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Multivariate analysis of variance

A special case of the multivariate regression model in Chapter 6 is
one-way and multi-way multivariate analysis of variance
(MANOVA). To start, assume the one-way model

xij
ind .∼ Np(µi ,Σ),

where i = 1, . . . , k denotes the group having j = 1, . . . , ni
observations. Let n =

∑k
i=1 ni be the total number of

observations.

We derived the LRT for this model in Chapter 5. Note also that
the model is in the form of multivariate regression Y = ZB + U
(Chapter 6) by taking Y ∈ Rn×p as
Y′ = [x11 · · · x1n1︸ ︷︷ ︸

group 1

x21 · · · x2n2︸ ︷︷ ︸
group 2

· · · xk1 · · · xknk︸ ︷︷ ︸
group k

],

B = [µ1µ2 · · ·µk ]′ ∈ Rk×p, and Z = block-diag(1n1 , . . . , 1nk ).
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LRT of H0 : µ1 = · · · = µk

Recall
λ(X)2/n = |W|

|nS| = |WT−1|,

where T = nS is the total sums of squares and cross products
(SSCP) and W =

∑k
i=1 niSi is the SSCR for error, or within

groups SSCP. The SSCP for regression is B = T−W, or between
groups. Then

λn/2 =
|W|
|B + W|

=
1

|Ip + W−1B|
.

In Chapter 5 we showed

W ∼Wp(Σ, n − k) indep. B ∼Wp(Σ, k − 1),

so that
λ2/n ∼ Λ(p, n − k, k − 1),

under H0 provided n ≥ p + k.
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MANOVA decomposition

We can write the within SSCP matrix as
W =

∑k
i=1

∑ni
j=1(xij − x̄i )(xij − x̄i )

′, the total SSCP

T =
∑k

i=1

∑ni
j=1(xij − x̄)(xij − x̄)′ and the between SSCP

B =
∑k

i=1

∑ni
j=1(x̄i − x̄)(x̄i − x̄)′. Here, x̄i = 1

ni

∑ni
j=1 xij and

x̄ = 1
n

∑k
i=1

∑ni
j=1 xij .

As in univariate one-way ANOVA T = W + B, and a MANOVA
table displays these along with their df .

Source df SSCP
Treatments k − 1 B

Error n − k W
Total n − 1 T

There are four common test statistics, including Wilks lambda
from the LRT, computed for H0 : µ1 = · · · = µk .
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Iris data

data(iris)

f=manova(cbind(Sepal.Length,Sepal.Width,Petal.Length,Petal.Width)~Species,

data=iris)

summary(f,test="Wilks") # "Pillai","Wilks","Hotelling-Lawley","Roy"

library(car)

f=lm(cbind(Sepal.Length,Sepal.Width,Petal.Length,Petal.Width)~Species,

data=iris)

model.matrix(cbind(Sepal.Length,Sepal.Width,Petal.Length,Petal.Width)

~Species,data=iris) # can use ~0+Species for no intercept

summary(f) # but ANOVA test will be incorrect

?Manova # can also do type III tests, e.g. summary(Manova(f,type=3))

summary(Manova(f))

Compare B and W to pp. 344–345.
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Fixed contrast of means

Say we want to test H0 : a1µ1 + · · ·+ akµk = 0. Assuming the
linear regression setup Y = ZB + U described on slide 2, this is
accomplished by taking C = [a1 · · · ak ], M = Ip and D = 01×p.
For example, in the iris data if we wanted to test
H0 : 0.5µ1 + 0.5µ2 − µ3 = 0 we could use

f=lm(cbind(Sepal.Length,Sepal.Width,Petal.Length,Petal.Width)~0+Species,

data=iris)

linearHypothesis(f,hypothesis.matrix=matrix(c(0.5,0.5,-1),1,3))

If we do not force the intercept to be zero, then the first group
(setosa) becomes baseline and the the regression effects are offsets
for versicolor and virginica. You should verify that the correct

matrix is in general C =
[
(
∑k

i=1 ai )a2 · · · ak
]
1×k

. If a is a contrast

then the first term is zero and the rest stay the same.

f=lm(cbind(Sepal.Length,Sepal.Width,Petal.Length,Petal.Width)~Species,

data=iris)

linearHypothesis(f,hypothesis.matrix=matrix(c(0,0.5,-1),1,3))
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Union intersection test

Recall the univariate test statistic

F ∗ =
k∑

i=1

ni (ȳi − ȳ)2∑k
j=1 ni s

2
i

∼ Fk−1,n−p under H0.

The UIT considers this test for yij = a′xij . This is the same as
considering y = Xa. Then H0a is tested

F ∗a =

∑k
i=1 ni [a

′(x̄i − x̄)]2∑k
i=1 nia

′Sia
=

a′[
∑k

i=1(x̄i − x̄)(x̄i − x̄)′]a

a′[
∑k

i=1 niSi ]a
=

a′Ba

a′Wa
.

From chapter 4 we know the maximum of this is λ1, the largest
e-value of W−1B. The maximum occurs when a = γ(1), the
corresponding e-vector.
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Best standardized linear combination

The e-vector a = γ(1) is the standardized linear combination (SLC)
most responsible for rejecting H0 using Roy’s greatest root. If we
reject using the root statistic, we will also reject in the univariate
case using yij = a′xij . We will revisit optimal SLCs in principal
components analysis.

f=lm(cbind(Sepal.Length,Sepal.Width,Petal.Length,Petal.Width)~Species,

data=iris) # ~0 produces wrong B matrix

f=Manova(f) # computes W and B matrices

eigen(solve(f$SSPE)%*%f$SSP$Species)$vectors[,1] # may need Re(...)

iris[1,] # interpretation?

The interpretation of a = γ(1) is exactly the same in the regression
setting for general linear hypotheses; one simply needs E (same as
W in MANOVA) and H (same as B in MANOVA). The first r
linear combinations of x, e.g. y1 = a′1x, . . . , yr = a′rx, most
responsible for rejecting H0 are given by the first r canonical
variables, described next.
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Testing for structure on the means µ1, . . . ,µk

The simplest possible structure is H0 : µ1 = · · · = µk . Here the
means have dimension r = 0.

A slightly more complex possibility is that the means all lie on a
straight line, e.g. H0 : µi = µ + aiγ(1). This subspace of Rp has
dimension r = 1: each mean is described by a one-dimensional
ai ∈ R, given µ and γ(1).

If the means lie on a two-dimensional hyperplane in Rp then
µi = µ + [γ(1)γ(2)]ai where ai ∈ R2.

In general, the means can all lie in an r -dimensional hyperplane of
Rp where r ≤ min{k − 1, p} (rank(B) = k − 1). We want to test
H0 : means lie in Rr dimensional hyperplane vs. Ha : they lare
unrestricted for r = 0, 1, . . . ,min{k − 1, p}; r = 0 is the usual
MANOVA test.
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Test that µ1, . . . ,µk live in an r -dimensional subspace

MKB (pp. 338–348) derive an approximate LRT of H0:

(n − 1
2(p + k))

p∑
j=r+1

log(λj + 1) ∼ χ2
(p−r)(k−r).

Book has typo for test statistic according to Bartlett (1947, eq.
14). Upon accepting this hypothesis, we can project the data and
estimated µ̂i onto a lower dimensional subspace. If we restrict
ourselves to R2, we can plot the results.

Let γ(j) be the jth e-vector of W−1B corresponding to λj but

normalized s.t. γ ′(j)Σ̂uγ(j) = 1. The projection of any x ∈ Rp onto

the estimated r -dimensional plane is PRx = (γ ′(1)x, · · · ,γ
′
(r)x)′

where PR = [γ(1) · · ·γ(r)]
′. Often, most of the variability in the

{xij} are explained by the first one or two canonical variables.

PRx̄1, . . . ,PRx̄k are canonical means. Plot these w/ {PRxij} to
show maximal separation in means from SLC.
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Iris data

f=lm(cbind(Sepal.Length,Sepal.Width,Petal.Length,Petal.Width)~Species,

data=iris)

f=Manova(f) # computes W and B matrices

e=eigen(solve(f$SSPE)%*%f$SSP$Species)

e$values=Re(e$values); e$vectors=Re(e$vectors)

p=length(e$values); k=f$df+1; n=f$error.df+k

for(r in 0:min(p,f$df-1)){

stat=(n-0.5*(p+k))*sum(log(1+e$values[(r+1):p])); df=(p-r)*(k-1-r)

cat("Test of ",r," dimensional subspace stat =",stat,", df = ",df,

", p-val =",1-pchisq(stat,df),"\n")

} # r=2 is necessary

Su=f$SSPE/(n-k)

g1=e$vectors[,1]; g1=g1/sqrt(g1%*%Su%*%g1)

g2=e$vectors[,2]; g2=g2/sqrt(g2%*%Su%*%g2)

d=as.matrix(iris[,1:4])

G=cbind(g1,g2); d12=d%*%G

plot(d12,pch=c(rep(1,50),rep(2,50),rep(3,50)),

xlab="1st canon. variate",ylab="2nd canon. variate")

sp=matrix(0,3,2)

sp[1,]=colMeans(as.matrix(iris[1:50,1:4]))%*%G

sp[2,]=colMeans(as.matrix(iris[51:100,1:4]))%*%G

sp[3,]=colMeans(as.matrix(iris[101:150,1:4]))%*%G

ellipse(c(sp[1,]),shape=diag(2),radius=sqrt(qchisq(0.99,2)/50))

ellipse(c(sp[2,]),shape=diag(2),radius=sqrt(qchisq(0.99,2)/50))

ellipse(c(sp[3,]),shape=diag(2),radius=sqrt(qchisq(0.99,2)/50))

legend(-3,9.5,legend=c("setosa","versicolor","virginica"),pch=c(1,2,3),bty="n")

Note that these SLC are standardized so that V (x′ijγ(j)) = 1.
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Two-way MANOVA

Now we have

xijk ∼ Np(µ + αi + τ j + (ατ )ij ,Σ),

where i = 1, . . . , r , j = 1, . . . , c , and k = 1, . . . , nij .

If nij = m for all i and j the data are balanced and the total SSCP
can be decomposed as

T = R + C + I︸ ︷︷ ︸
B

+W.

These matrices are defined on p. 351 and correspond to row,
column, interaction, and within SSCP. Each matrix on the
right-hand side can be respectively be written X′AiX where
AiA4 = 0 for i = 1, 2, 3 and each Ai is a projection matrix. One
can show under each of H0 : αi = 0, H0 : τ j = 0, H0 : (ατ)ij = 0
that the LRT each boils down to a Wilk’s lambda.
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Tests

Within interaction model xijk ∼ Np(µ + αi + τ j + (ατ )ij ,Σ) we
have Type III tests

H0 : (ατ )ij = 0⇒ |W(W+I)−1| ∼ Λ(p, rc(m−1), (r−1)(c−1)).

H0 : τ j = 0⇒ |W(W + C)−1| ∼ Λ(p, rc(m − 1), c − 1).

H0 : αj = 0⇒ |W(W + R)−1| ∼ Λ(p, rc(m − 1), r − 1).

Within additive model xijk ∼ Np(µ + αi + τ j ,Σ) we have Type III
tests

H0 : τ j = 0⇒ |(W+I)(W+I+C)−1| ∼ Λ(p, rcm−r−c+1, c−1).

H0 : αj = 0⇒ |(W+I)(W+I+R)−1| ∼ Λ(p, rcm−r−c+1, r−1).

All tests come with “characteristic roots” – largest e-vector of
E−1B in each of the above – which are the coefficients of the SLC
given by the canonical variables.
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Unbalanced data

Balance is nice when you’ve got it, but, in general...

If the data are unbalanced then one can first test for no interaction
H0 : (ατ )ij = 0 using a general LRT test. If the interaction is not
necessary, it can be dropped and attention turned toward the main
effects. In R, all models are fit via, e.g. for p = 3

f1=lm(cbind(y1,y2,y3)~a*b,data=data) # interaction model

f2=lm(cbind(y1,y2,y3)~a+b,data=data) # additive model

regardless of balance. LRT tests are carried out via anova(f1,f2).
Once you’ve decided on a model you can test contrasts as usual
via linearHypothesis, obtain SSCP from Manova(f2), etc.
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Rat weight loss data in R

On p. 354. we have the “rat data:” the weight loss (in grams) of
24 rats in 1st and 2nd weeks given one of three drugs. Factors are
sex (male/female) and drug (A/B/C).

library(car)

rats=read.table("http://www.stat.sc.edu/~hansont/stat730/rats.txt",header=T)

f1=lm(cbind(week1,week2)~sex*drug,data=rats) # interaction model

f2=lm(cbind(week1,week2)~sex+drug,data=rats) # additive model

summary(Manova(f1)) # gives table bottom p. 354

summary(Manova(f2)) # soak interaction into E=W+I

Compare to book pp. 353–355.
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Rat data in SAS

data rats;

input sex$ drug$ week1 week2 @@;

datalines;

m a 5 6 m a 5 4 m a 9 9 m a 7 6

m b 7 6 m b 7 7 m b 9 12 m b 6 8

m c 21 15 m c 14 11 m c 17 12 m c 12 10

f a 7 10 f a 6 6 f a 9 7 f a 8 10

f b 10 13 f b 8 7 f b 7 6 f b 6 9

f c 16 12 f c 14 9 f c 14 8 f c 10 5

;

proc glm data=rats;

class sex drug;

model week1 week2=sex|drug / ss3;

manova h=sex*drug / printh printe; % mstat=exact gives exact p-values;

manova h=sex / printh printe;

manova h=drug / printh printe;

run;

SAS gives “characteristic roots” γ(j) for no charge. What is that
percentage?
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Proportion of variability explained

All MANOVA hypothesis tests are based on EB−1. For example in
the two-way model we might look at E = W + I and B = R for
H0 : α1 = · · · = αr = 0. First note that
rank(EB−1) = min{rank(E), rank(B−1)}, and the ranks of each
are equal to the projection matrices that define the matrix.

Consider the one-way model. Then rank(WB−1) ≤ min{p, k − 1}
as W = X′[In − PZ]X and B = X′[PZ − P1n ]X.

Write WB−1 = Γ̂Λ̂Γ̂
′
. Now consider the transformation Y = XΓ̂.

The new data matrix Y has W̃ = Γ̂
′
WΓ̂, B̃ = Γ̂

′
BΓ̂, and

W̃−1B̃ = Λ̂.

The Hotelling-Lawley trace statistic is
∑p

i=1 λ̂i . Then λ̂r
λ̂1+···+λ̂p

is

the proportion of this test statistic that is explained by the r th
cononical covariate. Furthermore, Roys greatest root λ̂1 reduces to
an F-test for the first canonical covariate y(1), λ̂2 reduces to an
F-test for y(2), etc.
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R SSCP matrices with & without INTERCEPTS

...NEED TO FIGURE THIS OUT...R GETS THE HYPOTHESIS
MATRIX WRONG WITHOUT AN INTERCEPT. IT GIVES THE
HYPOTHESIS FOR THE MODEL *WITH* AN INTERCEPT
PLUS THE SSCP TOTAL.
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