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Basic idea

Multidimensional scaling produces a (typically 2-dimensional) map
that best preserves distances among n objects or variables
originally in Rp. The human mind naturally looks for groups or
clusters of points; this is also a form of data reduction. We often
assume objects are in some way exchangeable within a group, and
then, after clustering, look for what makes groups “different.”

There are many ways to cluster data, the most used being (1)
k-means, (2) model-based methods, and (3) hierarchical
clustering. We will discuss each in turn.

Start with data x1, . . . , xn ∈ Rp. Want to allocate data into k
homogeneous groups or clusters. Also want to pick the “best”
number of groups k .

End result is sets of indices C1, . . . ,Ck s.t. ∪kj=1Cj = {1, . . . , n}.

2 / 17



k-means

k is picked ahead of time. Let zi = j if xi has mean µj and
z′ = (z1, . . . , zn). Let µ′ = (µ′1, . . . ,µ

′
k), k-means minimizes

Q(µ, z) =
n∑

i=1

||xi − µzi ||
2,

according to the following algorithm. Initialize µ̂1, . . . , µ̂k , define
nj =

∑n
i=1 I{zi = j} to be the number of x1, . . . xn that come from

mean µj . Note that n1 + · · ·+ nk = n.

1 zi = argminj=1,...,k ||xi − µ̂j ||2.

2 µ̂j = 1
nj

∑
i :zi=j xi .

Repeat until convergence. The algorithm converges to a local
minimum. This is a simple expectation-maximization (EM)
algorithm (in disguise) for the model xi ∼

∑k
j=1 wjNp(µj , σ

2I)

where wj = 1
k . Here, the augmented data are the zi .
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k-means in R

b=read.table("http://www.stat.sc.edu/~hansont/stat730/beverages.txt",

header=T,row.names=1)

b

b=scale(b) # data from http://nutritiondata.self.com/

# k-means, adapted from http://www.statmethods.net/advstats/cluster.html

wss=(nrow(b)-1)*sum(apply(b,2,var))

for (i in 2:10) wss[i]=sum(kmeans(b,centers=i)$withinss)

plot(1:10,wss,type="b",xlab="Number of Clusters",

ylab="Within groups sum of squares")

f=kmeans(b,4) # look for elbow as in scree plot: k=4 or k=5

f$cluster

# a plot

library(cluster)

?clusplot.default # uses PCA (data matrix) or MDS (D matrix)

clusplot(b,f$cluster,color=TRUE,shade=TRUE,labels=2,lines=0)
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Model-based clustering

We can generalize the implied model under k-means to

xi ∼
k∑

j=1

wjNp(µj ,Σj).

Your book considers Σ1 = · · · = Σk = Σ and distinct Σ1, . . . ,Σk .
This is what is termed a “finite mixture model.” Flexibility
increases from common covariance σ2Ip (k-means) and common
w1 = · · · = wk , to common Σ but different {wj}, to distinct
Σ1, . . . ,Σk and different {wj}.

The finite mixture provides a nonparametric model for the
population density f (x) of the x1, . . . , xn, and so is useful outside
of clustering as well.
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E.M. algorithm

A refined EM algorithm is
1 E-step:

ŵij =
ŵjφp(xi ;µ̂j ,Σ̂j )∑k
s=1 ŵsφp(xi ;µ̂s ,Σ̂s)

.

2 For distinct Σ1, . . . ,Σk the M-step is

ŵj = 1
n

n∑
i=1

ŵij , µ̂j =
∑n

i=1 ŵijxi∑n
i=1 ŵij

, Σ̂j =
∑n

i=1 ŵij (xi−µ̂j )(xi−µ̂j )
′∑n

i=1 ŵij
.

As before, this is iterated until convergence. There are multiple
modes! One needs to consider several dispersed starting values to
be reasonably confident that the solution is a MLE. Note also that
there are multiple MLEs without further constraints on the model.

The fitting of such models can be carried out using the mclust

package in R. The choice of k is often made using either AIC or
BIC; there are also refined versions of these especially for mixture
models. Another graphical option is the use of silhouettes; see
Marden section 12.1.2.
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Finite mixture of normals in R

# model-based

library(mclust)

pca=prcomp(b,scale.=T)

f=Mclust(pca$x[,1:3],G=1:6)

plot(f,pca$x[,1:3]) # Mclust automatically picks best

# plot results, best is k=4, ellipsoidal, equal volume and shape

?mclustModelNames

summary(f,parameters=T)

f$classification

clusplot(b,f$classification,color=TRUE,shade=TRUE,labels=2,lines=0)
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Bayesian approach

The Bayesian approach to clustering has been immensely successful
over the last 20 years. The mixture model is written hierarchically

xi |z,µ,Σ
ind .∼ Np(µzi ,Σzi ), i = 1, . . . , n,

P(zi = j |w) = wj , j = 1, . . . , k ,

w ∼ Dirichlet(α1k),

(µj ,Σj)
iid∼ N(m,M)×Wish−1(S0, d0).

Updating proceeds through Gibbs sampling.
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Gibbs sampling

Let n′ = (n1, . . . , nk) and x̄j = 1
nj

∑
i :zi=j xi .

P(zi = j |else) ∝ wjφp(xi |µj ,Σj), j = 1, . . . , k ,

µj |else ∼ Np(Vj [M
−1m + njΣ

−1x̄j ],Vj), Vj = [M−1 + njΣ
−1
j ]−1,

Σj |else ∼Wish−1

S−10 +
∑
i :zi=j

(xi − µj)(xi − µj)
′

−1 , d0 + nj

 ,

w|else ∼ Dirichlet(α1k + n).

The Gibbs sampler samples each full conditional distribution in
turn. The iterates form a Monte Carlo approxmation to the
posterior [µ,Σ,w|x1, . . . , xn]. An excellent package that
implements this Gibbs sampler for censored, multivariate data is
mixAK.
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Nonparametric clustering

The Dirichlet process mixture considers an infinite number of
clusters. The mixture models takes k =∞ and places a different
prior on the weights

vj
iid∼ beta(1, α),

wj = vj

j−1∏
s=1

(1− vs).

Called a “stick-breaking” prior; I’ll show why on the board. You
can show that

∑∞
j=1 wj = 1. This is the basis of hundreds of

papers in Bayesian nonparametrics. Can fit such models in
DPpackage for R.
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Covariate-dependent mixtures

The Dirichlet process mixture model, as well as finite mixture
models can accommodate covariates. Say coupled with each xi is a
vector of covariates si . A particular mixture of experts model is
written

xi |z,B,Σ
ind .∼ Np(Bzi si ,Σzi ).

Called the linear dependent Dirichlet process. If additionally (or
instead) the weights depend on covariates, say

vij = Φ(β′jsi ), wij = vij

j−1∏
s=1

(1− vis), P(zi = j) = wij ,

then we have a probit stick-breaking process.

Finite-versions of these, k <∞, easier to interpret. Many
variations on this theme. See De Iorio, Müller, Dunson, Viele,
Jordan, etc. Bayesian versions much easier to fit than frequentist.
This is true for any latent-data model, e.g. generalized linear
mixed models.
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Hierarchical methods

Hierarchical methods start with a dissimilarity matrix on n
objects; every pair of objects has a distance dij .

Number of ways to partition n objects into k groups is Stirling
number of the 2nd kind,{

n
k

}
=

1

k!

k∑
j=0

(−1)j
(

k
j

)
(k − j)n ≈ kn

k!
,

where the approximation is for fixed k . For example{
10
5

}
= 42525.

The total number of partitions of n objects is the Bell number∑n
k=1

{
n
k

}
, which is much bigger.

Hierarchical methods take one pass through the
m = 1

2n(n − 1) distances trying to form a “reasonable” set of
groups.
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Single and complete linkage

Pick a threshhold d0 > 0. Start with n clusters: C1, . . . ,Cn each
has one index, Ci = {i}. At the kth iteration there are n − k
clusters C1, . . . ,Cn−k s.t. C1 ∪ · · · ∪ Cn−k = {1, . . . , n}.
(a) Let Dk = [hij ] ∈ R(n−k)×(n−k) be the inter-cluster distance,

defined on next slide.

(b) Let hrs = min{hij}. These is the distance between the two
“closest” clusters. If hrs > d0 then stop.

(d) Merge Cr and Cs into a combined cluster Cr ∪ Cs , leave the
others alone, and renumber the clusters C1, . . . ,Cn−k−1.
Repeat.

Note that d0 = max{drs} yields one cluster with all n objects. This
approach is called agglomerative: starts with n clusters and ends
with 1. Can stop the process at any point to yield desired number
of clusters.

There are four commonly-used inter-cluster distances.
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Inter-cluster distance measures

hij = min{drs : r ∈ Ci , s ∈ Cj} produces “nearest neighbor”
clustering. Only one pair needs to be less than d0 to combine,
hence this is also called “single linkage” clustering. Can
produce meandering, chain-looking clusters.

hij = max{drs : r ∈ Ci , s ∈ Cj} produces “farthest neighbor”
clustering. All pairs among two clusters Ci and Cj must be
less than d0 to combine, so also termed “complete linkage.”
Produces compact clusters with no chaining effect. Clusters
tend to have the same diameter, so can break up large
clusters.

Instead of the max or min, one can also use the average
distance between two clusters; intermediate between single
and complete linkage: hij = 1

mimj

∑
r∈Ci ,s∈Cj

drs .

Ward’s measure is hij =
mimj

mi+mj
|| 1mi

∑
r∈Ci

xr − 1
mj

∑
s∈Cj

xs ||2.

Produces compact, spherical clusters; often a good default
choice & used to initialize k-means.
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Dendrogram

Tree diagram where object indices are along x-axis, and distances
along y -axis. Shows the order (and distance) in which objects are
joined into clusters.

A complete dendrogram extends the y -axis to drmsm , the largest
distance. Varying numbers of clusters are obtained by simply
slicing the dendrogram at any d0 along the y -axis and reading off
the separated clusters.

The dendrogram can be used to make a new distance matrix, see
top p. 374 in MKB.
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Hierarchical methods in R

# hierarchical methods

d=dist(b,method="euclidean") # distance matrix

par(mfrow=c(2,2))

f=hclust(d,method="single")

plot(f,sub="",xlab="Beverages",main="Single") # display dendogram

f=hclust(d,method="complete")

plot(f,sub="",xlab="Beverages",main="Complete")

f=hclust(d,method="average")

plot(f,sub="",xlab="Beverages",main="Average")

f=hclust(d,method="ward")

plot(f,sub="",xlab="Beverages",main="Ward")

groups=cutree(f,k=4) # cut tree into k clusters

groups

par(mfrow=c(1,1))

plot(f,sub="",xlab="Beverages",main="Ward")

rect.hclust(f,k=4,border="red")
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Similarity/dissimilarity measures

MKB Section 13.4 pp. 375–384 discusses various distance and
similarity measures at length. Also see J & W Chapter 12.
For continuous xi , Minkowski metric gives distances

drs =
{∑p

j=1 wk |xrj − xsj |λ
}1/λ

includes Euclidean λ = 2 and

Manhattan (city-block) λ = 1. Here wj = 1 for raw, wj = 1/sj
for standardized, and wj = 1/Rj standardized by range.
For mixed data, Gower proposes the similarity
srs = 1− 1

p

∑p
j=1 wj |xrj − xsj | where wj = 1 if j is qualitative

and wj = 1/Rj if j is quantitative. Podani (1999, Taxon)
generalized to allow for ordinal.
Also Canberra metric, Czekanowski coefficient, Mahalanobis
distance for continuous; Mahalanobis distance for proportions;
Jaccard for binary; many others. Levenshtein and Hamming
distances for differences in text strings.
de Leon and Carriére (2005, JMA) consider a
Mahalanobis-distance for mixed continuous, ordinal, and
nominal measurements.
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