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Basic idea

Start with [
x
y

]
∼
([

µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
= (µ,Σ)

Want to know how correlated a linear combination of x can be
with a linear combination of y. Original paper:

Hotelling, H. (1936). Relations between two sets of variates.
Biometrika, 28, 321-377.

Useful to see what aspects are common in two sets of variables.
Often used in psychological testing, as is factor analysis (coming
up).
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Maximizing correlation

The idea, to maximize correlation among subsets of variables, is
similar to PCA (maximizing variability among all variables), but
the motivation and math is a bit different.

Recall Cauchy-Schwartz for vectors is |a′b| ≤ ||a|| ||b|| with
equality only when b = ka for some k ∈ R.

Assume x ∈ Rp and y ∈ Rq. Let x ∼ (µ1,Σ11), y ∼ (µ2,Σ22),
and C (x, y) = Σ12. Let η = a′x and φ = b′y. The correlation
between η and φ is

ρ =
a′Σ12b√

a′Σ11ab′Σ22b
.

Define c = Σ
1/2
11 a and d = Σ

1/2
22 b yielding

ρ =
c′Σ
−1/2
11 Σ12Σ

−1/2
22 d

||c|| ||d||
.
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Obtaining the first CCA vectors

Our old friend Cauchy-Schwartz bounds the numerator∣∣∣[c′Σ−1/211 Σ12Σ
−1/2
22 ]d

∣∣∣ ≤ ||c′Σ−1/211 Σ12Σ
−1/2
22 || ||d||,

with equality only when d and c′Σ
−1/2
11 Σ12Σ

−1/2
22 coincide.

Coupled with the correlation formula, the inequality implies

ρ2 =
c′Σ
−1/2
11 Σ12Σ−122 Σ21Σ

−1/2
11 c

c′c
.

The maximization result from Chapter 4 gives that the maximum
occurs when c is the e-vector corresponding to the largest e-value

of Σ
−1/2
11 Σ12Σ−122 Σ21Σ

−1/2
11 . The maximized correlation is the

largest e-value of this matrix.
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k CCA vectors

So we have that a = Σ
−1/2
11 γ(1) where γ(1) is the e-vector

associated with the largest e-value of Σ
−1/2
11 Σ12Σ−122 Σ21Σ

−1/2
11 ,

and b = Σ
−1/2
22 d = Σ

−1/2
22 γ ′(1)Σ

−1/2
11 Σ12Σ

−1/2
22 maximizes the

correlation. One can show (The. A.6.2) that this implies a is the
“largest” e-vector of Σ−111 Σ12Σ−122 Σ21 and b is the “largest”
e-vector of Σ−122 Σ21Σ−111 Σ12. Note that these matrices have the
same non-zero e-values λ1 ≥ · · · ≥ λk > 0 where k = rank(Σ12);
k = min{p, q} if Σ > 0.

Write Σ−111 Σ12Σ−122 Σ21 = [α(1) · · ·α(q)]Λ1[α(1) · · ·α(q)]
′ and

Σ−122 Σ21Σ−111 Σ12 = [β(1) · · ·β(p)]Λ2[β(1) · · ·β(p)]
′. Then

(α(i),β(i)) are the ith raw canonical correlation vectors for x and
y, where i = 1, . . . , k, s.t. ||α(i)|| = ||β(i)|| = 1.
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Normalized CCA vectors & data sample versions

Often the CCA vectors are normalized so that V (ηi ) = V (φi ) = 1.
They are no longer SLC’s.

Then (ai ,bi ) =

(
α(i)√

α′
(i)

Σ11α(i)

,
β(i)√

β′
(i)Σ22β(i)

)
are the normalized

versions. These are what are used in MKB but not what R
produces with the cancor function.

Also ηi = a′ix and φi = b′iy are the ith canonical correlation
variables, and ρi =

√
λi is the ith canonical correlation coefficient.

The empirical version replaces Σ with S and puts hats on
everything else, e.g.
S−111 S12S−122 S21 = [α̂(1) · · · α̂(q)]Λ̂1[α̂(1) · · · α̂(q)]

′ and

S−122 S21S−111 S12 = [β̂(1) · · · β̂(p)]Λ̂2[β̂(1) · · · β̂(p)]
′. Also ρ̂i =

√
λ̂i .
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Open/closed book exams

library(bootstrap)

data(scor)

S=cov(scor)

S11=S[1:2,1:2]; S22=S[3:5,3:5]; S12=S[1:2,3:5]; S21=S[3:5,1:2]

e1=eigen(solve(S11)%*%S12%*%solve(S22)%*%S21)

e2=eigen(solve(S22)%*%S21%*%solve(S11)%*%S12)

# canonical vectors for 2 closed book exams

a=-1*e1$vectors[,1]/sqrt(e1$vectors[,1]%*%S11%*%e1$vectors[,1])

a # weighted average

e1$vectors[,2]/sqrt(e1$vectors[,2]%*%S11%*%e1$vectors[,2])

# canonical vectors for 3 open book exams

b=e2$vectors[,1]/sqrt(e2$vectors[,1]%*%S22%*%e2$vectors[,1])

b # weighted average

e2$vectors[,2]/sqrt(e2$vectors[,2]%*%S22%*%e2$vectors[,2])

eta=a%*%t(scor[,1:2]); phi=b%*%t(scor[,3:5])

plot(eta,phi)

cor(t(rbind(eta,phi)))

sqrt(e2$values[1])
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Comments

CCA finds the two linear combinations that maximize
correlation, then two more linear combinations orthogonal to
the first that maximize correlation, etc.

C (ηi , ηj) = δij and C (φi , φj) = δij .

Let η = (η1, . . . , ηk)′ and φ = (φ1, . . . , φk)′. Then
C (η,φ) = Λ1/2 = diag(

√
λ1, . . . ,

√
λk).

As in the canonical variables in MANOVA and the principal
loadings in PCA, the (α(i),β(i)) are often interpretable SLCs.
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Comments

Recall that Σ−111 Σ12Σ−122 Σ21 appeared in Chapter 5 when we
wanted to test x ind. y assuming normality, i.e. Σ12 = 0
(which implies ρ1 = 0). The LRT is
−2 log λ = −n log

∏k
i=1(1− λ̂i ) = −n log

∏k
i=1(1− ρ̂2i ).

CCA is carried out in R using the cancor function; it’s not
much harder to do it from scratch as in the last slide. The
cancor functions normalizes the (ai ,bi ) differently than MKB
and I cannot figure out how. There is also the CCA package
on CRAN.

This discussion is much shorter and a bit different than MKB;
more details are in Chapter 10, but we’ve hit the highlights.

9 / 10



Categorical predictors

In Section 10.4 (pp. 293–295) MKB consider categorical
predictors. For a categorical measurement with g levels, they
advocate placing g − 1 zero-one dummy variables into either x or y
are proceeding as usual.

I will point out one caveat of this approach: the correlation
between two binary variables is bounded away from unity. Let
(x , y) be jointly distributed P(x = i , y = j) = πij where
π00 + π01 + π10 + π11 = 1. Then x ∼ Bern(π1+) and
y ∼ Bern(π+1). One can show

ρ(x , y) = π11π00−π10π01√
π1+π0+π+1π+0

≤ min{π+1π0+, π1+π+0}√
π1+π0+π+1π+0

.

An interesting question is “Is the correlation between linear
combinations of binary variables bounded away from unity?”

The correlation between two dichotomous variables is called the
φ-coefficient.
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