp(Σ,m). Then
m(x− µ)′M−1(x− µ) ∼ T 2(p,m).

Proof : Take d∗ = Σ−1/2(x− µ) and M∗ = Σ−1/2MΣ−1/2 and
use def’n of T 2. 2

Corollary: x̄ and S are sample mean and covariance from

x1, . . . , xn
iid∼ Np(µ,Σ) ⇒

(n − 1)(x̄− µ)′S−1(x̄− µ) ∼ T 2(p, n − 1).

Proof : Substitute M = nS, m = n − 1, and x− µ for
√
n(x̄− µ)

in the theorem above. 2
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Hotelling’s T 2 is a scaled F

thm: T 2(p,m) = mp
m−p+1Fp,m−p+1.

To prove this we need some ingredients...

Let M ∼ Wp(Σ,m) and take M =

[
M11 M12

M21 M22

]

where

M11 ∈ R
a×a and M22 ∈ R

b×b and a+ b = p. Further, let
M22.1 = M22 −M21M

−1
11 M12.
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Proof, Hotelling’s T 2 is a scaled F

thm: Let M ∼ Wp(Σ,m) where m > p. Then
M22.1 ∼ Wb(Σ22.1,m − a).

Proof : Let X = [X1X2], so

M =

[
M11 M12

M21 M22

]

= X′X =

[
X′

1X1 X′
1X2

X′
2X1 X′

2X2

]

.

Then

M22.1 = X′
2X2 − X′

2X1(X
′
1X1)

−1X1X2 = X′
2PX2 = X′

2.1PX2.1,

where P = In − X1(X
′
1X1)

−1X1 is o.p. matrix onto C(X1)
⊥ and

X2.1|X1 = X2 − X1Σ
−1
11 Σ12. Theorem on slide 14 tells us X2.1 is

d.m. from Nb(0,Σ22.1) (not dim. p as in the book). So Cochran’s
theorem tells us M22.1|X1 ∼ Wb(Σ22.1,m − a). This doesn’t
depend on X1 so it’s the marginal dist’n as well. 2
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Proof, Hotelling’s T 2 is a scaled F

lemma: If M ∼ Wp(Σ,m), m > p then 1
[M−1]pp

∼ 1
[Σ−1]pp

χ2
m−p−1.

Proof : In general, for partitioned matrices,
[

M11 M12
M21 M22

]

−1
=

[

(M11 − M12M
−1
22 M21)

−1
−M

−1
11 M12(M22 − M21M

−1
11 M12)

−1

−M
−1
22 M21(M11 − M12M

−1
22 M21)

−1 (M22 − M21M
−1
11 M12)

−1

]

.

Now let M11 be upper left (p − 1)× (p − 1) submatrix of M and
m22 the lower right 1× 1 “scalar matrix.” Then, where
σ22.1 =

1
[Σ−1]pp

,

1
[M−1]pp

= 1
1/m22.1

= m22.1 ∼ W1(σ22.1,m−(p−1)) = σ22.1χ
2
m−p−1.2

thm: If M ∼ Wp(Σ,m), m > p then a′Σ−1a
a′M−1a

∼ χ2
m−p+1.

Proof : Let A = [a(1) · · · a(p−1)a]. Then
N = A−1M(A−1)′ ∼ Wp(A

−1Σ(A−1)′,m). So

1
[N−1]pp

= 1
[AM−1A′]pp

= 1
a′M−1a

∼ 1
a′Σ−1a

χ2
m−p+1.

Noting that the ppth element of [A−1Σ(A−1)′]−1 is 1
a′Σa

. 2
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Proof, Hotelling’s T 2 is a scaled F

Recall md′M−1d ∼ T 2(p,m) where d ∼ Np(0,Ip) indep. of

M ∼ Wp(Ip,m). Given d, β = d′d
d′M−1d

∼ χ2
m−p+1 (last slide).

Since this is independent of d, β indep. d and this is the marginal
dist’n as well.

md′M−1d = md′d
d′d/d′M−1d

= m
χ2
p

χ2
m−p+1

= mp
m−p+1Fp,m−p+1.2

Corollary: x̄ and S are sample mean and covariance from Np(µ,Σ)

then n−p
p

(x̄− µ)′S−1(x̄− µ) ∼ Fp,n−p.
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Two more distributional results

Corollary: |M|/|M+ dd′| ∼ B(12(m − p + 1), p2 ).

Proof : For B(p × n) and C(n × p), |Ip + BC| = |In + CB|.
Since |AB| = |A||B|, we can write this as

1
|Ip+M−1dd′|

= 1
|I1+d′M−1d|

= 1
1+d′M−1d

= 1

1+
p

m−p+1Fp,m−p+1

. Recall

if x ∼ Fν1,ν2 then ν1x/ν2
1+ν1x/ν2

∼ B(ν12 ,
ν2
2 ) and

1
1+ν1x/ν2

∼ B(ν22 ,
ν1
2 ).

2

Corollary: d ∼ Np(0,Ip) indep. M ∼ Wp(Ip,m) then
d′d(1 + 1/{d′M−1d}) ∼ χ2

m+1 indep. of d′M−1d.

Proof: β indep. d′d (last slide); both χ2 so their sum is indep. of
their ratio. Sum of two indep. χ2 is also χ2; the d.f. add. 2
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Two-sample Hotelling T
2

Let D2 = (x̄1 − x̄2)
′S−1

u (x̄1 − x̄2) estimate
∆2 = (µ1 − µ2)

′Σ−1(µ1 − µ2) where Su = 1
n−2 [n1S1 + n2S2].

Then

thm: Let X1 d.m. from Np(µ1,Σ1) indep. X2 d.m. from
Np(µ2,Σ2). If µ1 = µ2 and Σ1 = Σ2 then
n1n2
n1+n2

D2 ∼ T 2(p, n − 2).

Proof : d = x̄1 − x̄2 ∼ Np(µ1 − µ2,
1
n1
Σ1 +

1
n2
Σ2). When

µ1 = µ2 and Σ1 = Σ2, d ∼ Np(0, cΣ) where c = n1+n2
n1n2

. Also
M = n1S1 + n2S2 ∼ Wp(Σ, n1 + n2 − 2) as independent Wisharts
w/ same scale add; cM ∼ Wp(cΣ, n1 + n2 − 2). M indep. d as
x̄1, x̄2,S1,S2 mutually indep. Stirring all ingredients together gives
D2

c
= (n − 2)d′(cM)−1d ∼ T 2(p, n − 2). 2.
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Generalization of F statistic

We’ve already generalized the t for multivariate data; now it’s time
for the F .

Let A ∼ Wp(Σ,m) indep. of B ∼ Wp(Σ, n) where m ≥ p. A−1

exists a.s. and we will examine aspects of A−1B.

Note that this reduces to the ratio of indep, χ2 in the univariate
p = 1 case.
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Generalization of F statistic

lemma: M ∼ Wp(Σ,m), m ≥ p, ⇒ |M| = |Σ|∏p−1
i=0 χ2

m−i .

Proof : By induction. For p = 1 |M| = m ∼ σ2χ2
m. For p > 1 let

M11 be upper left (p − 1)× (p − 1) submatrix of M and m22 the
lower right 1× 1 “scalar matrix” (slide 24). The induction
hypothesis says |M11| = |Σ11|

∏p−2
i=0 χ2

m−i . Slide 24 implies that
m22.1 indep. M11 and m22.1 ∼ σ22.1χ

2
m−p+1. The result follows by

noting that |M| = |M11|m22.1 and |Σ| = |Σ11|σ22.1 (p. 457 or
expansion of determinant using cofactors). 2

thm: Let A ∼ Wp(Σ,m) indep. of B ∼ Wp(Σ, n) where m ≥ p

and n ≥ p. Then φ = |B|/|A| ∝ ∏p
i=1 Fn−i+1,m−i+1.

Proof : Using the lemma

φ =
∏p

i=0

χ2
n−i

χ2
m−i

=
∏p

i=0
n−i
m−i

Fn−i+1,m−i+1.2
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Wilk’s lambda

Wilk’s lambda, a generalization of the beta variable, appears later
on when performing LRT:

def’n: A ∼ Wp(Ip,m) indep. B ∼ Wp(Ip, n) and m ≥ p

Λ = |A|/|A+ B| ∼ Λ(p,m, n),

has a Wilk’s lambda distribution with parameters (p,m, n)

thm: Λ ∼ ∏n
i=1 ui where u1, . . . , un are mutually independent and

ui ∼ B(12(m + i − p), p2 ).
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Proof Wilk’s lambda in product of betas

Let X(n × p) be d.m. from Np(0,Ip), B = X′X and Xi be first i
rows of X. Let Mi = A+ X′

iXi . Then M0 = A, Mn = A+ B, and
Mi = Mi−1 + xix

′
i . Then

Λ =
|A|

|A+ B| =
n∏

i=1

|Mi−1|
|Mi |

=
n∏

i=1

ui .

Corollary on slide 27 implies ui ∼ B(12(m + i − p), p2 ).

The independence part takes some work...
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Characterization of independence of matrix & vector

lemma: Let W ∈ R
p×p and x ∈ R

p. If x is indep. of
(g′1Wg1, . . . , g

′
pWgp) for all orthogonal G = [g1 · · · gp]′ then x

indep. W.

Proof : The c.f. of {2I{i<j}wij : i ≤ j} is E{e itr(WT)} where T is
symmetric. The c.f. of (x,W) is thus characterized by
φW,x(T, s) = E{e itr(WT)e is

′x}. If x indep. trWT for all symmetric
T then the c.f. factors and x indep. W.
Let A = GΛG′ =

∑p
i=1 λigig

′
i be spectral decomposition. Then

trAW = tr

{
p

∑

i=1

λigig
′
iW

}

=

p
∑

i=1

λi g′iWgi
︸ ︷︷ ︸

x indep. these

.2
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Showing independence of u1, . . . , un, continued...

thm: d ∼ Np(0,Ip) indep. M ∼ Wp(Ip,m) then
d′M−1d ∼ p

m−p+1Fp,m−p+1 indep. M+ dd′ ∼ Wp(Ip,m + 1).

Proof : Let G = [g1 · · · gp]′ orthogonal matrix and take

X((m + 1)× p) =

[
X1

x′m+1

]

. Here M = X′
1X1 and d = xm+1. Let

Y = XG′ = [Xg1 · · ·Xgp] = [Y(1) . . .Y(p)].

Then qj = g′j [M+ dd′]gj = g′jX
′Xgj = ||Y(j)||2. Since

Yv ∼ Nnp(0,Inp), Y
v is spherically symmetric. Define

h(Y) = y′m+1(Y
′Y)−1ym+1 = d′M−1d and note that

h(Y) = h(YD) for all diagonal D. Theorem on p. 48 implies qj
indep. h(Y) for j = 1, . . . , p. Now use lemma on previous slide. 2
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Showing independence of u1, . . . , un, continued...

Theorem on last slide implies 1
ui

= |Mi |/|Mi−1| = 1 + x′iM
−1
i−1xi

indep. Mi . Finally,

Mi+j = Mi +

j
∑

k=1

xi+kx
′
i+k

︸ ︷︷ ︸

ui indep. of

,

so for any i , ui indep. of ui+1, . . . , un. 2
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Two last results...

When m is large, can also use Bartlett’s approximation:

−{m − 1
2(p − n + 1)} log Λ(p,m, n)

•∼ χ2
np.

def’n: A ∼ Wp(Ip,m) indep. B ∼ Wp(Ip, n) and m ≥ p.
θ(p,m, n), the largest eigenvalue of (A+ B)−1B is called the
greatest root statistic with parameters (p,m, n).

MKB (p. 84) gives relationships between Λ(p,m, n) and θ(p,m, n)
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