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Want to know how correlated a linear combination of x can be
with a linear combination of y. Original paper:

Hotelling, H. (1936). Relations between two sets of variates.
Biometrika, 28, 321-377.

Useful to see what aspects are common in two sets of variables.
Often used in psychological testing, as is factor analysis (coming
up).
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Maximizing correlation

The idea, to maximize correlation among subsets of variables, is
similar to PCA (maximizing variability among all variables), but
the motivation and math is a bit different.

Recall Cauchy-Schwartz for vectors is |a’b| < ||a]| ||b]| with
equality only when b = ka for some k € R.

Assume x € RP and y € R9. Let x ~ (ptq, X11), ¥ ~ (po, X22),
and C(x,y) = X15. Let n = a’x and ¢ = b’y. The correlation
between 1 and ¢ is
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Obtaining the first CCA vectors

Our old friend Cauchy-Schwartz bounds the numerator
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with equality only when d and c’Zl_ll/221222_21/2 coincide.

Coupled with the correlation formula, the inequality implies
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The maximization result from Chapter 4 gives that the maximum
occurs when c is the e-vector corresponding to the largest e-value
of 21_11/221222_2122121_11/2. The maximized correlation is the
largest e-value of this matrix.



k CCA vectors

So we have that a = 21_11/27( 1) Where 7y (q) is the e-vector

associated with the largest e-value of le/ 253, 2212 1/2,

and b= X5,"%d = 55,24/ £12E1,,,/% maximizes the
correlation. One can show (The. A.6.2) that this implies a is the
“largest” e-vector of Zf112122§21221 and b is the “largest”
e-vector of 22_21):21):1_11):12. Note that these matrices have the
same non-zero e-values \; > --- > A\ > 0 where k = rank(X12);

k = min{p, q} if £ > 0.

Write 21_1121222_21221 = [a(l a(q)]l\l[a ]/ and

Y InX En = [Ba) - BplhaIBq ] Then
(a(,-),ﬁ(,-)) are the jth raw canonical correlatlon vectors for x and
y, where i =1,... k, st. [leiyll = 1|18yl = 1.



Normalized CCA vectors & data sample versions

Often the CCA vectors are normalized so that V/(n;) = V(¢;) =1
They are no longer SLC's.

\/a Zua \/ﬁ 2225
versions. These are what are used in MKB but not what R
produces with the cancor function.

Then (aj, b;) < *0) D) ) are the normalized

Also n; = a’x and ¢; = bly are the ith canonical correlation
variables, and p; = \/); is the ith canonical correlation coefficient.
The empirical version replaces X with S and puts hats on
everything else, e.g.

SI115125521521 = [6&(1) cee d(q)]f\l[d(l) i -d(q)]/ and

S55-521S11'S12 = [3(1) - 'B(p)]fb[Bu) o 'B(p)]/' Also p; = /X,
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Open/closed book exams

library(bootstrap)

data(scor)

S=cov(scor)

S11=S[1:2,1:2]; S22=S[3:5,3:5]; S12=S[1:2,3:5]; S21=S[3:5,1:2]
el=eigen(solve(S11)%*%S12)*solve (S22)%*%S21)
e2=eigen(solve(S22)%*%S21%*Ysolve (S11)%*/S12)

# canonical vectors for 2 closed book exams
a=-1*el$vectors[,1]/sqrt(el$vectors[,11%*%S11%*%el$vectors[,1])
a # weighted average
el$vectors[,2]/sqrt(el$vectors[,2]%*%S11%*V%el$vectors[,2])

# canonical vectors for 3 open book exams
b=e2$vectors[,1]/sqrt(e2$vectors[, 1]%*%S22%*Y%e2¢vectors[,1])
b # weighted average
e2$vectors[,2]/sqrt(e28vectors[,2]%*)S22)*%e2$vectors[,2])

eta=a)*ht(scor[,1:2]); phi=b%*Jt(scor[,3:5])
plot(eta,phi)

cor (t(rbind(eta,phi)))

sqrt (e2$values[1])



Comments

@ CCA finds the two linear combinations that maximize
correlation, then two more linear combinations orthogonal to
the first that maximize correlation, etc.

o C(mi,n;) = 6 and C(¢;, ¢;) = dj;.

o Letn=(n1,...,nx) and ¢ = (é1,...,6x)". Then
C(m, ) = A/? = diag(VA1, ..., VAk).

@ As in the canonical variables in MANOVA and the principal
loadings in PCA, the (), Byj)) are often interpretable SLCs.



Comments

@ Recall that ):1_11):1222_21):21 appeared in Chapter 5 when we
wanted to test x ind. y assuming normality, i.e. 10 =0
(which implies p; = 0). The LRT is
—2log A = —nlog [T_,(1 — X)) = —nlog [T, (1 — A2).

@ CCA is carried out in R using the cancor function; it's not
much harder to do it from scratch as in the last slide. The
cancor functions normalizes the (a;, b;) differently than MKB
and | cannot figure out how. There is also the CCA package
on CRAN.

@ This discussion is much shorter and a bit different than MKB,;
more details are in Chapter 10, but we've hit the highlights.



Categorical predictors

In Section 10.4 (pp. 293-295) MKB consider categorical
predictors. For a categorical measurement with g levels, they
advocate placing g — 1 zero-one dummy variables into either x or y
are proceeding as usual.

| will point out one caveat of this approach: the correlation
between two binary variables is bounded away from unity. Let
(x,y) be jointly distributed P(x =i,y = j) = mj; where

o0 + o1 + w10 + 711 = 1. Then x ~ Bern(714) and

y ~ Bern(m41). One can show

— _MI1T00—T10701 min{my1mo4, m147i0}

p(x,y) VTLETOLTHITH0 = /T4 0+ T+1740
An interesting question is “Is the correlation between linear
combinations of binary variables bounded away from unity?"

The correlation between two dichotomous variables is called the

¢-coefficient.
10/10



