STAT 730 Chapter 3: Normal Distribution Theory

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 730: Multivariate Analysis

Nice properties of multivariate normal random vectors

- Multivariate normal easily generalizes univariate normal. Much harder to generalize Poisson, gamma, exponential, etc.
- Defined completely by first and second moments, i.e. mean vector and covariance matrix.
- If $\mathbf{x} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then $\sigma_{i j}=0$ implies x_{i} independent of x_{j}.
- $\mathbf{a}^{\prime} \mathbf{x} \sim N\left(\mathbf{a}^{\prime} \boldsymbol{\mu}, \mathbf{a}^{\prime} \boldsymbol{\Sigma} \mathbf{a}\right)$.
- Central Limit Theorem says sample means are approximately multivariate normal.
- Simple geometry makes properties intuitive.
\mathbf{x} is multivariate normal $\Leftrightarrow \mathbf{a}^{\prime} \mathbf{x}$ is normal for all \mathbf{a}. $\underline{\text { def' }} \mathbf{x} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \Leftrightarrow \mathbf{a}^{\prime} \mathbf{x} \sim N\left(\mathbf{a}^{\prime} \boldsymbol{\mu}, \mathbf{a}^{\prime} \boldsymbol{\Sigma} \mathbf{a}\right)$ for all $\mathbf{a} \in \mathbb{R}^{p}$.
thm: If $\mathbf{x} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ then its characteristic function is $\phi_{\mathbf{x}}(\mathbf{t})=\exp \left(i \mathbf{t}^{\prime} \boldsymbol{\mu}-\frac{1}{2} \mathbf{t}^{\prime} \boldsymbol{\Sigma} \mathbf{t}\right)$.

Proof: Let $y=\mathbf{t}^{\prime} \mathbf{x}$. Then the c.f. of y is
$\phi_{y}(s) \stackrel{\text { def }}{=} E\left\{e^{i s y}\right\}=\exp \left\{\right.$ is $\left.E(y)-\frac{1}{2} s^{2} \operatorname{var}(y)\right\}=\exp \left\{i s \mathbf{t}^{\prime} \boldsymbol{\mu}-\frac{1}{2} s^{2} \mathbf{t}^{\prime} \boldsymbol{\Sigma} \mathbf{t}\right\}$.
Then the c.f. of \mathbf{x} is

$$
\phi_{\mathbf{x}}(\mathbf{t}) \stackrel{\text { def }}{=} E\left\{e^{i \mathbf{t}^{\prime} \mathbf{x}}\right\}=\phi_{y}(1)=\exp \left(i \mathbf{t}^{\prime} \boldsymbol{\mu}-\frac{1}{2} \mathbf{t}^{\prime} \boldsymbol{\Sigma} \mathbf{t}\right) . \square
$$

Using the c.f. we see that if $\boldsymbol{\Sigma}=\mathbf{0}$ then $\mathbf{x}=\boldsymbol{\mu}$ with probability one, i.e. $N_{p}(\boldsymbol{\mu}, \mathbf{0})=\delta_{\boldsymbol{\mu}}$.

Linear transformations of x are also normal

thm: $\mathbf{x} \sim N_{p}(\mathbf{x}, \boldsymbol{\Sigma}), \mathbf{A} \in \mathbb{R}^{q \times p}$, and $\mathbf{c} \in \mathbb{R}^{q}$
$\Rightarrow \mathbf{A x}+\mathbf{c} \sim N_{q}\left(\mathbf{A} \boldsymbol{\mu}+\mathbf{c}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\prime}\right)$.
Proof: Let $\mathbf{b} \in \mathbb{R}^{q}$; then $\mathbf{b}^{\prime}[\mathbf{A} \mathbf{x}+\mathbf{c}]=\left[\mathbf{b}^{\prime} \mathbf{A}\right] \mathbf{x}+\mathbf{b}^{\prime} \mathbf{c}$. Since $\left[\mathbf{b}^{\prime} \mathbf{A}\right] \mathbf{x}$ is univariate normal by def'n, $\left[\mathbf{b}^{\prime} \mathbf{A}\right] \mathbf{x}+\mathbf{b}^{\prime} \mathbf{c}$ is also for any \mathbf{b}. The specific forms for the mean and covariance are standard results for any $\mathbf{A x}+\mathbf{c}$ (Chapter 2).

Corollary: Any subset of \mathbf{x} is multivariate normal; the x_{i} are normal.

Note: you will show $\phi_{y}(t)=e^{i t \mu-\sigma^{2} t^{2} / 2}$ for $y \sim N\left(\mu, \sigma^{2}\right)$ in your HW.

Normality and independence

Let $\mathbf{x} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $\mathbf{x}^{\prime}=\left(\mathbf{x}_{1}^{\prime}, \mathbf{x}_{2}^{\prime}\right)$ of dimension k and $p-k$. Also partition $\boldsymbol{\mu}^{\prime}=\left(\boldsymbol{\mu}_{1}^{\prime}, \boldsymbol{\mu}_{2}^{\prime}\right)$ and $\boldsymbol{\Sigma}=\left[\begin{array}{ll}\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}\end{array}\right]$. Then \mathbf{x}_{1} index. $\mathbf{x}_{2} \Leftrightarrow C\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\boldsymbol{\Sigma}_{12}=\boldsymbol{\Sigma}_{21}^{\prime}=\mathbf{0}$.

Proof:

$$
\begin{aligned}
\phi_{\mathbf{x}}(\mathbf{t}) & =\phi_{\mathbf{x}_{1}}\left(\mathbf{t}_{1}\right) \phi_{\mathbf{x}_{2}}\left(\mathbf{t}_{2}\right)=\exp \left(i \mathbf{t}_{1}^{\prime} \boldsymbol{\mu}_{1}+\mathbf{t}_{2}^{\prime} \boldsymbol{\mu}_{2}-\frac{1}{2} \mathbf{t}_{1}^{\prime} \boldsymbol{\Sigma}_{11} \mathbf{t}_{1}-\frac{1}{2} \mathbf{t}_{2}^{\prime} \boldsymbol{\Sigma}_{22} \mathbf{t}_{2}\right) \\
& \Leftrightarrow C\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\mathbf{0} . \square
\end{aligned}
$$

Corollary: $\mathbf{x} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \Rightarrow \mathbf{y}=\boldsymbol{\Sigma}^{-1 / 2}(\mathbf{x}-\boldsymbol{\mu}) \sim N_{p}\left(\mathbf{0}, \mathcal{I}_{n}\right)$ and $\bar{U}=(\mathbf{x}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})=\mathbf{y}^{\prime} \mathbf{y} \sim \chi_{p}^{2}$.
Corollary: $\mathbf{x} \sim N_{p}(\mathbf{0}, \mathcal{I}) \Rightarrow \frac{\mathbf{a}^{\prime} \mathbf{x}}{\|\mathbf{a}\|} \sim N(0,1)$ for $\mathbf{a} \neq \mathbf{0}$.
thm: Let $\mathbf{A} \in \mathbb{R}^{n_{1} \times p}, \mathbf{B} \in \mathbb{R}^{n_{2} \times p}$, and $\mathbf{x} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Then $\mathbf{A x}$ indep. $\mathbf{B x} \Leftrightarrow \mathbf{A} \boldsymbol{\Sigma} \mathbf{B}^{\prime}=\mathbf{0}$.

Last one is immediate from previous two slides by finding the distribution of $\left[\begin{array}{l}\mathbf{A} \\ \mathbf{B}\end{array}\right] \mathbf{x}$.

Corollary: $\mathbf{x} \sim N_{p}\left(\boldsymbol{\mu}, \sigma^{2} \mathcal{I}\right)$ and $\mathbf{G G}^{\prime}=\mathcal{I}$ then $\mathbf{G x} \sim N_{p}\left(\mathbf{G} \boldsymbol{\mu}, \sigma^{2} \mathcal{I}\right)$. Also $\mathbf{G x}$ indep. of $\left(\boldsymbol{\mathcal { I }}-\mathbf{G}^{\prime} \mathbf{G}\right) \mathbf{x}$.

Conditional distribution of $\mathbf{x}_{2} \mid \mathbf{x}_{1}$

Let $\mathbf{x} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $\mathbf{x}^{\prime}=\left(\mathbf{x}_{1}^{\prime}, \mathbf{x}_{2}^{\prime}\right)$ of dimension k and $p-k$.
Also partition $\boldsymbol{\mu}^{\prime}=\left(\boldsymbol{\mu}_{1}^{\prime}, \boldsymbol{\mu}_{2}^{\prime}\right)$ and $\boldsymbol{\Sigma}=\left[\begin{array}{ll}\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}\end{array}\right]$. Let $\mathbf{x}_{2.1}=\mathbf{x}_{2}-\boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \mathbf{x}_{1}$.

$$
\begin{aligned}
{\left[\begin{array}{c}
\mathbf{x}_{1} \\
\mathbf{x}_{2.1}
\end{array}\right] } & =\left[\begin{array}{cc}
\boldsymbol{I}_{k} & \mathbf{0} \\
-\boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} & \boldsymbol{I}_{p-k}
\end{array}\right] \mathbf{x} \\
& \sim N_{p}\left(\left[\begin{array}{c}
\boldsymbol{\mu}_{1} \\
\boldsymbol{\mu}_{2}-\boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\mu}_{1}
\end{array}\right],\left[\begin{array}{cc}
\boldsymbol{\Sigma}_{11} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{\Sigma}_{22}-\boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12}
\end{array}\right]\right) .
\end{aligned}
$$

So \mathbf{x}_{1} indep. $\mathbf{x}_{2.1}$. Then $\mathbf{x}_{2} \mid \mathbf{x}_{1}=\mathbf{x}_{2.1}+\underbrace{\boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \mathbf{x}_{1}}_{\text {constant }}$ has
distribution...
thm: $\mathbf{x}_{2} \mid \mathbf{x}_{1} \sim N_{p-k}\left(\boldsymbol{\mu}_{2}+\boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1}\left(\mathbf{x}_{1}-\boldsymbol{\mu}_{1}\right), \boldsymbol{\Sigma}_{22}-\boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12}\right)$.
Very useful! Mean and variance results hold for non-normal \mathbf{x} too.

If $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \stackrel{\text { iid }}{\sim} N_{p}(\mu, \boldsymbol{\Sigma})$, then $\mathbf{X}=\left[\mathbf{x}_{1} \cdots \mathbf{x}_{n}\right]$ 'is a $n \times p$ "normal data matrix."

General transformations are of the form AXB. An important example is $\overline{\mathbf{x}}^{\prime}=\left[\frac{1}{n} \mathbf{1}_{n}^{\prime}\right] \mathbf{X}[\mathcal{I}]$, the sample mean. One can show via c.f. that...
thm: $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \stackrel{i i d}{\sim} N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \Rightarrow \overline{\mathbf{x}} \sim N_{p}\left(\boldsymbol{\mu}, \frac{1}{n} \boldsymbol{\Sigma}\right)$.

General transformation theorem

thm: If $\mathbf{X}(n \times p)$ is data matrix from $N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $\mathbf{Y}(m \times q)=\mathbf{A X B}$ then \mathbf{Y} is normal data matrix \Leftrightarrow
(a) $\mathbf{A} \mathbf{1}_{n}=\alpha \mathbf{1}_{m}$ for $\alpha \in \mathbb{R}$, or $\mathbf{B}^{\prime} \boldsymbol{\mu}=\mathbf{0}$, and
(b) $\mathbf{A} \mathbf{A}^{\prime}=\beta \boldsymbol{I}_{p}$ some $\beta \in \mathbb{R}$, or $\mathbf{B}^{\prime} \mathbf{\Sigma} \mathbf{B}=\mathbf{0}$.

We will prove this in class. Some necessary results follow.
def'n: For any matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$, let
$\mathbf{X}^{v}=\left[\begin{array}{c}\mathbf{x}_{(1)} \\ \vdots \\ \mathbf{x}_{(p)}\end{array}\right]=\left(\mathbf{x}_{(1)}^{\prime}, \ldots, \mathbf{x}_{(p)}^{\prime}\right)^{\prime} \in \mathbb{R}^{n p}$.

Kronecker products

def'n Let $\mathbf{A} \in \mathbb{R}^{n \times m}$ and $\mathbf{B} \in \mathbb{R}^{p \times q}$. Then

$$
\mathbf{A} \otimes \mathbf{B}=\left[\begin{array}{cccc}
a_{11} \mathbf{B} & a_{12} \mathbf{B} & \cdots & a_{1 m} \mathbf{B} \\
a_{21} \mathbf{B} & a_{22} \mathbf{B} & \cdots & a_{2 m} \mathbf{B} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} \mathbf{B} & a_{n 2} \mathbf{B} & \cdots & a_{n m} \mathbf{B}
\end{array}\right] \in \mathbb{R}^{n p \times m q} .
$$

Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \stackrel{i i d}{\sim} N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Then $C\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\delta_{i j} \boldsymbol{\Sigma}$, so

$$
\left[\begin{array}{c}
\mathbf{x}_{1} \\
\mathbf{x}_{2} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right] \sim N_{n p}\left(\left[\begin{array}{c}
\boldsymbol{\mu} \\
\boldsymbol{\mu} \\
\vdots \\
\boldsymbol{\mu}
\end{array}\right],\left[\begin{array}{cccc}
\boldsymbol{\Sigma} & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{0} & \boldsymbol{\Sigma} & \cdots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & \boldsymbol{\Sigma}
\end{array}\right]\right)=N_{n p}\left(\mathbf{1}_{n} \otimes \boldsymbol{\mu}, \boldsymbol{I}_{n} \otimes \boldsymbol{\Sigma}\right)
$$

Kronecker products, dist'n of \mathbf{X}^{v}

prop: Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \stackrel{i i d}{\sim} N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Then

$$
\begin{aligned}
\mathbf{X}^{\vee} & =\left[\begin{array}{c}
\mathbf{x}_{(1)} \\
\mathbf{x}_{(2)} \\
\vdots \\
\mathbf{x}_{(p)}
\end{array}\right] \sim N_{n p}\left(\left[\begin{array}{c}
\mu_{1} \mathbf{1}_{n} \\
\mu_{2} \mathbf{1}_{n} \\
\vdots \\
\mu_{p} \mathbf{1}_{n}
\end{array}\right],\left[\begin{array}{cccc}
\sigma_{11} \mathcal{I}_{n} & \sigma_{12} \mathcal{I}_{n} & \cdots & \sigma_{1 p} \boldsymbol{I}_{n} \\
\sigma_{21} \mathcal{I}_{n} & \sigma_{22} \mathcal{I}_{n} & \cdots & \sigma_{2 p} \mathcal{I}_{n} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{\rho 1} \mathcal{I}_{n} & \sigma_{p 2} \mathcal{I}_{n} & \cdots & \sigma_{p p} \boldsymbol{I}_{n}
\end{array}\right]\right) \\
& =N_{n p}\left(\boldsymbol{\mu} \otimes \mathbf{1}_{n}, \boldsymbol{\Sigma} \otimes \mathcal{I}_{n}\right) .
\end{aligned}
$$

This is immediate from $C\left(\mathbf{x}_{(i)}, \mathbf{x}_{(j)}\right)=\sigma_{i j} \mathcal{I}_{n}$ and $E\left(\mathbf{x}_{(j)}\right)=\mu_{j} \mathbf{1}_{n}$ and the fact that \mathbf{X}^{v} is a permutation matrix times the vector on the previous slide (so it's also normal).

Corollary: $\mathbf{X}(n \times p)$ is n.d.m. from $N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \Leftrightarrow$ $\overline{\mathbf{X}^{v} \sim N_{n p}}\left(\boldsymbol{\mu} \otimes \mathbf{1}_{n}, \boldsymbol{\Sigma} \otimes \mathcal{I}_{n}\right)$.

Kronecker products, VIII on p. 460

prop: $\left(\mathbf{B}^{\prime} \otimes \mathbf{A}\right) \mathbf{X}^{\vee}=(\mathbf{A X B})^{\vee}$.

Proof: First note that

$$
\left(\mathbf{B}^{\prime} \otimes \mathbf{A}\right) \mathbf{X}^{v}=\left[\begin{array}{cccc}
b_{11} \mathbf{A} & b_{21} \mathbf{A} & \cdots & b_{p 1} \mathbf{A} \\
b_{12} \mathbf{A} & b_{22} \mathbf{A} & \cdots & b_{p 2} \mathbf{A} \\
\vdots & \vdots & \ddots & \vdots \\
b_{1 q} \mathbf{A} & b_{2 q} \mathbf{A} & \cdots & b_{p q} \mathbf{A}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{(1)} \\
\mathbf{x}_{(2)} \\
\vdots \\
\mathbf{x}_{(p)}
\end{array}\right]=\left[\begin{array}{c}
\sum_{i=1}^{p} b_{i 1} \mathbf{A x}_{(i)} \\
\sum_{i=1}^{p} b_{i 2} \mathbf{A} \mathbf{x}_{(i)} \\
\vdots \\
\sum_{i=1}^{p} b_{i q} \mathbf{A x}_{(i)}
\end{array}\right]
$$

Now let's find the j th column of $\mathbf{A}_{m \times n} \mathbf{X}_{n \times p} \mathbf{B}_{p \times q}$. For any $\mathbf{A}_{a \times b} \mathbf{B}_{b \times c}$ the j th column of $\mathbf{A B}$ is $\mathbf{A} \mathbf{b}_{(j)}$. First $\mathbf{A X B}=\left[\mathbf{A} \mathbf{x}_{(1)} \cdots \mathbf{A} \mathbf{x}_{(p)}\right] \mathbf{B}$. Thus the j th column of $\mathbf{A X B}$ is $\left[\mathbf{A x}_{(1)} \cdots \mathbf{A} \mathbf{x}_{(p)}\right] \mathbf{b}_{(j)}=\sum_{i=1}^{p} b_{i j} \mathbf{A} \mathbf{x}_{(i)} . \square$
$\left(\mathbf{B}^{\prime} \otimes \mathbf{A}\right) \mathbf{X}^{\vee} \sim N_{m q}(\underbrace{\left[\mathbf{B}^{\prime} \otimes \mathbf{A}\right]\left[\boldsymbol{\mathbf { 1 } _ { n }}\right]}_{\mathbf{B}^{\prime} \boldsymbol{\mu} \otimes \mathbf{A} \mathbf{1}_{n}}, \underbrace{\left[\mathbf{B}^{\prime} \otimes \mathbf{A}\right]\left[\boldsymbol{\Sigma} \otimes \boldsymbol{\mathcal { I }}_{n}\right]\left[\mathbf{B}^{\prime} \otimes \mathbf{A}\right]^{\prime}}_{\mathbf{B}^{\prime} \mathbf{\Sigma} \mathbf{B} \otimes \mathbf{A} \mathbf{A}^{\prime}})$.
This uses $[\mathbf{A} \otimes \mathbf{B}][\mathbf{C} \otimes \mathbf{D}]=\mathbf{A C} \otimes \mathbf{B D}$ and $[\mathbf{A} \otimes \mathbf{B}]^{\prime}=\mathbf{A}^{\prime} \otimes \mathbf{B}^{\prime}$.
Go back to the theorem, this implies it.
In particular, if $\mathbf{Y}=\mathbf{X B}$ then \mathbf{Y} is d.m. from $N_{q}\left(\mathbf{B}^{\prime} \boldsymbol{\mu}, \mathbf{B}^{\prime} \boldsymbol{\Sigma} \mathbf{B}\right)$, as
$\mathbf{A}=\mathcal{I}_{n}$.

Important later on in this Chapter...

thm: \mathbf{X} is d.m. from $N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \mathbf{Y}=\mathbf{A X B}, \mathbf{Z}=\mathbf{C X D}$, then \mathbf{Y} indep. of $\mathbf{Z} \Leftrightarrow$ either (a) $\mathbf{B}^{\prime} \boldsymbol{\Sigma} \mathbf{D}=\mathbf{0}$ or (b) $\mathbf{A C}^{\prime}=\mathbf{0}$.

You will prove this in your homework, see 3.3 .5 (p.88).
Corollary: Let $\mathbf{X}=\left[\mathbf{X}_{1} \mathbf{X}_{2}\right]$ of dimensions $n \times k$ and $n \times(p-k)$.
Then \mathbf{X}_{1} indep. $\mathbf{X}_{2.1}=\mathbf{X}_{2}-\mathbf{X}_{1} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12}, \mathbf{X}_{1}$ d.m. from $N_{k}\left(\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{11}\right)$ and $\mathbf{X}_{2.1}$ d.m. from $N_{p-k}\left(\boldsymbol{\mu}_{2.1}, \boldsymbol{\Sigma}_{22.1}\right)$ where $\boldsymbol{\mu}_{2.1}=\boldsymbol{\mu}_{2}-\boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\mu}_{1}$ and $\boldsymbol{\Sigma}_{22.1}=\boldsymbol{\Sigma}_{22}-\boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12}$.
Proof: $\mathbf{X}_{1}=\mathbf{X B}$ where $\mathbf{B}^{\prime}=\left[\boldsymbol{I}_{k} \mathbf{0}\right]$ and $\mathbf{X}_{2.1}=\mathbf{X D}$ where $\mathbf{D}^{\prime}=\left[-\boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{I}_{p-k}\right]$. Now use above theorem. \square.

Corollary: $\overline{\mathbf{x}}$ indep. \mathbf{S}.
Proof: Taking $\mathbf{A}=\frac{1}{n} \mathbf{1}_{n}^{\prime}$ and $\mathbf{C}=\mathbf{H}=\mathcal{I}_{n}-\frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{\prime}$ in the theorem gives $\overline{\mathbf{x}}$ indep. HX. \square.

Wishart distribution

Note that $\mathbf{S}=\mathbf{X}^{\prime}\left[\frac{1}{n} \mathbf{H}\right] \mathbf{X}$. Quadratic functions of the form $\mathbf{X}^{\prime} \mathbf{C X}$ are an ingredient in many multivariate test statistics.
def'n: $M(p \times p)=\mathbf{X}^{\prime} \mathbf{X}$ where $\mathbf{X}(m \times p)$ is a d.m. from $N_{p}(\mathbf{0}, \boldsymbol{\Sigma})$ has a Wishart distribution with scale matrix $\boldsymbol{\Sigma}$ and d.f. m. Shorthand: $\mathbf{M} \sim W_{p}(\boldsymbol{\Sigma}, m)$.
Note that the $i j$ th element of $\mathbf{X}^{\prime} \mathbf{X}$ is simply $\mathbf{x}_{(i)}^{\prime} \mathbf{x}_{(j)}=\sum_{k=1}^{m} x_{k i} x_{k j}$. The ijth element of $\mathbf{x}_{k} \mathbf{x}_{k}^{\prime}$ is $x_{k i} x_{k j}$. Therefore $\mathbf{X}^{\prime} \mathbf{X}=\sum_{k=1}^{m} \mathbf{x}_{k} \mathbf{x}_{k}^{\prime}$.
Then $E(\mathbf{M})=\underbrace{E\left[\sum_{k=1}^{m} \mathbf{x}_{k} \mathbf{x}_{k}^{\prime}\right]}_{E\left(\mathbf{x}_{k}\right)=\mathbf{0}}=\sum_{k=1}^{m} \boldsymbol{\Sigma}=m \boldsymbol{\Sigma}$.

Quadratic form involving Wishart

$\underline{\text { thm: }}$ Let $\mathbf{B} \in \mathbb{R}^{p \times q}$ and $\mathbf{M} \sim W_{p}(\boldsymbol{\Sigma}, m)$. Then
$\mathbf{B}^{\prime} \mathbf{M B} \sim W_{q}\left(\mathbf{B}^{\prime} \boldsymbol{\Sigma} \mathbf{B}, m\right)$.
Proof: Let $\mathbf{Y}=\mathbf{X B}$. Result 3 slides back gives us \mathbf{Y} is d.m. from $N_{q}\left(\mathbf{0}, \mathbf{B}^{\prime} \boldsymbol{\Sigma} \mathbf{B}\right)$. Then def'n Wishart tells us
$\mathbf{Y}^{\prime} \mathbf{Y}=\mathbf{B}^{\prime} \mathbf{X}^{\prime} \mathbf{X B}=\mathbf{B}^{\prime} \mathbf{M B} \sim W_{q}\left(\mathbf{B}^{\prime} \mathbf{\Sigma} \mathbf{B}, m\right) . \square$

Simple results that follow this theorem

Corollary: Diagonal submatrices of \mathbf{M} (square matrices that share part of a diagonal with \mathbf{M}) have a Wishart distribution.

Corollary: $m_{i i} \sim \chi_{m}^{2} \sigma_{i i}$.
Corollary: $\boldsymbol{\Sigma}^{-1 / 2} \mathbf{M} \boldsymbol{\Sigma}^{-1 / 2} \sim W_{p}\left(\boldsymbol{I}_{p}, m\right)$.
Corollary: $\mathbf{M} \sim W_{p}\left(\mathcal{I}_{p}, m\right)$ and $B(p \times q)$ s.t. $\mathbf{B}^{\prime} \mathbf{B}=\mathcal{I}_{q}$ then $\overline{\mathbf{B}^{\prime} \mathbf{M B} \sim W_{q}\left(\mathcal{I}_{q}, m\right) . ~}$

Corollary: $\mathbf{M} \sim W_{p}(\boldsymbol{\Sigma}, m)$ and \mathbf{a} s.t. $\mathbf{a}^{\prime} \boldsymbol{\Sigma} \mathbf{a} \neq \mathbf{0} \Rightarrow \frac{\mathbf{a}^{\prime} \mathbf{M a}}{\mathbf{a}^{\prime} \boldsymbol{\Sigma} \mathbf{a}} \sim \chi_{m}^{2}$.
All use different \mathbf{B} in the theorem on the previous slide plus minor manipulation.

Wisharts add!

thm $\mathbf{M}_{1} \sim W_{p}\left(\boldsymbol{\Sigma}, m_{1}\right)$ indep. $\mathbf{M}_{2} \sim W_{p}\left(\boldsymbol{\Sigma}, m_{2}\right) \Rightarrow$
$\mathbf{M}_{1}+\mathbf{M}_{2} \sim W_{p}\left(\boldsymbol{\Sigma}, m_{1}+m_{2}\right)$.
Proof: Let $\mathbf{X}=\left[\begin{array}{l}\mathbf{X}_{1} \\ \mathbf{X}_{2}\end{array}\right]$. Then $\mathbf{M}_{1}+\mathbf{M}_{2}=\mathbf{X}^{\prime} \mathbf{X}$. Now use the
def'n of Wishart.
We are just adding m_{2} more independent rows onto \mathbf{X}_{1}.
thm: If $\mathbf{X}(n \times p)$ d.m. from $N_{p}(\mathbf{0}, \boldsymbol{\Sigma})$ and $\mathbf{C}(n \times n)$ is symmetric $\mathrm{w} /$ eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ then
(a) $\mathbf{X}^{\prime} \mathbf{C X} \stackrel{D}{=} \sum_{i=1}^{n} \lambda_{i} \mathbf{M}_{i}$ where $\mathbf{M}_{1}, \ldots, \mathbf{M}_{n} \stackrel{i i d}{\sim} W_{p}(\boldsymbol{\Sigma}, 1)$.
(b) $\mathbf{X}^{\prime} \mathbf{C X} \sim W_{p}(\boldsymbol{\Sigma}, r) \Leftrightarrow \mathbf{C}$ idempotent where $r=\operatorname{tr} \mathbf{C}=\operatorname{rank} \mathbf{C}$.
(c) $n \mathbf{S} \sim W_{p}(\boldsymbol{\Sigma}, n-1)$.

Proof The spectral decomposition of \mathbf{C} is
$\mathbf{C}=\left[\gamma_{1} \cdots \gamma_{n}\right] \boldsymbol{\Lambda}\left[\gamma_{1} \cdots \gamma_{n}\right]^{\prime}=\sum_{i=1}^{n} \lambda_{i} \gamma_{i} \gamma_{i}^{\prime}$. Then
$\mathbf{X}^{\prime} \mathbf{C X}=\sum_{i=1}^{n} \lambda_{i}\left[\mathbf{X}^{\prime} \gamma_{i}\right]\left[\mathbf{X}^{\prime} \gamma_{i}\right]^{\prime}=\sum_{i=1}^{n} \lambda_{i}\left[\gamma_{i}^{\prime} \mathbf{X}\right]^{\prime}\left[\gamma_{i}^{\prime} \mathbf{X}\right]$. General transformation theorem ($\mathbf{A}=\gamma_{i}^{\prime} \& \mathbf{B}=\mathcal{I}_{p}$) tells us that $\gamma_{i}^{\prime} \mathbf{X}$ is d.m. from $N_{p}(\mathbf{0}, \boldsymbol{\Sigma})$ so (a) follows from def'n Wishart. Part (b): C idempotent \Rightarrow there are $r \lambda_{i}=1$ and $n-r \lambda_{i}=0$, hence $\operatorname{tr} \mathbf{C}=\lambda_{1}+\cdots \lambda_{n}=r$. Now use part (a). For part (c) note that \mathbf{H} is idempotent and rank $n-1$. \square

This is a biggie. Lots of stuff that will be used later.

If $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \stackrel{i i d}{\sim} N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ then

$$
\begin{gathered}
\overline{\mathbf{x}} \sim N_{p}\left(\boldsymbol{\mu}, \frac{1}{n} \boldsymbol{\Sigma}\right), \\
n \mathbf{S} \sim W_{p}(\boldsymbol{\Sigma}, n-1),
\end{gathered}
$$

and $\overline{\mathbf{x}}$ indep. of \mathbf{S}.
This is a generalization of the univariate $p=1$ case where $\bar{x} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$ indep. of $n s^{2} \sim \sigma^{2} \chi_{n-1}^{2}$. This latter result is used to cook up a t_{n-1} distribution:

$$
\frac{\bar{x}-\mu}{\sqrt{s^{2} / n}} \sim t_{n-1}
$$

by def' n. We'll shortly generalize this to p dimensions, but first one last result.

Generalization of partitioning sums of squares

Here is Craig's theorem.
thm \mathbf{X} d.m. from $N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $\mathbf{C}_{1}, \ldots, \mathbf{C}_{k}$ are symmetric, then $\mathbf{X}^{\prime} \mathbf{C}_{1} \mathbf{X}, \ldots, \mathbf{X}^{\prime} \mathbf{C}_{k} \mathbf{X}$ are indep. if $\mathbf{C}_{r} \mathbf{C}_{s}=\mathbf{0}$ for all $r \neq s$.

Proof: Let's do it for two projection matrices. Write $\mathbf{X}^{\prime} \mathbf{C}_{1} \mathbf{X}=\mathbf{X}^{\prime} \mathbf{M}_{1} \boldsymbol{\Lambda}_{1} \boldsymbol{\Lambda}_{1} \mathbf{M}_{1}^{\prime} \mathbf{X}$ and $\mathbf{X}^{\prime} \mathbf{C}_{2} \mathbf{X}=\mathbf{X}^{\prime} \mathbf{M}_{2} \boldsymbol{\Lambda}_{2} \boldsymbol{\Lambda}_{2} \mathbf{M}_{2}^{\prime} \mathbf{X}$. Note that $\boldsymbol{\Lambda}_{i} \boldsymbol{\Lambda}_{i}=\boldsymbol{\Lambda}_{i}$ as the e-values are either 1 or 0 . Theorem (slide 14) says $\boldsymbol{\Lambda}_{1} \mathbf{M}_{1}^{\prime} \mathbf{X}$ indep. $\boldsymbol{\Lambda}_{2} \mathbf{M}_{2}^{\prime} \mathbf{X} \Leftrightarrow$
$\left[\boldsymbol{\Lambda}_{1} \mathbf{M}_{1}^{\prime}\right]\left[\boldsymbol{\Lambda}_{2} \mathbf{M}_{2}^{\prime}\right]^{\prime}=\boldsymbol{\Lambda}_{1} \mathbf{M}_{1}^{\prime} \mathbf{M}_{2} \boldsymbol{\Lambda}_{2}=\mathbf{0}$. But
$\mathbf{0}=\mathbf{C}_{1} \mathbf{C}_{2}=\mathbf{M}_{1} \boldsymbol{\Lambda}_{1} \mathbf{M}_{1}^{\prime} \mathbf{M}_{2} \boldsymbol{\Lambda}_{2} \mathbf{M}_{2}^{\prime} \Rightarrow \boldsymbol{\Lambda}_{1} \mathbf{M}_{1}^{\prime} \mathbf{M}_{2} \boldsymbol{\Lambda}_{2}=\mathbf{0}$.
This will come in handy in finding the sampling distribution of common test statistics under H_{0}.

Hotelling's T^{2}

Recall, using obvious notation, $\frac{N(0,1)}{\sqrt{\chi_{\nu}^{2} / \nu}} \sim t_{\nu}$. Used for one and two-sample t tests for univariate outcomes. We'll now generalize this distribution.
def'n: Let $\mathbf{d} \sim N_{p}\left(\mathbf{0}, \boldsymbol{I}_{p}\right)$ indep. $\mathbf{M} \sim W_{p}\left(\boldsymbol{I}_{p}, m\right)$. Then $m \mathbf{d}^{\prime} \mathbf{M}^{-1} \mathbf{d} \sim T^{2}(p, m)$.
$\underline{\text { thm }}$: Let $\mathbf{x} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ indep. $\mathbf{M} \sim W_{p}(\boldsymbol{\Sigma}, m)$. Then $m(\mathbf{x}-\boldsymbol{\mu})^{\prime} \mathbf{M}^{-1}(\mathbf{x}-\boldsymbol{\mu}) \sim T^{2}(p, m)$.

Proof: Take $\mathbf{d}^{*}=\boldsymbol{\Sigma}^{-1 / 2}(\mathbf{x}-\boldsymbol{\mu})$ and $\mathbf{M}^{*}=\boldsymbol{\Sigma}^{-1 / 2} \mathbf{M} \boldsymbol{\Sigma}^{-1 / 2}$ and use def'n of T^{2}. \square

Corollary: $\overline{\mathbf{x}}$ and \mathbf{S} are sample mean and covariance from $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \stackrel{i i d}{\sim} N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \Rightarrow$ $(n-1)(\overline{\mathbf{x}}-\boldsymbol{\mu})^{\prime} \mathbf{S}^{-1}(\overline{\mathbf{x}}-\boldsymbol{\mu}) \sim T^{2}(p, n-1)$.

Proof: Substitute $\mathbf{M}=n \mathbf{S}, m=n-1$, and $\mathbf{x}-\boldsymbol{\mu}$ for $\sqrt{n}(\overline{\mathbf{x}}-\boldsymbol{\mu})$ in the theorem above. \square

Hotelling's T^{2} is a scaled F

thm: $T^{2}(p, m)=\frac{m p}{m-p+1} F_{p, m-p+1}$.
To prove this we need some ingredients...
Let $\mathbf{M} \sim W_{p}(\boldsymbol{\Sigma}, m)$ and take $\mathbf{M}=\left[\begin{array}{ll}\mathbf{M}_{11} & \mathbf{M}_{12} \\ \mathbf{M}_{21} & \mathbf{M}_{22}\end{array}\right]$ where $\mathbf{M}_{11} \in \mathbb{R}^{a \times a}$ and $\mathbf{M}_{22} \in \mathbb{R}^{b \times b}$ and $a+b=p$. Further, let $\mathbf{M}_{22.1}=\mathbf{M}_{22}-\mathbf{M}_{21} \mathbf{M}_{11}^{-1} \mathbf{M}_{12}$.
thm: Let $\mathbf{M} \sim W_{p}(\boldsymbol{\Sigma}, m)$ where $m>p$. Then
$\mathbf{M}_{22.1} \sim W_{b}\left(\boldsymbol{\Sigma}_{22.1}, m-a\right)$.
Proof: Let $\mathbf{X}=\left[\mathbf{X}_{1} \mathbf{X}_{2}\right]$, so

$$
\mathbf{M}=\left[\begin{array}{ll}
\mathbf{M}_{11} & \mathbf{M}_{12} \\
\mathbf{M}_{21} & \mathbf{M}_{22}
\end{array}\right]=\mathbf{X}^{\prime} \mathbf{X}=\left[\begin{array}{ll}
\mathbf{X}_{1}^{\prime} \mathbf{X}_{1} & \mathbf{X}_{1}^{\prime} \mathbf{X}_{2} \\
\mathbf{X}_{2}^{\prime} \mathbf{X}_{1} & \mathbf{X}_{2}^{\prime} \mathbf{X}_{2}
\end{array}\right]
$$

Then

$$
\mathbf{M}_{22.1}=\mathbf{X}_{2}^{\prime} \mathbf{X}_{2}-\mathbf{X}_{2}^{\prime} \mathbf{X}_{1}\left(\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{1} \mathbf{X}_{2}=\mathbf{X}_{2}^{\prime} \mathbf{P} \mathbf{X}_{2}=\mathbf{X}_{2.1}^{\prime} \mathbf{P} \mathbf{X}_{2.1}
$$

where $\mathbf{P}=\mathcal{I}_{n}-\mathbf{X}_{1}\left(\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{1}$ is o.p. matrix onto $\mathcal{C}\left(\mathbf{X}_{1}\right)^{\perp}$ and $\mathbf{X}_{2.1} \mid \mathbf{X}_{1}=\mathbf{X}_{2}-\mathbf{X}_{1} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12}$. Theorem on slide 14 tells us $\mathbf{X}_{2.1}$ is d.m. from $N_{b}\left(\mathbf{0}, \boldsymbol{\Sigma}_{22.1}\right)$ (not dim. p as in the book). So Cochran's theorem tells us $\mathbf{M}_{22.1} \mid \mathbf{X}_{1} \sim W_{b}\left(\boldsymbol{\Sigma}_{22.1}, m-a\right)$. This doesn't depend on \mathbf{X}_{1} so it's the marginal dist'n as well. \square
lemma: If $\mathbf{M} \sim W_{p}(\boldsymbol{\Sigma}, m), m>p$ then $\frac{1}{\left[\mathbf{M}^{-1}\right]_{p p}} \sim \frac{1}{\left[\boldsymbol{\Sigma}^{-1}\right]_{\rho p}} \chi_{m-p-1}^{2}$.
Proof: In general, for partitioned matrices,
$\left[\begin{array}{ll}\mathbf{M}_{11} & \mathbf{M}_{12} \\ \mathbf{M}_{21} & \mathbf{M}_{22}\end{array}\right]^{-1}=\left[\begin{array}{cc}\left(\mathbf{M}_{11}-\mathbf{M}_{12} \mathbf{M}_{22}^{-1} \mathbf{M}_{21}\right)^{-1} & -\mathbf{M}_{11}^{-1} \mathbf{M}_{12}\left(\mathbf{M}_{22}-\mathbf{M}_{21} \mathbf{M}_{11}^{-1} \mathbf{M}_{12}\right)^{-1} \\ -\mathbf{M}_{22}^{-1} \mathbf{M}_{21}\left(\mathbf{M}_{11}-\mathbf{M}_{12} \mathbf{M}_{22}^{-1} \mathbf{M}_{21}\right)^{-1} & \left(\mathbf{M}_{22}-\mathbf{M}_{21} \mathbf{M}_{11}^{-1} \mathbf{M}_{12}\right)^{-1}\end{array}\right]$.
Now let \mathbf{M}_{11} be upper left $(p-1) \times(p-1)$ submatrix of \mathbf{M} and m_{22} the lower right 1×1 "scalar matrix." Then, where $\sigma_{22.1}=\frac{1}{\left[\Sigma^{-1}\right]_{p p}}$,
$\frac{1}{\left[\mathbf{M}^{-1}\right]_{\rho \rho}}=\frac{1}{1 / m_{22.1}}=m_{22.1} \sim W_{1}\left(\sigma_{22.1}, m-(p-1)\right)=\sigma_{22.1} \chi_{m-p-1}^{2} . \square$ thm: If $\mathbf{M} \sim W_{p}(\boldsymbol{\Sigma}, m), m>p$ then $\frac{\frac{a}{}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{M}^{-1}}{\mathbf{M}^{-1} \mathrm{a}} \sim \chi_{m-p+1}^{2}$.
Proof: Let $\mathbf{A}=\left[\mathbf{a}_{(1)} \cdots \mathbf{a}_{(p-1)} \mathbf{a}\right]$. Then
$\mathbf{N}=\mathbf{A}^{-1} \mathbf{M}\left(\mathbf{A}^{-1}\right)^{\prime} \sim W_{p}\left(\mathbf{A}^{-1} \boldsymbol{\Sigma}\left(\mathbf{A}^{-1}\right)^{\prime}, m\right)$. So

$$
\frac{1}{\left[\mathbf{N}^{-1}\right]_{\rho p}}=\frac{1}{\left[\mathbf{A} \mathbf{M}^{-1} \mathbf{A}^{\prime}\right]_{\rho \rho}}=\frac{1}{\mathbf{a}^{\prime} \mathbf{M}^{-1} \mathbf{a}} \sim \frac{1}{\mathbf{a}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{a} \mathbf{a}} \chi_{m-p+1}^{2} .
$$

Noting that the ppth element of $\left[\mathbf{A}^{-1} \boldsymbol{\Sigma}\left(\mathbf{A}^{-1}\right)^{\prime}\right]^{-1}$ is $\frac{1}{a^{\prime} \boldsymbol{\Sigma} \mathbf{a}} . \square$

Recall $m \mathbf{d}^{\prime} \mathbf{M}^{-1} \mathbf{d} \sim T^{2}(p, m)$ where $\mathbf{d} \sim N_{p}\left(\mathbf{0}, \mathcal{I}_{p}\right)$ indep. of $\mathbf{M} \sim W_{p}\left(\mathcal{I}_{p}, m\right)$. Given $\mathbf{d}, \beta=\frac{\mathbf{d}^{\prime} \mathbf{d}}{\mathbf{d}^{\prime} \mathbf{M}^{-1} \mathbf{d}} \sim \chi_{m-p+1}^{2}$ (last slide). Since this is independent of \mathbf{d}, β indep. \mathbf{d} and this is the marginal dist'n as well.

$$
m \mathbf{d}^{\prime} \mathbf{M}^{-1} \mathbf{d}=\frac{m \mathbf{d}^{\prime} \mathbf{d}}{\mathbf{d}^{\prime} \mathbf{d} / \mathbf{d}^{\prime} \mathbf{M}^{-1} \mathbf{d}}=m \frac{\chi_{p}^{2}}{\chi_{m-p+1}^{2}}=\frac{m p}{m-p+1} F_{p, m-p+1 . \square}
$$

Corollary: $\overline{\mathbf{x}}$ and \mathbf{S} are sample mean and covariance from $N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ then $\frac{n-p}{p}(\overline{\mathbf{x}}-\boldsymbol{\mu})^{\prime} \mathbf{S}^{-1}(\overline{\mathbf{x}}-\boldsymbol{\mu}) \sim F_{p, n-p}$.

Corollary: $|\mathbf{M}| /\left|\mathbf{M}+\mathbf{d d}^{\prime}\right| \sim B\left(\frac{1}{2}(m-p+1), \frac{p}{2}\right)$.
Proof: For $\mathbf{B}(p \times n)$ and $\mathbf{C}(n \times p),\left|\mathcal{I}_{p}+\mathbf{B C}\right|=\left|\mathcal{I}_{n}+\mathbf{C B}\right|$.
Since $|\mathbf{A B}|=|\mathbf{A}||\mathbf{B}|$, we can write this as
$\frac{1}{\left|\mathcal{I}_{p}+\mathbf{M}^{-1} \mathbf{d d} d^{\prime}\right|}=\frac{1}{\left|\mathcal{I}_{1}+\mathbf{d}^{\prime} \mathbf{M}^{-1} \mathbf{d}\right|}=\frac{1}{1+\mathbf{d}^{\prime} \mathbf{M}^{-1} \mathbf{d}}=\frac{1}{1+\frac{p}{m-p+1} F_{p, m-p+1}}$. Recall
if $x \sim F_{\nu_{1}, \nu_{2}}$ then $\frac{\nu_{1} \times / \nu_{2}}{1+\nu_{1} x / \nu_{2}} \sim B\left(\frac{\nu_{1}}{2}, \frac{\nu_{2}}{2}\right)$ and $\frac{1}{1+\nu_{1} \times / \nu_{2}} \sim B\left(\frac{\nu_{2}}{2}, \frac{\nu_{1}}{2}\right)$.

Corollary: $\mathbf{d} \sim N_{p}\left(\mathbf{0}, \boldsymbol{I}_{p}\right)$ indep. $\mathbf{M} \sim W_{p}\left(\mathcal{I}_{p}, m\right)$ then $\left.\overline{\mathbf{d}^{\prime} \mathbf{d}(1+1} /\left\{\mathbf{d}^{\prime} \mathbf{M}^{-1} \mathbf{d}\right\}\right) \sim \chi_{m+1}^{2}$ indep. of $\mathbf{d}^{\prime} \mathbf{M}^{-1} \mathbf{d}$.
Proof: β indep. $\mathbf{d}^{\prime} \mathbf{d}$ (last slide); both χ^{2} so their sum is indep. of their ratio. Sum of two indep. χ^{2} is also χ^{2}; the d.f. add. \square

Let $D^{2}=\left(\overline{\mathbf{x}}_{1}-\overline{\mathbf{x}}_{2}\right)^{\prime} \mathbf{S}_{u}^{-1}\left(\overline{\mathbf{x}}_{1}-\overline{\mathbf{x}}_{2}\right)$ estimate
$\Delta^{2}=\left(\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}\right)^{\prime} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}\right)$ where $\mathbf{S}_{u}=\frac{1}{n-2}\left[n_{1} \mathbf{S}_{1}+n_{2} \mathbf{S}_{2}\right]$.
Then
thm: Let \mathbf{X}_{1} d.m. from $N_{p}\left(\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right)$ indep. \mathbf{X}_{2} d.m. from $N_{p}\left(\boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2}\right)$. If $\boldsymbol{\mu}_{1}=\boldsymbol{\mu}_{2}$ and $\boldsymbol{\Sigma}_{1}=\boldsymbol{\Sigma}_{2}$ then $\frac{n_{1} n_{2}}{n_{1}+n_{2}} D^{2} \sim T^{2}(p, n-2)$.

Proof: $\mathbf{d}=\overline{\mathbf{x}}_{1}-\overline{\mathbf{x}}_{2} \sim N_{p}\left(\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}, \frac{1}{n_{1}} \boldsymbol{\Sigma}_{1}+\frac{1}{n_{2}} \boldsymbol{\Sigma}_{2}\right)$. When $\boldsymbol{\mu}_{1}=\boldsymbol{\mu}_{2}$ and $\boldsymbol{\Sigma}_{1}=\boldsymbol{\Sigma}_{2}, \mathbf{d} \sim N_{p}(\mathbf{0}, c \boldsymbol{\Sigma})$ where $c=\frac{n_{1}+n_{2}}{n_{1} n_{2}}$. Also $\mathbf{M}=n_{1} \mathbf{S}_{1}+n_{2} \mathbf{S}_{2} \sim W_{p}\left(\boldsymbol{\Sigma}, n_{1}+n_{2}-2\right)$ as independent Wisharts $\mathrm{w} /$ same scale add; $c \mathbf{M} \sim W_{p}\left(c \boldsymbol{\Sigma}, n_{1}+n_{2}-2\right)$. \mathbf{M} indep. \mathbf{d} as $\overline{\mathbf{x}}_{1}, \overline{\mathbf{x}}_{2}, \mathbf{S}_{1}, \mathbf{S}_{2}$ mutually indep. Stirring all ingredients together gives $\frac{D^{2}}{c}=(n-2) \mathbf{d}^{\prime}(c \mathbf{M})^{-1} \mathbf{d} \sim T^{2}(p, n-2) . \square$.

Generalization of F statistic

We've already generalized the t for multivariate data; now it's time for the F.

Let $\mathbf{A} \sim W_{p}(\boldsymbol{\Sigma}, m)$ indep. of $\mathbf{B} \sim W_{p}(\boldsymbol{\Sigma}, n)$ where $m \geq p . \mathbf{A}^{-1}$ exists a.s. and we will examine aspects of $\mathbf{A}^{-1} \mathbf{B}$.

Note that this reduces to the ratio of indep, χ^{2} in the univariate $p=1$ case.

Generalization of F statistic

lemma: $\mathbf{M} \sim W_{p}(\boldsymbol{\Sigma}, m), m \geq p, \Rightarrow|\mathbf{M}|=|\boldsymbol{\Sigma}| \prod_{i=0}^{p-1} \chi_{m-i}^{2}$.
Proof: By induction. For $p=1|\mathbf{M}|=m \sim \sigma^{2} \chi_{m}^{2}$. For $p>1$ let \mathbf{M}_{11} be upper left $(p-1) \times(p-1)$ submatrix of \mathbf{M} and m_{22} the lower right 1×1 "scalar matrix" (slide 24). The induction hypothesis says $\left|\mathbf{M}_{11}\right|=\left|\boldsymbol{\Sigma}_{11}\right| \prod_{i=0}^{p-2} \chi_{m-i}^{2}$. Slide 24 implies that $m_{22.1}$ indep. \mathbf{M}_{11} and $m_{22.1} \sim \sigma_{22.1} \chi_{m-p+1}^{2}$. The result follows by noting that $|\mathbf{M}|=\left|\mathbf{M}_{11}\right| m_{22.1}$ and $|\boldsymbol{\Sigma}|=\left|\boldsymbol{\Sigma}_{11}\right| \sigma_{22.1}$ (p. 457 or expansion of determinant using cofactors).
thm: Let $\mathbf{A} \sim W_{p}(\boldsymbol{\Sigma}, m)$ indep. of $\mathbf{B} \sim W_{p}(\boldsymbol{\Sigma}, n)$ where $m \geq p$ and $n \geq p$. Then $\phi=|\mathbf{B}| /|\mathbf{A}| \propto \prod_{i=1}^{p} F_{n-i+1, m-i+1}$.

Proof: Using the lemma
$\phi=\prod_{i=0}^{p} \frac{\chi_{n-i}^{2}}{\chi_{m-i}^{2}}=\prod_{i=0}^{p} \frac{n-i}{m-i} F_{n-i+1, m-i+1 .} . \square$

Wilk's lambda

Wilk's lambda, a generalization of the beta variable, appears later on when performing LRT: def'n: $\mathbf{A} \sim W_{p}\left(\mathcal{I}_{p}, m\right)$ indep. $\mathbf{B} \sim W_{p}\left(\mathcal{I}_{p}, n\right)$ and $m \geq p$

$$
\Lambda=|\mathbf{A}| /|\mathbf{A}+\mathbf{B}| \sim \Lambda(p, m, n)
$$

has a Wilk's lambda distribution with parameters (p, m, n)
thm: $\Lambda \sim \prod_{i=1}^{n} u_{i}$ where u_{1}, \ldots, u_{n} are mutually independent and $u_{i} \sim B\left(\frac{1}{2}(m+i-p), \frac{p}{2}\right)$.

Let $\mathbf{X}(n \times p)$ be d.m. from $N_{p}\left(\mathbf{0}, \mathcal{I}_{p}\right), \mathbf{B}=\mathbf{X}^{\prime} \mathbf{X}$ and \mathbf{X}_{i} be first i rows of \mathbf{X}. Let $\mathbf{M}_{i}=\mathbf{A}+\mathbf{X}_{i}^{\prime} \mathbf{X}_{i}$. Then $\mathbf{M}_{0}=\mathbf{A}, \mathbf{M}_{n}=\mathbf{A}+\mathbf{B}$, and $\mathbf{M}_{i}=\mathbf{M}_{i-1}+\mathbf{x}_{i} \mathbf{x}_{i}^{\prime}$. Then

$$
\Lambda=\frac{|\mathbf{A}|}{|\mathbf{A}+\mathbf{B}|}=\prod_{i=1}^{n} \frac{\left|\mathbf{M}_{i-1}\right|}{\left|\mathbf{M}_{i}\right|}=\prod_{i=1}^{n} u_{i}
$$

Corollary on slide 27 implies $u_{i} \sim B\left(\frac{1}{2}(m+i-p), \frac{p}{2}\right)$.
The independence part takes some work...

Characterization of independence of matrix \& vector

lemma: Let $\mathbf{W} \in \mathbb{R}^{p \times p}$ and $\mathbf{x} \in \mathbb{R}^{p}$. If \mathbf{x} is indep. of
$\left(\mathbf{g}_{1}^{\prime} \mathbf{W} \mathbf{g}_{1}, \ldots, \mathbf{g}_{p}^{\prime} \mathbf{W} \mathbf{g}_{p}\right)$ for all orthogonal $\mathbf{G}=\left[\mathbf{g}_{1} \cdots \mathbf{g}_{p}\right]^{\prime}$ then \mathbf{x} indep. W.

Proof: The c.f. of $\left\{2^{I\{i<j\}} w_{i j}: i \leq j\right\}$ is $E\left\{e^{i \operatorname{tr}(\mathbf{W T})}\right\}$ where \mathbf{T} is symmetric. The c.f. of (\mathbf{x}, \mathbf{W}) is thus characterized by $\phi \mathbf{W}, \mathbf{x}(\mathbf{T}, \mathbf{s})=E\left\{e^{i \operatorname{tr}(\mathbf{W T})} e^{i \mathbf{s}^{\prime} \mathbf{x}}\right\}$. If \mathbf{x} indep. trWT for all symmetric \mathbf{T} then the c.f. factors and \mathbf{x} indep. \mathbf{W}.
Let $\mathbf{A}=\mathbf{G} \boldsymbol{\Lambda} \mathbf{G}^{\prime}=\sum_{i=1}^{p} \lambda_{i} \mathbf{g}_{i} \mathbf{g}_{i}^{\prime}$ be spectral decomposition. Then

$$
\operatorname{tr} \mathbf{A W}=\operatorname{tr}\left\{\sum_{i=1}^{p} \lambda_{i} \mathbf{g}_{i} \mathbf{g}_{i}^{\prime} \mathbf{W}\right\}=\sum_{i=1}^{p} \lambda_{i} \underbrace{\mathbf{g}_{i}^{\prime} \mathbf{W} \mathbf{g}_{i}}_{\mathbf{x} \text { indep. these }} . \square
$$

Showing independence of u_{1}, \ldots, u_{n}, continued...

thm: $\mathbf{d} \sim N_{p}\left(\mathbf{0}, \mathcal{I}_{p}\right)$ indep. $\mathbf{M} \sim W_{p}\left(\mathcal{I}_{p}, m\right)$ then $\mathbf{d}^{\prime} \mathbf{M}^{-1} \mathbf{d} \sim \frac{p}{m-p+1} F_{p, m-p+1}$ indep. $\mathbf{M}+\mathbf{d d}^{\prime} \sim W_{p}\left(\mathcal{I}_{p}, m+1\right)$.

Proof: Let $\mathbf{G}=\left[\mathbf{g}_{1} \cdots \mathbf{g}_{p}\right]^{\prime}$ orthogonal matrix and take $\mathbf{X}((m+1) \times p)=\left[\begin{array}{c}\mathbf{X}_{1} \\ \mathbf{x}_{m+1}^{\prime}\end{array}\right]$. Here $\mathbf{M}=\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}$ and $\mathbf{d}=\mathbf{x}_{m+1}$. Let

$$
\mathbf{Y}=\mathbf{X G}^{\prime}=\left[\mathbf{X g}_{1} \cdots \mathbf{X} \mathbf{g}_{p}\right]=\left[\mathbf{Y}_{(1)} \ldots \mathbf{Y}_{(p)}\right]
$$

Then $q_{j}=\mathbf{g}_{j}^{\prime}\left[\mathbf{M}+\mathbf{d d}^{\prime}\right] \mathbf{g}_{j}=\mathbf{g}_{j}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \mathbf{g}_{j}=\|\mathbf{Y}(j)\|^{2}$. Since $\mathbf{Y}^{\vee} \sim N_{n p}\left(\mathbf{0}, \boldsymbol{I}_{n p}\right), \mathbf{Y}^{\vee}$ is spherically symmetric. Define $h(\mathbf{Y})=\mathbf{y}_{m+1}^{\prime}\left(\mathbf{Y}^{\prime} \mathbf{Y}\right)^{-1} \mathbf{y}_{m+1}=\mathbf{d}^{\prime} \mathbf{M}^{-1} \mathbf{d}$ and note that $h(\mathbf{Y})=h(\mathbf{Y D})$ for all diagonal \mathbf{D}. Theorem on p .48 implies q_{j} indep. $h(\mathbf{Y})$ for $j=1, \ldots, p$. Now use lemma on previous slide.

Showing independence of u_{1}, \ldots, u_{n}, continued...

Theorem on last slide implies $\frac{1}{u_{i}}=\left|\mathbf{M}_{i}\right| /\left|\mathbf{M}_{i-1}\right|=1+\mathbf{x}_{i}^{\prime} \mathbf{M}_{i-1}^{-1} \mathbf{x}_{i}$ indep. \mathbf{M}_{i}. Finally,

$$
\mathbf{M}_{i+j}=\mathbf{M}_{i}+\sum_{k=1}^{j} \underbrace{\mathbf{x}_{i+k} \mathbf{x}_{i+k}^{\prime}}_{u_{i} \text { indep. of }},
$$

so for any i, u_{i} indep. of u_{i+1}, \ldots, u_{n}. \square

When m is large, can also use Bartlett's approximation:

$$
-\left\{m-\frac{1}{2}(p-n+1)\right\} \log \Lambda(p, m, n) \stackrel{\sim}{\sim} \chi_{n p}^{2} .
$$

def'n: $\mathbf{A} \sim W_{p}\left(\mathcal{I}_{p}, m\right)$ indep. $\mathbf{B} \sim W_{p}\left(\mathcal{I}_{p}, n\right)$ and $m \geq p$. $\theta(p, m, n)$, the largest eigenvalue of $(\mathbf{A}+\mathbf{B})^{-1} \mathbf{B}$ is called the greatest root statistic with parameters (p, m, n).

MKB (p. 84) gives relationships between $\Lambda(p, m, n)$ and $\theta(p, m, n)$

