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Random vectors

Let x ∈ Rp be a random vector. The cumulative distribution
function (cdf) of x is F : Rp → [0, 1] such that

P(x ≤ xo)
def
= P(x1 ≤ xo1 , . . . , xp ≤ xop ) = F (xo1 , . . . , x

o
p ) = F (xo).

The probability of x ∈ A ⊂ Rp is given by

P(x ∈ A) =

∫
A
dF (u),

the Riemann-Stieltjes integral over A.

The Riemann-Stieltjes intergral is essentially a weighted Riemann
integral (but not quite). It’s simpler than Lebesgue, yet powerful
enough to handle continuous, discrete, and mixtures of
continuous/discrete random vectors. Riemann-Stieltjes integrals
reduce to the usual Riemann integrals or sums if x is absolutely
continuous or discrete.
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Density and mass function

If x is absolutely continuous, it has a joint density f : Rp → [0,∞)
such that

P(x ∈ A) =

∫
A
f (u)du;

if x is discrete then f is rather a probability mass function such that

P(x ∈ A) =
∑
ui∈A

f (ui ),

where {u1,u2, . . . } are those (countable) values in the support
S = {u : f (u) > 0}.

For absolutely continuous x the density is given in terms of the cdf

f (x1, . . . , xp) =
∂

∂x1
· · · ∂

∂xp
F (x1, . . . , xp).
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Marginal and conditional distributions

Let x′ = (x′1, x
′
2) where x1 ∈ Rk & x2 ∈ Rp−k .

P(x1 ≤ xo1) = F (xo1 , . . . , x
o
k ,∞, . . . ,∞),

is the marginal cdf of x1. If x is absolutely continuous then

f1(x1) =

∫
Rp−k

f (x1, x2)dx2,

is the marginal density of x1; f2(x2) is defined similarly. The
conditional density of x1 given x2 = xo2 is

f (x1|x2 = xo2) =
f (x1, xo2)

f2(xo2)
.
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Independence

Let x′ = (x′1, x
′
2). x1 is independent of x2 when

f (x1|x2 = xo2) = f1(x1) for all x1.

f (x2|x1 = xo1) = f2(x2) for all x2.

f (x1, x2) = f1(x1)f2(x2).

F (x1, x2) = F1(x1)F2(x2).

First three are for absolutely continuous x, last one for all x.
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Population moments

Let x be a random vector. The expectation of the random variable
g(x), where g : Rp → R, is

E{g(x)} =

∫
Rp

g(x)dF (x).

Properties:

Linearity E{a1g1(x) + a2g2(x)} = a1E{g1(x)}+ a2E{g2(x)}.
Partition x′ = (x′1, x

′
2), then E{g(x1)} =

∫
Rk g(x1)f1(x1)dx1.

x1 and x2 independent
⇒ E{g1(x1)g2(x2)} = E{g1(x1)}E{g2(x2)}.

In general, let G : Rp → Ra×b have elements [gij(x)]a×b. Then
E{G(x)} is the matrix with ijth element E{gij(x)}.
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µ and Σ

Define

µ =

 µ1
...
µp

 =

 E (x1)
...

E (xp)

 = E (x),

and

Σ = V (x) =


σ11 σ12 · · · σ1p

σ21 σ22 · · · σ2p
...

...
. . .

...
σp1 σp2 · · · σpp

 = E{(x− µ)(x− µ)′}.

These are the population mean vector and covariance matrix. Note
that the ijth entry of Σ is σij = E{xi − µi )(xj − µj)} = C (xi , xj).

We write x ∼ (µ,Σ) for short.

7 / 36



Property of expectation

Let A ∈ Rq×p and b ∈ Rq. Then

E{Ax + b} = AE (x) + b.

To show this, let G : Rp → Rq have ith element
gi (x) = (ai1 · · · aip)x + bi and use definition two slides earlier.
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More covariance

Let x ∈ Rp and y ∈ Rq be random vectors. Then

C (x, y) = E{(x− E (x))(y − E (y))′}.

What is the ijth element of C (x, y)? Properties:

Σ = E (xx′)− µµ′.

V (Ax + b) = AΣA′, V (a′x) = a′Σa.

Σ ≥ 0 because V (·) ≥ 0 & def’n pos. def.

C (x, x) = V (x).

C (x, y) = C (y, x)′.

C (x1 + x2, y) = C (x1, y) + C (x2, y).

p = q ⇒ V (x + y) = V (x) + C (x, y) + C (y, x) + V (y).

C (Ax,By) = AC (x, y)B′.

x ind. y⇒ C (x, y) = 0.

V (x1 + · · ·+ xn) =
∑n

i=1 V (xi ) +
∑

i 6=j C (xi , xj).
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Correlation matrix & generalized variance

Recall ρij =
σij
σiσj

. Let P = [ρij ] be the p × p correlation matrix.

Define ∆ = diag(σ1, . . . , σp). Then

P = ∆−1Σ∆−1 and Σ = ∆P∆.

Population generalized variance is |Σ| and population total
variance is tr Σ.
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Mahalanobis space

Let x, y ∈ Rp. M-distance between a and b based on Σ is
∆2

Σ(a,b) = (a− b)′Σ−1(a− b). Unitless distance that takes scale
and correlation into account.

Let E (x) = µx, E (y) = µy, and V (x) = V (y) = Σ. Then
∆2

Σ(µx,µy) = (µx−µy)′Σ−1(µx−µy) is M-distance between
two population means. Used, e.g., in anthropology to measure
distance between groups based on bone measurements.

∆2
Σ(x,µ) = (x− µ)′Σ−1(x− µ) used for outlier detection.
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Multivariate skew and kurtosis (p. 31)

Here are two measures proposed by your book; there are others.

Multivariate skew (is mass “piled up” in the “tails” more in one
direction that others) is measured by

β1,p = E{(x− µ)′Σ−1(y − µ)}3,

where x, y
iid∼ (µ,Σ).

Multivariate kurtosis (how “peaked” the density is at the mode) is
measured by

β2,p = E{(x− µ)′Σ−1(y − µ)}2.

There are natural sample analogues of these. These measures can
be used to form tests for multivariate normality assessment.
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Characteristic functions

The c.f. of x is the Fourier transform

φx(t) = E (e it
′x) =

∫
Rp

e it
′xdF (x).

Properties:

Always exists, φx(0) = 1 and |φx(t)| ≤ 1.

x and y have same c.f. ⇔ Fx(·) = Fy(·).

If φx(t) absolutely integrable then x has PDF
f (x) = 1

(2π)p

∫
Rp e

−it′xφx(t)dt.

For x′ = (x′1, x
′
2), x1 ind. x2 ⇔ φx(t) = φx1(t1)φx2(t2). Also

φx1 = φx(t1, 0).

E (x j11 · · · x
jp
p ) = 1

i j1+···+jp

[
∂j1+···+jp

∂t
j1
1 ···∂t

jp
p

φx(t)

]
t=0

.

x and y independent p-vectors ⇒ φx+y(t) = φx(t)φy(t).
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Cramer-Wold theorem

First note that the distribution of x is completely determined by its
c.f.

thm: The distribution of x ∈ Rp is completely determined by the
distributions of linear combinations in D = {t′x : t ∈ Rp}.

Proof : Let yt = t′x ∈ D. The c.f. is φyt(s) = E (e isyt) = E (e ist′x).
Now note φyt(1) is the c.f. of x evaluated at t. 2.

In other words, for each t ∈ Rp, we can evaluate φx(t) via the c.f.
of the univariate φyt(1). We need all of the elements of D to
completely specify the c.f. of x though.

This theorem will come in handy in specifying the multivariate
normal distribution a bit later.
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Transformations

Let x ∈ Rp have a PDF f (·) and let the function u : Rp → Rp be
one-to-one. Then the PDF of y = u(x) is

fy(y) = f {u−1(y)}|J|,

where J is the p × p matrix with ijth element ∂xi
∂yj

. Book makes

note of sets of Lebesgue measure zero, but don’t worry about this.

Pages 35–36 have Jacobians |J| for several transformations used in
this class as well as some examples.
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Multivariate normal distribution

Recall if x ∼ N(µ, σ2) then

f (x) = {2πσ2}−1/2 exp{−1
2 (x − µ)(σ2)−1(x − µ)}.

def’n: x ∼ Np(µ,Σ) where Σ > 0, has pdf

f (x) = |2πΣ|−1/2 exp{−1
2 (x− µ)′Σ−1(x− µ)}.
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A couple results

thm: If x ∼ Np(µ,Σ) and y = Σ−1/2(x− µ) then

y1, . . . , yp
iid∼ N(0, 1).

Proof : The change-of-variables formula, two slides back, with

u(x) = Σ−1/2(x− µ) and |J| = |Σ|1/2 yields

fy(y) =

p∏
i=1

1√
2π

e−
1
2 y

2
i ,

i.e. y ∼ Np(0,I). 2.

Corollary: x ∼ Np(µ,Σ)⇒ E (x) = µ, V (x) = Σ.

This is immediate by starting with y ∼ Np(0,I), which implies
E (y) = 0 and V (y) = I, and taking the transformation
x = Σ1/2y + µ (one-to-one!). Clearly, x ∼ Np(µ,Σ) from above
and properties of expectation and covariance yield the desired
result.
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Simulating multivariate normals

The inverse transformation x = Σ1/2y + µ allows us to generate
x ∼ Np(µ,Σ) as long as well can generate iid N(0, 1) variables.

In fact, we can use any square root of Σ, i.e. any A s.t. AA′ = Σ
by taking x = Ay + µ. In fact, Σ1/2 = MΛ1/2M′ (spectral
decomposition) gives the unique symmetric square root. All other
square roots are given by Σ1/2O where O are unitary matrices.

One important non-symmetric square root is the Cholesky
decomposition. Here we simulate

x1, . . . , x1000
iid∼ N2

([
3
8

]
,

[
1 0.5

0.5 2

])
:

m=matrix(c(1,0.5,0.5,2),2,2)

m # covariance matrix

t(chol(m))%*%chol(m) # same

X=t(t(chol(m))%*%matrix(rnorm(2*1000),2,1000)+c(3,8))

plot(X)
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Geometry

If x ∼ Np(µ,Σ) then the density f (x) is constant on ellipsoids
(x−µ)′Σ−1(x−µ) = c2. These ellipsoids are called contours, and
plots of them for different c yield a (topographic) contour plot.

library(mvtnorm)

mu=c(1,3)

sigma=matrix(c(1,0.7,0.7,1),2,2)

z=matrix(0,50,50)

x1=seq(qnorm(0.01,mu[1],sigma[1,1]),qnorm(0.99,mu[1],sigma[1,1]),length.out=50)

x2=seq(qnorm(0.01,mu[2],sigma[2,2]),qnorm(0.99,mu[2],sigma[2,2]),length.out=50)

for(i in 1:50){for(j in 1:50){z[i,j]=dmvnorm(c(x1[i],x2[j]),mu,sigma)}}

contour(x1,x2,z)

filled.contour(x1,x2,z)

The eigenvectors of Σ give the major and minor axes. The
eigenvalues are how much the ellipse is “stretched” along its axis.
More examples on pp. 39–40.
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Some useful properties of x ∼ Np(µ,Σ)

thm: U = (x− µ)′Σ−1(x− µ) ∼ χ2
p.

Proof : Again using y = Σ−1/2(x− µ) we have
(x− µ)′Σ−1(x− µ) = y′y which is the sum of p independent
squared standard normals. 2.

thm: The c.f. of x is φx(t) = exp(it′µ− 1
2t′Σt).

Proof : Use x = Σ1/2y + µ and let ui =
∑p

j=1(Σ1/2)ij tj be the

ith element of u = Σ1/2t ∈ Rp. Then
φx(t) = E (e it

′x) = e it
′µE (e it

′Σ1/2y) = e it
′µφy(Σ1/2t) =

e it
′µ
∏p

i=1 φyi (ui ) = e it
′µ
∏p

i=1 exp{−1
2

∑p
j=1 u

2
i } =

e it
′µ exp{−1

2 ||u||
2} = e it

′µ exp{−1
2t′Σt}. 2
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Some useful properties of x ∼ Np(µ,Σ)

thm: Let a ∈ Rp. Then a′x ∼ N(a′µ, a′Σa).

Proof : φa′x(t) = φx(ta) = exp{ita′µ− 1
2 t

2a′Σa}. 2.

thm: β1,p = 0 and β2,p = p(p + 2).

Proof : See book p. 41 if interested. 2
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Singular normal distributions

First theorem on last slide doesn’t make sense if a = 0 unless we
define particular normal distributions that have zero variance for
some linear combinations a′x.

Another example: x1 ∼ N(0, 1) and x2 = x1. Want to have
x ∼ N2(0, 121′2), gives ρ12 = 1, but x1 and x2 both N(0, 1)
marginally.

def’n: x ∼ Np(µ,Σ) where rank(Σ) = k < p has density

f (x) =
(2π)−k/2

(λ1 · · ·λk)1/2
exp{(x− µ)′Σ−(x− µ)}

where x lives in hyperplane N′(x− µ) = 0 where N is p × (p − k)
matrix w/ columns spanning null space of Σ, i.e. N′Σ = 0 and
N′N = Ip−k . Here, Σ− is a g-inverse of Σ and λ1, . . . , λk are
non-zero eigenvalues.
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Singular normal distribution example

For x ∼ N2(0, 121′2) we have rank(Σ) = 1 and N =

[
1√
2

− 1√
2

]
.

Note that Σ− = 1
4121′2 yields ΣΣ−Σ = Σ (SVD). Also, λ1 = 1.

Then
f (x1, x2) = (2π)−1/2 exp{−1

8 (x1 + x2)2)}

on the hyperplane x1 = x2.

For singular normal, a ∈ C(N) yields a′x = aµ with probability
one.

Define Np(µ, 0) to be point mass at µ, i.e. δµ. Has c.f.
φδµ(t) = e it

′µ.
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Multivariate generalizations of common distributions

We will deal mainly w/ multivariate normal.

x ∼ Np(µ,Σ), ui = exp(xi ), then u has multivariate
log-normal distribution. Let y ∼ χ2

ν and ui = xi/
√

y/ν, then
u has a multivariate t distribution.

Wishart distribution generalizes χ2.

Multivariate Pareto dist’n, p. 44.

Dirichlet and multinomial distributions generalize beta and
binomial, respectively.

Common components (Sec. 2.6.2) used in random effect
models.
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Exponential family

f (x;θ) = exp

[
a0(θ) + b0(x) +

q∑
i=1

ai (θ)bi (x)

]
, x ∈ S ,

where θ = (θ1, . . . , θr )′ is parameter vector, ea0(θ) is normalizing
constant, and S is support.

If r = q and ai (θ) = θi for i = 1, . . . , r then x belongs to simple
exponential family.

The multivariate normal is an exponential family.
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Spherical family

If the pdf of x can be written f (x) = g(x′x) = g(||x||2) then x
belongs to the spherical family because it is spherically symmetric:
pdf contours c2 = g(x′x) are equispheres.

Examples: x ∼ Np(0,I) and
f (x) = π−(p+1)/2Γ( 1

2 (p + 1))(1 + x′x)−(p+1)/2, the multivariate
Cauchy, belong to the spherical family.
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Random samples

Let x1, . . . , xn
iid∼ (µ,Σ).

thm: E (x̄) = µ and V (x̄) = 1
nΣ.

Proof :

E(x) = 1
n

n∑
i=1

E(xi ) = µ.

V (x̄) =
1

n2
V (x1 + · · ·+xn) =

1

n2

 n∑
i=1

V (xi ) +
∑
i 6=j

C(xi , xj )

 =
1

n2

n∑
i=1

V (xi ) = 1
n

Σ.2

Note then E{(x̄− µ)(x̄− µ)′} = V (x̄) = 1
nΣ.
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What is E (S)?

1
n

n∑
i=1

(xi − x̄)(xi − x̄)′ = 1
n

n∑
i=1

(xi − µ + µ− x̄)(xi − µ + µ− x̄)′

= 1
n

∑
i=1

(xi − µ)(xi − µ)′ + 1
n

n∑
i=1

(x̄− µ)(x̄− µ)′

+ 1
n

n∑
i=1

(xi − µ)(µ− x̄)′ + 1
n

n∑
i=1

(µ− x̄)(xi − µ)′

=

[
1
n

∑
i=1

(xi − µ)(xi − µ)′

]
− (x̄− µ)(x̄− µ)′

The expectation of the first term is Σ; the expecation of the
second term is 1

nΣ from the previous slide. So E (S) = n−1
n Σ. Note

then that for Su = 1
n−1

∑n
i=1(xi − x̄)(xi − x̄)′ that E (Su) = Σ.
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Simple results for later...

E (xi ) = µ,

E (x(j)) = µj1n,

C (xi , xj) = δijΣ,

C (x(i), x(j)) = σijIn.
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E{Dij} = E{(xi − x̄)S−1(xj − x̄)}
Assume X is full rank and n > p. Recall from Chapter 1 that
nS = X′HX. Then the n × n matrix D = [Dij ] can be written

D = [HX][n(X′HX)−1]X′H.

Since H is the orthogonal projection onto C(1n)⊥, D1′n = 0, i.e.∑n
i=1 Dij = 0. You can also show this directly. Now, 1

nD is an
orthogonal projection onto HX, and the trace of an idempotent
matrix is it’s rank. The rank of HX (just X with x̄′ subtracted
from each row) is p a.s.

Dii identically distributed, and Dij identically distributed for i 6= j .
The above implies

n∑
i=1

Dij = 0 and
n∑

i=1

Dii = np.

Taking expectations of both sides and solving gives E{Dii} = p
and E{Dij} = − p

n−1 for i 6= j .
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Convergence in distribution

xn
D→ x⇔ Fn(x)→ F (x)⇔ P(xn ∈ A)→ P(x ∈ A) for all

measurable A.

Cramer-Wold implies xn
D→ x⇔ t′xn

D→ t′x for all t. Again,
multivariate achieved through all linear combinations.

This further implies for any A ∈ Rq×p that Axn
D→ Ax. Why?

t′(Axn) = (t′A)xn
D→ t′Ax. We need this for the Delta method,

coming up after the CLT.
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Central Limit Theorem

thm: Let x1, x2, x3 · · ·
iid∼ (µ,Σ). Then

√
n(x̄− µ)

D→ Np(0,Σ).

General proof is in STAT 823, but uses Cramer-Wold & continuity
theorem for c.f. Informally we write x̄

•∼ Np(µ, 1
nΣ).

The theorem follows from the univariate CLT by noting
√
nt′(x̄− µ)

D→ N(0, t′Σt) holds for all t. The result for
convergence in distribution (previous slide) implies the multivariate
CLT!
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op and Op

Convergence in probability:

xn = op(an)⇔
xn

an
= op(1)⇔

xn

an

P→ 0⇔ lim
n→∞

P(|xn/an| ≥ ε) = 0 ∀ε > 0.

Note: xn
P→ a⇔ xin

P→ ai for i = 1, . . . , p. Matrix version similar.

Bounded in probability:

xn = Op(an)⇔
xn

an
= Op(1)⇔ ∀ε > 0 ∃Mε s.t. P(|xn/an| ≥ Mε) < ε ∀n.

Also multivariate generalizations of Slutsky, etc. We’ll discuss
them if/when we need them. Two immediately useful results are
Op(1)op(1) = op(1) and Op(1) + op(1) = Op(1).
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Multivariate Delta Method

thm: Let
√
n(xn − µ)

D→ Np(0,Σ) and f : Rp → Rq is

differentiable at µ. Then
√
n[f(xn)− f(µ)]

D→ Nq(0,DΣD′) where
D = [ ∂fi∂xj

]x=µ.

Proof : The multivariate Taylor’s theorem for xn expanded about
µ gives us

f(xn)− f(µ) = D(xn − µ) + ||xn − µ||δ(xn − µ),

where δ(an −µ)→ 0 as an → µ. Since
√
n||xn −µ|| = Op(1) and

δ(xn − µ) = op(1) we have

√
n[f(xn)− f(µ)] =

√
nD′(xn − µ) + Op(1)op(1)

D→ Nq(0,D′ΣD).2

34 / 36



Two useful consequences...

In general xn
P→ x⇒ xn

D→ x but not the converse. However, the
CLT implies two WLLN when all necessary expectations exist, if
x1, x2, · · · ∼ (µ,Σ) then

x̄
P→ µ,

and
S

P→ Σ.

Also, the univariate WLLN imply these results as well (convergence
for each element).

Useful in MCMC approach to obtaining Bayesian inference. Also
used in MCEM algorithm and elsewhere.

Try mean(data.frame(X)) and cov(X) to obtain estimates of µ
and Σ from the simulated normal example.

35 / 36



Comments...

We are not going to be doing much asymptotics in this course, but
some. STAT 823 beats this to death. Many results in STAT 730
are finite sample results based on normality, or else the asymptotic
results are simply stated and cited.

The Delta method is very, very useful and used a lot due to the
asymptotic normality of maximum likelihood estimators.
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