
A Little Book of R For Multivariate
Analysis
Release 0.1

Avril Coghlan

July 13, 2014

Contents

1 How to install R 3
1.1 Introduction to R . 3
1.2 Installing R . 3
1.3 Installing R packages . 5
1.4 Running R . 7
1.5 A brief introduction to R . 7
1.6 Links and Further Reading . 10
1.7 Acknowledgements . 10
1.8 Contact . 10
1.9 License . 10

2 Using R for Multivariate Analysis 11
2.1 Multivariate Analysis . 11
2.2 Reading Multivariate Analysis Data into R . 11
2.3 Plotting Multivariate Data . 12
2.4 Calculating Summary Statistics for Multivariate Data . 17
2.5 Calculating Correlations for Multivariate Data . 22
2.6 Standardising Variables . 24
2.7 Principal Component Analysis . 24
2.8 Linear Discriminant Analysis . 30
2.9 Links and Further Reading . 40
2.10 Acknowledgements . 40
2.11 Contact . 40
2.12 License . 41

3 Acknowledgements 43

4 Contact 45

5 License 47

i

ii

A Little Book of R For Multivariate Analysis, Release 0.1

By Avril Coghlan, Wellcome Trust Sanger Institute, Cambridge, U.K. Email: alc@sanger.ac.uk

This is a simple introduction to multivariate analysis using the R statistics software.

There is a pdf version of this booklet available at: https://media.readthedocs.org/pdf/little-book-of-r-for-
multivariate-analysis/latest/little-book-of-r-for-multivariate-analysis.pdf.

If you like this booklet, you may also like to check out my booklet on using R for biomedical statistics, http://a-
little-book-of-r-for-biomedical-statistics.readthedocs.org/, and my booklet on using R for time series analysis,
http://a-little-book-of-r-for-time-series.readthedocs.org/.

Contents:

Contents 1

http://www.sanger.ac.uk/research/projects/parasitegenomics/
mailto:alc@sanger.ac.uk
https://media.readthedocs.org/pdf/little-book-of-r-for-multivariate-analysis/latest/little-book-of-r-for-multivariate-analysis.pdf
https://media.readthedocs.org/pdf/little-book-of-r-for-multivariate-analysis/latest/little-book-of-r-for-multivariate-analysis.pdf
http://a-little-book-of-r-for-biomedical-statistics.readthedocs.org/
http://a-little-book-of-r-for-biomedical-statistics.readthedocs.org/
http://a-little-book-of-r-for-time-series.readthedocs.org/

A Little Book of R For Multivariate Analysis, Release 0.1

2 Contents

CHAPTER 1

How to install R

1.1 Introduction to R

This little booklet has some information on how to use R for time series analysis.

R (www.r-project.org) is a commonly used free Statistics software. R allows you to carry out statistical analyses
in an interactive mode, as well as allowing simple programming.

1.2 Installing R

To use R, you first need to install the R program on your computer.

1.2.1 How to check if R is installed on a Windows PC

Before you install R on your computer, the first thing to do is to check whether R is already installed on your
computer (for example, by a previous user).

These instructions will focus on installing R on a Windows PC. However, I will also briefly mention how to install
R on a Macintosh or Linux computer (see below).

If you are using a Windows PC, there are two ways you can check whether R is already isntalled on your computer:

1. Check if there is an “R” icon on the desktop of the computer that you are using. If so, double-click on the
“R” icon to start R. If you cannot find an “R” icon, try step 2 instead.

2. Click on the “Start” menu at the bottom left of your Windows desktop, and then move your mouse over
“All Programs” in the menu that pops up. See if “R” appears in the list of programs that pops up. If it does,
it means that R is already installed on your computer, and you can start R by selecting “R” (or R X.X.X,
where X.X.X gives the version of R, eg. R 2.10.0) from the list.

If either (1) or (2) above does succeed in starting R, it means that R is already installed on the computer that you
are using. (If neither succeeds, R is not installed yet). If there is an old version of R installed on the Windows PC
that you are using, it is worth installing the latest version of R, to make sure that you have all the latest R functions
available to you to use.

1.2.2 Finding out what is the latest version of R

To find out what is the latest version of R, you can look at the CRAN (Comprehensive R Network) website,
http://cran.r-project.org/.

Beside “The latest release” (about half way down the page), it will say something like “R-X.X.X.tar.gz” (eg.
“R-2.12.1.tar.gz”). This means that the latest release of R is X.X.X (for example, 2.12.1).

3

http://www.r-project.org/
http://cran.r-project.org/

A Little Book of R For Multivariate Analysis, Release 0.1

New releases of R are made very regularly (approximately once a month), as R is actively being improved all the
time. It is worthwhile installing new versions of R regularly, to make sure that you have a recent version of R (to
ensure compatibility with all the latest versions of the R packages that you have downloaded).

1.2.3 Installing R on a Windows PC

To install R on your Windows computer, follow these steps:

1. Go to http://ftp.heanet.ie/mirrors/cran.r-project.org.

2. Under “Download and Install R”, click on the “Windows” link.

3. Under “Subdirectories”, click on the “base” link.

4. On the next page, you should see a link saying something like “Download R 2.10.1 for Windows” (or R
X.X.X, where X.X.X gives the version of R, eg. R 2.11.1). Click on this link.

5. You may be asked if you want to save or run a file “R-2.10.1-win32.exe”. Choose “Save” and save the file
on the Desktop. Then double-click on the icon for the file to run it.

6. You will be asked what language to install it in - choose English.

7. The R Setup Wizard will appear in a window. Click “Next” at the bottom of the R Setup wizard window.

8. The next page says “Information” at the top. Click “Next” again.

9. The next page says “Information” at the top. Click “Next” again.

10. The next page says “Select Destination Location” at the top. By default, it will suggest to install R in
“C:\Program Files” on your computer.

11. Click “Next” at the bottom of the R Setup wizard window.

12. The next page says “Select components” at the top. Click “Next” again.

13. The next page says “Startup options” at the top. Click “Next” again.

14. The next page says “Select start menu folder” at the top. Click “Next” again.

15. The next page says “Select additional tasks” at the top. Click “Next” again.

16. R should now be installed. This will take about a minute. When R has finished, you will see “Completing
the R for Windows Setup Wizard” appear. Click “Finish”.

17. To start R, you can either follow step 18, or 19:

18. Check if there is an “R” icon on the desktop of the computer that you are using. If so, double-click on the
“R” icon to start R. If you cannot find an “R” icon, try step 19 instead.

19. Click on the “Start” button at the bottom left of your computer screen, and then choose “All programs”, and
start R by selecting “R” (or R X.X.X, where X.X.X gives the version of R, eg. R 2.10.0) from the menu of
programs.

20. The R console (a rectangle) should pop up:

4 Chapter 1. How to install R

http://ftp.heanet.ie/mirrors/cran.r-project.org

A Little Book of R For Multivariate Analysis, Release 0.1

1.2.4 How to install R on non-Windows computers (eg. Macintosh or Linux com-
puters)

The instructions above are for installing R on a Windows PC. If you want to install R on a computer that has
a non-Windows operating system (for example, a Macintosh or computer running Linux, you should down-
load the appropriate R installer for that operating system at http://ftp.heanet.ie/mirrors/cran.r-project.org and
follow the R installation instructions for the appropriate operating system at http://ftp.heanet.ie/mirrors/cran.r-
project.org/doc/FAQ/R-FAQ.html#How-can-R-be-installed_003f).

1.3 Installing R packages

R comes with some standard packages that are installed when you install R. However, in this booklet I will also tell
you how to use some additional R packages that are useful, for example, the “rmeta” package. These additional
packages do not come with the standard installation of R, so you need to install them yourself.

1.3.1 How to install an R package

Once you have installed R on a Windows computer (following the steps above), you can install an additional
package by following the steps below:

1. To start R, follow either step 2 or 3:

2. Check if there is an “R” icon on the desktop of the computer that you are using. If so, double-click on the
“R” icon to start R. If you cannot find an “R” icon, try step 3 instead.

1.3. Installing R packages 5

http://ftp.heanet.ie/mirrors/cran.r-project.org/
http://ftp.heanet.ie/mirrors/cran.r-project.org/doc/FAQ/R-FAQ.html#How-can-R-be-installed_003f
http://ftp.heanet.ie/mirrors/cran.r-project.org/doc/FAQ/R-FAQ.html#How-can-R-be-installed_003f

A Little Book of R For Multivariate Analysis, Release 0.1

3. Click on the “Start” button at the bottom left of your computer screen, and then choose “All programs”, and
start R by selecting “R” (or R X.X.X, where X.X.X gives the version of R, eg. R 2.10.0) from the menu of
programs.

4. The R console (a rectangle) should pop up.

5. Once you have started R, you can now install an R package (eg. the “rmeta” package) by choosing “Install
package(s)” from the “Packages” menu at the top of the R console. This will ask you what website you
want to download the package from, you should choose “Ireland” (or another country, if you prefer). It will
also bring up a list of available packages that you can install, and you should choose the package that you
want to install from that list (eg. “rmeta”).

6. This will install the “rmeta” package.

7. The “rmeta” package is now installed. Whenever you want to use the “rmeta” package after this, after
starting R, you first have to load the package by typing into the R console:

> library("rmeta")

Note that there are some additional R packages for bioinformatics that are part of a special set of R packages called
Bioconductor (www.bioconductor.org) such as the “yeastExpData” R package, the “Biostrings” R package, etc.).
These Bioconductor packages need to be installed using a different, Bioconductor-specific procedure (see How to
install a Bioconductor R package below).

1.3.2 How to install a Bioconductor R package

The procedure above can be used to install the majority of R packages. However, the Bioconductor set of bioinfor-
matics R packages need to be installed by a special procedure. Bioconductor (www.bioconductor.org) is a group
of R packages that have been developed for bioinformatics. This includes R packages such as “yeastExpData”,
“Biostrings”, etc.

To install the Bioconductor packages, follow these steps:

1. To start R, follow either step 2 or 3:

2. Check if there is an “R” icon on the desktop of the computer that you are using. If so, double-click on the
“R” icon to start R. If you cannot find an “R” icon, try step 3 instead.

3. Click on the “Start” button at the bottom left of your computer screen, and then choose “All programs”, and
start R by selecting “R” (or R X.X.X, where X.X.X gives the version of R, eg. R 2.10.0) from the menu of
programs.

4. The R console (a rectangle) should pop up.

5. Once you have started R, now type in the R console:

> source("http://bioconductor.org/biocLite.R")
> biocLite()

6. This will install a core set of Bioconductor packages (“affy”, “affydata”, “affyPLM”, “annaffy”, “annotate”,
“Biobase”, “Biostrings”, “DynDoc”, “gcrma”, “genefilter”, “geneplotter”, “hgu95av2.db”, “limma”, “mar-
ray”, “matchprobes”, “multtest”, “ROC”, “vsn”, “xtable”, “affyQCReport”). This takes a few minutes (eg.
10 minutes).

7. At a later date, you may wish to install some extra Bioconductor packages that do not belong to the core set
of Bioconductor packages. For example, to install the Bioconductor package called “yeastExpData”, start
R and type in the R console:

> source("http://bioconductor.org/biocLite.R")
> biocLite("yeastExpData")

8. Whenever you want to use a package after installing it, you need to load it into R by typing:

> library("yeastExpData")

6 Chapter 1. How to install R

http://www.bioconductor.org/
http://www.bioconductor.org/

A Little Book of R For Multivariate Analysis, Release 0.1

1.4 Running R

To use R, you first need to start the R program on your computer. You should have already installed R on your
computer (see above).

To start R, you can either follow step 1 or 2: 1. Check if there is an “R” icon on the desktop of the computer that
you are using.

If so, double-click on the “R” icon to start R. If you cannot find an “R” icon, try step 2 instead.

2. Click on the “Start” button at the bottom left of your computer screen, and then choose “All programs”, and
start R by selecting “R” (or R X.X.X, where X.X.X gives the version of R, eg. R 2.10.0) from the menu of
programs.

This should bring up a new window, which is the R console.

1.5 A brief introduction to R

You will type R commands into the R console in order to carry out analyses in R. In the R console you will see:

>

This is the R prompt. We type the commands needed for a particular task after this prompt. The command is
carried out after you hit the Return key.

Once you have started R, you can start typing in commands, and the results will be calculated immediately, for
example:

> 2*3
[1] 6
> 10-3
[1] 7

All variables (scalars, vectors, matrices, etc.) created by R are called objects. In R, we assign values to variables
using an arrow. For example, we can assign the value 2*3 to the variable x using the command:

> x <- 2*3

To view the contents of any R object, just type its name, and the contents of that R object will be displayed:

> x
[1] 6

There are several possible different types of objects in R, including scalars, vectors, matrices, arrays, data frames,
tables, and lists. The scalar variable x above is one example of an R object. While a scalar variable such as x
has just one element, a vector consists of several elements. The elements in a vector are all of the same type (eg.
numeric or characters), while lists may include elements such as characters as well as numeric quantities.

To create a vector, we can use the c() (combine) function. For example, to create a vector called myvector that has
elements with values 8, 6, 9, 10, and 5, we type:

> myvector <- c(8, 6, 9, 10, 5)

To see the contents of the variable myvector, we can just type its name:

> myvector
[1] 8 6 9 10 5

The [1] is the index of the first element in the vector. We can extract any element of the vector by typing the vector
name with the index of that element given in square brackets. For example, to get the value of the 4th element in
the vector myvector, we type:

> myvector[4]
[1] 10

1.4. Running R 7

A Little Book of R For Multivariate Analysis, Release 0.1

In contrast to a vector, a list can contain elements of different types, for example, both numeric and character
elements. A list can also include other variables such as a vector. The list() function is used to create a list. For
example, we could create a list mylist by typing:

> mylist <- list(name="Fred", wife="Mary", myvector)

We can then print out the contents of the list mylist by typing its name:

> mylist
$name
[1] "Fred"

$wife
[1] "Mary"

[[3]]
[1] 8 6 9 10 5

The elements in a list are numbered, and can be referred to using indices. We can extract an element of a list by
typing the list name with the index of the element given in double square brackets (in contrast to a vector, where
we only use single square brackets). Thus, we can extract the second and third elements from mylist by typing:

> mylist[[2]]
[1] "Mary"
> mylist[[3]]
[1] 8 6 9 10 5

Elements of lists may also be named, and in this case the elements may be referred to by giving the list name, fol-
lowed by “$”, followed by the element name. For example, mylist$name is the same as mylist[[1]] and mylist$wife
is the same as mylist[[2]]:

> mylist$wife
[1] "Mary"

We can find out the names of the named elements in a list by using the attributes() function, for example:

> attributes(mylist)
$names
[1] "name" "wife" ""

When you use the attributes() function to find the named elements of a list variable, the named elements are always
listed under a heading “$names”. Therefore, we see that the named elements of the list variable mylist are called
“name” and “wife”, and we can retrieve their values by typing mylist$name and mylist$wife, respectively.

Another type of object that you will encounter in R is a table variable. For example, if we made a vector variable
mynames containing the names of children in a class, we can use the table() function to produce a table variable
that contains the number of children with each possible name:

> mynames <- c("Mary", "John", "Ann", "Sinead", "Joe", "Mary", "Jim", "John", "Simon")
> table(mynames)
mynames

Ann Jim Joe John Mary Simon Sinead
1 1 1 2 2 1 1

We can store the table variable produced by the function table(), and call the stored table “mytable”, by typing:

> mytable <- table(mynames)

To access elements in a table variable, you need to use double square brackets, just like accessing elements in a
list. For example, to access the fourth element in the table mytable (the number of children called “John”), we
type:

> mytable[[4]]
[1] 2

8 Chapter 1. How to install R

A Little Book of R For Multivariate Analysis, Release 0.1

Alternatively, you can use the name of the fourth element in the table (“John”) to find the value of that table
element:

> mytable[["John"]]
[1] 2

Functions in R usually require arguments, which are input variables (ie. objects) that are passed to them, which
they then carry out some operation on. For example, the log10() function is passed a number, and it then calculates
the log to the base 10 of that number:

> log10(100)
2

In R, you can get help about a particular function by using the help() function. For example, if you want help
about the log10() function, you can type:

> help("log10")

When you use the help() function, a box or webpage will pop up with information about the function that you
asked for help with.

If you are not sure of the name of a function, but think you know part of its name, you can search for the function
name using the help.search() and RSiteSearch() functions. The help.search() function searches to see if you
already have a function installed (from one of the R packages that you have installed) that may be related to some
topic you’re interested in. The RSiteSearch() function searches all R functions (including those in packages that
you haven’t yet installed) for functions related to the topic you are interested in.

For example, if you want to know if there is a function to calculate the standard deviation of a set of numbers, you
can search for the names of all installed functions containing the word “deviation” in their description by typing:

> help.search("deviation")
Help files with alias or concept or title matching
’deviation’ using fuzzy matching:

genefilter::rowSds
Row variance and standard deviation of
a numeric array

nlme::pooledSD Extract Pooled Standard Deviation
stats::mad Median Absolute Deviation
stats::sd Standard Deviation
vsn::meanSdPlot Plot row standard deviations versus row

Among the functions that were found, is the function sd() in the “stats” package (an R package that comes with
the standard R installation), which is used for calculating the standard deviation.

In the example above, the help.search() function found a relevant function (sd() here). However, if you did not
find what you were looking for with help.search(), you could then use the RSiteSearch() function to see if a search
of all functions described on the R website may find something relevant to the topic that you’re interested in:

> RSiteSearch("deviation")

The results of the RSiteSearch() function will be hits to descriptions of R functions, as well as to R mailing list
discussions of those functions.

We can perform computations with R using objects such as scalars and vectors. For example, to calculate the
average of the values in the vector myvector (ie. the average of 8, 6, 9, 10 and 5), we can use the mean() function:

> mean(myvector)
[1] 7.6

We have been using built-in R functions such as mean(), length(), print(), plot(), etc. We can also create our own
functions in R to do calculations that you want to carry out very often on different input data sets. For example,
we can create a function to calculate the value of 20 plus square of some input number:

1.5. A brief introduction to R 9

A Little Book of R For Multivariate Analysis, Release 0.1

> myfunction <- function(x) { return(20 + (x*x)) }

This function will calculate the square of a number (x), and then add 20 to that value. The return() statement
returns the calculated value. Once you have typed in this function, the function is then available for use. For
example, we can use the function for different input numbers (eg. 10, 25):

> myfunction(10)
[1] 120
> myfunction(25)
[1] 645

To quit R, type:

> q()

1.6 Links and Further Reading

Some links are included here for further reading.

For a more in-depth introduction to R, a good online tutorial is available on the “Kickstarting R” website, cran.r-
project.org/doc/contrib/Lemon-kickstart.

There is another nice (slightly more in-depth) tutorial to R available on the “Introduction to R” website, cran.r-
project.org/doc/manuals/R-intro.html.

1.7 Acknowledgements

For very helpful comments and suggestions for improvements on the installation instructions, thank you very
much to Friedrich Leisch and Phil Spector.

1.8 Contact

I will be very grateful if you will send me (Avril Coghlan) corrections or suggestions for improvements to my
email address alc@sanger.ac.uk

1.9 License

The content in this book is licensed under a Creative Commons Attribution 3.0 License.

10 Chapter 1. How to install R

http://cran.r-project.org/doc/contrib/Lemon-kickstart/
http://cran.r-project.org/doc/contrib/Lemon-kickstart/
http://cran.r-project.org/doc/manuals/R-intro.html
http://cran.r-project.org/doc/manuals/R-intro.html
http://www.sanger.ac.uk/research/projects/parasitegenomics/
mailto:alc@sanger.ac.uk
http://creativecommons.org/licenses/by/3.0/

CHAPTER 2

Using R for Multivariate Analysis

2.1 Multivariate Analysis

This booklet tells you how to use the R statistical software to carry out some simple multivariate analyses, with a
focus on principal components analysis (PCA) and linear discriminant analysis (LDA).

This booklet assumes that the reader has some basic knowledge of multivariate analyses, and the principal focus
of the booklet is not to explain multivariate analyses, but rather to explain how to carry out these analyses using
R.

If you are new to multivariate analysis, and want to learn more about any of the concepts presented here, I would
highly recommend the Open University book “Multivariate Analysis” (product code M249/03), available from
from the Open University Shop.

In the examples in this booklet, I will be using data sets from the UCI Machine Learning Repository,
http://archive.ics.uci.edu/ml.

There is a pdf version of this booklet available at https://media.readthedocs.org/pdf/little-book-of-r-for-
multivariate-analysis/latest/little-book-of-r-for-multivariate-analysis.pdf.

If you like this booklet, you may also like to check out my booklet on using R for biomedical statistics, http://a-
little-book-of-r-for-biomedical-statistics.readthedocs.org/, and my booklet on using R for time series analysis,
http://a-little-book-of-r-for-time-series.readthedocs.org/.

2.2 Reading Multivariate Analysis Data into R

The first thing that you will want to do to analyse your multivariate data will be to read it into R, and to plot the
data. You can read data into R using the read.table() function.

For example, the file http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data contains data on
concentrations of 13 different chemicals in wines grown in the same region in Italy that are derived from three
different cultivars.

The data set looks like this:

1,14.23,1.71,2.43,15.6,127,2.8,3.06,.28,2.29,5.64,1.04,3.92,1065
1,13.2,1.78,2.14,11.2,100,2.65,2.76,.26,1.28,4.38,1.05,3.4,1050
1,13.16,2.36,2.67,18.6,101,2.8,3.24,.3,2.81,5.68,1.03,3.17,1185
1,14.37,1.95,2.5,16.8,113,3.85,3.49,.24,2.18,7.8,.86,3.45,1480
1,13.24,2.59,2.87,21,118,2.8,2.69,.39,1.82,4.32,1.04,2.93,735
...

There is one row per wine sample. The first column contains the cultivar of a wine sample (labelled 1, 2 or 3),
and the following thirteen columns contain the concentrations of the 13 different chemicals in that sample. The
columns are separated by commas.

11

http://www.ouw.co.uk/store/
http://archive.ics.uci.edu/ml
https://media.readthedocs.org/pdf/little-book-of-r-for-multivariate-analysis/latest/little-book-of-r-for-multivariate-analysis.pdf
https://media.readthedocs.org/pdf/little-book-of-r-for-multivariate-analysis/latest/little-book-of-r-for-multivariate-analysis.pdf
http://a-little-book-of-r-for-biomedical-statistics.readthedocs.org/
http://a-little-book-of-r-for-biomedical-statistics.readthedocs.org/
http://a-little-book-of-r-for-time-series.readthedocs.org/
http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data

A Little Book of R For Multivariate Analysis, Release 0.1

When we read the file into R using the read.table() function, we need to use the “sep=” argument in read.table()
to tell it that the columns are separated by commas. That is, we can read in the file using the read.table() function
as follows:

> wine <- read.table("http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data",
sep=",")

> wine
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14

1 1 14.23 1.71 2.43 15.6 127 2.80 3.06 0.28 2.29 5.640000 1.040 3.92 1065
2 1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.380000 1.050 3.40 1050
3 1 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 5.680000 1.030 3.17 1185
4 1 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.800000 0.860 3.45 1480
5 1 13.24 2.59 2.87 21.0 118 2.80 2.69 0.39 1.82 4.320000 1.040 2.93 735
...
176 3 13.27 4.28 2.26 20.0 120 1.59 0.69 0.43 1.35 10.200000 0.590 1.56 835
177 3 13.17 2.59 2.37 20.0 120 1.65 0.68 0.53 1.46 9.300000 0.600 1.62 840
178 3 14.13 4.10 2.74 24.5 96 2.05 0.76 0.56 1.35 9.200000 0.610 1.60 560

In this case the data on 178 samples of wine has been read into the variable ‘wine’.

2.3 Plotting Multivariate Data

Once you have read a multivariate data set into R, the next step is usually to make a plot of the data.

2.3.1 A Matrix Scatterplot

One common way of plotting multivariate data is to make a “matrix scatterplot”, showing each pair of variables
plotted against each other. We can use the “scatterplotMatrix()” function from the “car” R package to do this. To
use this function, we first need to install the “car” R package (for instructions on how to install an R package, see
How to install an R package).

Once you have installed the “car” R package, you can load the “car” R package by typing:

> library("car")

You can then use the “scatterplotMatrix()” function to plot the multivariate data.

To use the scatterplotMatrix() function, you need to give it as its input the variables that you want included in the
plot. Say for example, that we just want to include the variables corresponding to the concentrations of the first
five chemicals. These are stored in columns 2-6 of the variable “wine”. We can extract just these columns from
the variable “wine” by typing:

> wine[2:6]
V2 V3 V4 V5 V6

1 14.23 1.71 2.43 15.6 127
2 13.20 1.78 2.14 11.2 100
3 13.16 2.36 2.67 18.6 101
4 14.37 1.95 2.50 16.8 113
5 13.24 2.59 2.87 21.0 118
...

To make a matrix scatterplot of just these 13 variables using the scatterplotMatrix() function we type:

> scatterplotMatrix(wine[2:6])

12 Chapter 2. Using R for Multivariate Analysis

A Little Book of R For Multivariate Analysis, Release 0.1

In this matrix scatterplot, the diagonal cells show histograms of each of the variables, in this case the concentrations
of the first five chemicals (variables V2, V3, V4, V5, V6).

Each of the off-diagonal cells is a scatterplot of two of the five chemicals, for example, the second cell in the first
row is a scatterplot of V2 (y-axis) against V3 (x-axis).

2.3.2 A Scatterplot with the Data Points Labelled by their Group

If you see an interesting scatterplot for two variables in the matrix scatterplot, you may want to plot that scatterplot
in more detail, with the data points labelled by their group (their cultivar in this case).

For example, in the matrix scatterplot above, the cell in the third column of the fourth row down is a scatterplot of
V5 (x-axis) against V4 (y-axis). If you look at this scatterplot, it appears that there may be a positive relationship
between V5 and V4.

We may therefore decide to examine the relationship between V5 and V4 more closely, by plotting a scatterplot
of these two variable, with the data points labelled by their group (their cultivar). To plot a scatterplot of two
variables, we can use the “plot” R function. The V4 and V5 variables are stored in the columns V4 and V5 of the
variable “wine”, so can be accessed by typing wine$V4 or wine$V5. Therefore, to plot the scatterplot, we type:

2.3. Plotting Multivariate Data 13

A Little Book of R For Multivariate Analysis, Release 0.1

> plot(wine$V4, wine$V5)

If we want to label the data points by their group (the cultivar of wine here), we can use the “text” function in R to
plot some text beside every data point. In this case, the cultivar of wine is stored in the column V1 of the variable
“wine”, so we type:

> text(wine$V4, wine$V5, wine$V1, cex=0.7, pos=4, col="red")

If you look at the help page for the “text” function, you will see that “pos=4” will plot the text just to the right
of the symbol for a data point. The “cex=0.5” option will plot the text at half the default size, and the “col=red”
option will plot the text in red. This gives us the following plot:

14 Chapter 2. Using R for Multivariate Analysis

A Little Book of R For Multivariate Analysis, Release 0.1

We can see from the scatterplot of V4 versus V5 that the wines from cultivar 2 seem to have lower values of V4
compared to the wines of cultivar 1.

2.3.3 A Profile Plot

Another type of plot that is useful is a “profile plot”, which shows the variation in each of the variables, by plotting
the value of each of the variables for each of the samples.

The function “makeProfilePlot()” below can be used to make a profile plot. This function requires the “RColor-
Brewer” library. To use this function, we first need to install the “RColorBrewer” R package (for instructions on
how to install an R package, see How to install an R package).

> makeProfilePlot <- function(mylist,names)
{

require(RColorBrewer)
find out how many variables we want to include
numvariables <- length(mylist)
choose ’numvariables’ random colours
colours <- brewer.pal(numvariables,"Set1")
find out the minimum and maximum values of the variables:
mymin <- 1e+20
mymax <- 1e-20
for (i in 1:numvariables)
{

2.3. Plotting Multivariate Data 15

A Little Book of R For Multivariate Analysis, Release 0.1

vectori <- mylist[[i]]
mini <- min(vectori)
maxi <- max(vectori)
if (mini < mymin) { mymin <- mini }
if (maxi > mymax) { mymax <- maxi }

}
plot the variables
for (i in 1:numvariables)
{

vectori <- mylist[[i]]
namei <- names[i]
colouri <- colours[i]
if (i == 1) { plot(vectori,col=colouri,type="l",ylim=c(mymin,mymax)) }
else { points(vectori, col=colouri,type="l") }
lastxval <- length(vectori)
lastyval <- vectori[length(vectori)]
text((lastxval-10),(lastyval),namei,col="black",cex=0.6)

}
}

To use this function, you first need to copy and paste it into R. The arguments to the function are a vector containing
the names of the varibles that you want to plot, and a list variable containing the variables themselves.

For example, to make a profile plot of the concentrations of the first five chemicals in the wine samples (stored in
columns V2, V3, V4, V5, V6 of variable “wine”), we type:

> library(RColorBrewer)
> names <- c("V2","V3","V4","V5","V6")
> mylist <- list(wine$V2,wine$V3,wine$V4,wine$V5,wine$V6)
> makeProfilePlot(mylist,names)

16 Chapter 2. Using R for Multivariate Analysis

A Little Book of R For Multivariate Analysis, Release 0.1

It is clear from the profile plot that the mean and standard deviation for V6 is quite a lot higher than that for the
other variables.

2.4 Calculating Summary Statistics for Multivariate Data

Another thing that you are likely to want to do is to calculate summary statistics such as the mean and standard
deviation for each of the variables in your multivariate data set.

sapply

The “sapply()” function can be used to apply some other function to each column in a data frame, eg.
sapply(mydataframe,sd) will calculate the standard deviation of each column in a dataframe “mydataframe”.

This is easy to do, using the “mean()” and “sd()” functions in R. For example, say we want to calculate the
mean and standard deviations of each of the 13 chemical concentrations in the wine samples. These are stored in
columns 2-14 of the variable “wine”. So we type:

> sapply(wine[2:14],mean)
V2 V3 V4 V5 V6 V7

13.0006180 2.3363483 2.3665169 19.4949438 99.7415730 2.2951124
V8 V9 V10 V11 V12 V13

2.0292697 0.3618539 1.5908989 5.0580899 0.9574494 2.6116854

2.4. Calculating Summary Statistics for Multivariate Data 17

A Little Book of R For Multivariate Analysis, Release 0.1

V14
746.8932584

This tells us that the mean of variable V2 is 13.0006180, the mean of V3 is 2.3363483, and so on.

Similarly, to get the standard deviations of the 13 chemical concentrations, we type:

> sapply(wine[2:14],sd)
V2 V3 V4 V5 V6 V7

0.8118265 1.1171461 0.2743440 3.3395638 14.2824835 0.6258510
V8 V9 V10 V11 V12 V13

0.9988587 0.1244533 0.5723589 2.3182859 0.2285716 0.7099904
V14

314.9074743

We can see here that it would make sense to standardise in order to compare the variables because the variables
have very different standard deviations - the standard deviation of V14 is 314.9074743, while the standard devia-
tion of V9 is just 0.1244533. Thus, in order to compare the variables, we need to standardise each variable so that
it has a sample variance of 1 and sample mean of 0. We will explain below how to standardise the variables.

2.4.1 Means and Variances Per Group

It is often interesting to calculate the means and standard deviations for just the samples from a particular group,
for example, for the wine samples from each cultivar. The cultivar is stored in the column “V1” of the variable
“wine”.

To extract out the data for just cultivar 2, we can type:

> cultivar2wine <- wine[wine$V1=="2",]

We can then calculate the mean and standard deviations of the 13 chemicals’ concentrations, for just the cultivar
2 samples:

> sapply(cultivar2wine[2:14],mean)
V2 V3 V4 V5 V6 V7 V8

12.278732 1.932676 2.244789 20.238028 94.549296 2.258873 2.080845
V9 V10 V11 V12 V13 V14

0.363662 1.630282 3.086620 1.056282 2.785352 519.507042
> sapply(cultivar2wine[2:14])

V2 V3 V4 V5 V6 V7 V8
0.5379642 1.0155687 0.3154673 3.3497704 16.7534975 0.5453611 0.7057008
V9 V10 V11 V12 V13 V14

0.1239613 0.6020678 0.9249293 0.2029368 0.4965735 157.2112204

You can calculate the mean and standard deviation of the 13 chemicals’ concentrations for just cultivar 1 samples,
or for just cultivar 3 samples, in a similar way.

However, for convenience, you might want to use the function “printMeanAndSdByGroup()” below, which prints
out the mean and standard deviation of the variables for each group in your data set:

> printMeanAndSdByGroup <- function(variables,groupvariable)
{

find the names of the variables
variablenames <- c(names(groupvariable),names(as.data.frame(variables)))
within each group, find the mean of each variable
groupvariable <- groupvariable[,1] # ensures groupvariable is not a list
means <- aggregate(as.matrix(variables) ~ groupvariable, FUN = mean)
names(means) <- variablenames
print(paste("Means:"))
print(means)
within each group, find the standard deviation of each variable:
sds <- aggregate(as.matrix(variables) ~ groupvariable, FUN = sd)
names(sds) <- variablenames

18 Chapter 2. Using R for Multivariate Analysis

A Little Book of R For Multivariate Analysis, Release 0.1

print(paste("Standard deviations:"))
print(sds)
within each group, find the number of samples:
samplesizes <- aggregate(as.matrix(variables) ~ groupvariable, FUN = length)
names(samplesizes) <- variablenames
print(paste("Sample sizes:"))
print(samplesizes)

}

To use the function “printMeanAndSdByGroup()”, you first need to copy and paste it into R. The arguments of the
function are the variables that you want to calculate means and standard deviations for, and the variable containing
the group of each sample. For example, to calculate the mean and standard deviation for each of the 13 chemical
concentrations, for each of the three different wine cultivars, we type:

> printMeanAndSdByGroup(wine[2:14],wine[1])
[1] "Means:"
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14

1 1 13.74475 2.010678 2.455593 17.03729 106.3390 2.840169 2.9823729 0.290000 1.899322 5.528305 1.0620339 3.157797 1115.7119
2 2 12.27873 1.932676 2.244789 20.23803 94.5493 2.258873 2.0808451 0.363662 1.630282 3.086620 1.0562817 2.785352 519.5070
3 3 13.15375 3.333750 2.437083 21.41667 99.3125 1.678750 0.7814583 0.447500 1.153542 7.396250 0.6827083 1.683542 629.8958
[1] "Standard deviations:"
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14

1 1 0.4621254 0.6885489 0.2271660 2.546322 10.49895 0.3389614 0.3974936 0.07004924 0.4121092 1.2385728 0.1164826 0.3570766 221.5208
2 2 0.5379642 1.0155687 0.3154673 3.349770 16.75350 0.5453611 0.7057008 0.12396128 0.6020678 0.9249293 0.2029368 0.4965735 157.2112
3 3 0.5302413 1.0879057 0.1846902 2.258161 10.89047 0.3569709 0.2935041 0.12413959 0.4088359 2.3109421 0.1144411 0.2721114 115.0970
[1] "Sample sizes:"
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14

1 1 59 59 59 59 59 59 59 59 59 59 59 59 59
2 2 71 71 71 71 71 71 71 71 71 71 71 71 71
3 3 48 48 48 48 48 48 48 48 48 48 48 48 48

The function “printMeanAndSdByGroup()” also prints out the number of samples in each group. In this case, we
see that there are 59 samples of cultivar 1, 71 of cultivar 2, and 48 of cultivar 3.

2.4.2 Between-groups Variance and Within-groups Variance for a Variable

If we want to calculate the within-groups variance for a particular variable (for example, for a particular chemical’s
concentration), we can use the function “calcWithinGroupsVariance()” below:

> calcWithinGroupsVariance <- function(variable,groupvariable)
{

find out how many values the group variable can take
groupvariable2 <- as.factor(groupvariable[[1]])
levels <- levels(groupvariable2)
numlevels <- length(levels)
get the mean and standard deviation for each group:
numtotal <- 0
denomtotal <- 0
for (i in 1:numlevels)
{

leveli <- levels[i]
levelidata <- variable[groupvariable==leveli,]
levelilength <- length(levelidata)
get the standard deviation for group i:
sdi <- sd(levelidata)
numi <- (levelilength - 1)*(sdi * sdi)
denomi <- levelilength
numtotal <- numtotal + numi
denomtotal <- denomtotal + denomi

}
calculate the within-groups variance
Vw <- numtotal / (denomtotal - numlevels)

2.4. Calculating Summary Statistics for Multivariate Data 19

A Little Book of R For Multivariate Analysis, Release 0.1

return(Vw)
}

You will need to copy and paste this function into R before you can use it. For example, to calculate the within-
groups variance of the variable V2 (the concentration of the first chemical), we type:

> calcWithinGroupsVariance(wine[2],wine[1])
[1] 0.2620525

Thus, the within-groups variance for V2 is 0.2620525.

We can calculate the between-groups variance for a particular variable (eg. V2) using the function “calcBetween-
GroupsVariance()” below:

> calcBetweenGroupsVariance <- function(variable,groupvariable)
{

find out how many values the group variable can take
groupvariable2 <- as.factor(groupvariable[[1]])
levels <- levels(groupvariable2)
numlevels <- length(levels)
calculate the overall grand mean:
grandmean <- mean(variable)
get the mean and standard deviation for each group:
numtotal <- 0
denomtotal <- 0
for (i in 1:numlevels)
{

leveli <- levels[i]
levelidata <- variable[groupvariable==leveli,]
levelilength <- length(levelidata)
get the mean and standard deviation for group i:
meani <- mean(levelidata)
sdi <- sd(levelidata)
numi <- levelilength * ((meani - grandmean)^2)
denomi <- levelilength
numtotal <- numtotal + numi
denomtotal <- denomtotal + denomi

}
calculate the between-groups variance
Vb <- numtotal / (numlevels - 1)
Vb <- Vb[[1]]
return(Vb)

}

Once you have copied and pasted this function into R, you can use it to calculate the between-groups variance for
a variable such as V2:

> calcBetweenGroupsVariance (wine[2],wine[1])
[1] 35.39742

Thus, the between-groups variance of V2 is 35.39742.

We can calculate the “separation” achieved by a variable as its between-groups variance devided by its within-
groups variance. Thus, the separation achieved by V2 is calculated as:

> 35.39742/0.2620525
[1] 135.0776

If you want to calculate the separations achieved by all of the variables in a multivariate data set, you can use the
function “calcSeparations()” below:

> calcSeparations <- function(variables,groupvariable)
{

find out how many variables we have
variables <- as.data.frame(variables)

20 Chapter 2. Using R for Multivariate Analysis

A Little Book of R For Multivariate Analysis, Release 0.1

numvariables <- length(variables)
find the variable names
variablenames <- colnames(variables)
calculate the separation for each variable
for (i in 1:numvariables)
{

variablei <- variables[i]
variablename <- variablenames[i]
Vw <- calcWithinGroupsVariance(variablei, groupvariable)
Vb <- calcBetweenGroupsVariance(variablei, groupvariable)
sep <- Vb/Vw
print(paste("variable",variablename,"Vw=",Vw,"Vb=",Vb,"separation=",sep))

}
}

For example, to calculate the separations for each of the 13 chemical concentrations, we type:

> calcSeparations(wine[2:14],wine[1])
[1] "variable V2 Vw= 0.262052469153907 Vb= 35.3974249602692 separation= 135.0776242428"
[1] "variable V3 Vw= 0.887546796746581 Vb= 32.7890184869213 separation= 36.9434249631837"
[1] "variable V4 Vw= 0.0660721013425184 Vb= 0.879611357248741 separation= 13.312901199991"
[1] "variable V5 Vw= 8.00681118121156 Vb= 286.41674636309 separation= 35.7716374073093"
[1] "variable V6 Vw= 180.65777316441 Vb= 2245.50102788939 separation= 12.4295843381499"
[1] "variable V7 Vw= 0.191270475224227 Vb= 17.9283572942847 separation= 93.7330096203673"
[1] "variable V8 Vw= 0.274707514337437 Vb= 64.2611950235641 separation= 233.925872681549"
[1] "variable V9 Vw= 0.0119117022132797 Vb= 0.328470157461624 separation= 27.5754171469659"
[1] "variable V10 Vw= 0.246172943795542 Vb= 7.45199550777775 separation= 30.2713831702276"
[1] "variable V11 Vw= 2.28492308133354 Vb= 275.708000822304 separation= 120.664018441003"
[1] "variable V12 Vw= 0.0244876469432414 Vb= 2.48100991493829 separation= 101.3167953903"
[1] "variable V13 Vw= 0.160778729560982 Vb= 30.5435083544253 separation= 189.972320578889"
[1] "variable V14 Vw= 29707.6818705169 Vb= 6176832.32228483 separation= 207.920373902178"

Thus, the individual variable which gives the greatest separations between the groups (the wine cultivars) is V8
(separation 233.9). As we will discuss below, the purpose of linear discriminant analysis (LDA) is to find the
linear combination of the individual variables that will give the greatest separation between the groups (cultivars
here). This hopefully will give a better separation than the best separation achievable by any individual variable
(233.9 for V8 here).

2.4.3 Between-groups Covariance and Within-groups Covariance for Two Vari-
ables

If you have a multivariate data set with several variables describing sampling units from different groups, such
as the wine samples from different cultivars, it is often of interest to calculate the within-groups covariance and
between-groups variance for pairs of the variables.

This can be done using the following functions, which you will need to copy and paste into R to use them:

> calcWithinGroupsCovariance <- function(variable1,variable2,groupvariable)
{

find out how many values the group variable can take
groupvariable2 <- as.factor(groupvariable[[1]])
levels <- levels(groupvariable2)
numlevels <- length(levels)
get the covariance of variable 1 and variable 2 for each group:
Covw <- 0
for (i in 1:numlevels)
{

leveli <- levels[i]
levelidata1 <- variable1[groupvariable==leveli,]
levelidata2 <- variable2[groupvariable==leveli,]
mean1 <- mean(levelidata1)
mean2 <- mean(levelidata2)

2.4. Calculating Summary Statistics for Multivariate Data 21

A Little Book of R For Multivariate Analysis, Release 0.1

levelilength <- length(levelidata1)
get the covariance for this group:
term1 <- 0
for (j in 1:levelilength)
{

term1 <- term1 + ((levelidata1[j] - mean1)*(levelidata2[j] - mean2))
}
Cov_groupi <- term1 # covariance for this group
Covw <- Covw + Cov_groupi

}
totallength <- nrow(variable1)
Covw <- Covw / (totallength - numlevels)
return(Covw)

}

For example, to calculate the within-groups covariance for variables V8 and V11, we type:

> calcWithinGroupsCovariance(wine[8],wine[11],wine[1])
[1] 0.2866783

> calcBetweenGroupsCovariance <- function(variable1,variable2,groupvariable)
{

find out how many values the group variable can take
groupvariable2 <- as.factor(groupvariable[[1]])
levels <- levels(groupvariable2)
numlevels <- length(levels)
calculate the grand means
variable1mean <- mean(variable1)
variable2mean <- mean(variable2)
calculate the between-groups covariance
Covb <- 0
for (i in 1:numlevels)
{

leveli <- levels[i]
levelidata1 <- variable1[groupvariable==leveli,]
levelidata2 <- variable2[groupvariable==leveli,]
mean1 <- mean(levelidata1)
mean2 <- mean(levelidata2)
levelilength <- length(levelidata1)
term1 <- (mean1 - variable1mean)*(mean2 - variable2mean)*(levelilength)
Covb <- Covb + term1

}
Covb <- Covb / (numlevels - 1)
Covb <- Covb[[1]]
return(Covb)

}

For example, to calculate the between-groups covariance for variables V8 and V11, we type:

> calcBetweenGroupsCovariance(wine[8],wine[11],wine[1])
[1] -60.41077

Thus, for V8 and V11, the between-groups covariance is -60.41 and the within-groups covariance is 0.29. Since
the within-groups covariance is positive (0.29), it means V8 and V11 are positively related within groups: for
individuals from the same group, individuals with a high value of V8 tend to have a high value of V11, and
vice versa. Since the between-groups covariance is negative (-60.41), V8 and V11 are negatively related between
groups: groups with a high mean value of V8 tend to have a low mean value of V11, and vice versa.

2.5 Calculating Correlations for Multivariate Data

It is often of interest to investigate whether any of the variables in a multivariate data set are significantly correlated.

22 Chapter 2. Using R for Multivariate Analysis

A Little Book of R For Multivariate Analysis, Release 0.1

To calculate the linear (Pearson) correlation coefficient for a pair of variables, you can use the “cor.test()” function
in R. For example, to calculate the correlation coefficient for the first two chemicals’ concentrations, V2 and V3,
we type:

> cor.test(wine$V2, wine$V3)
Pearson’s product-moment correlation
data: wine$V2 and wine$V3
t = 1.2579, df = 176, p-value = 0.2101
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.05342959 0.23817474
sample estimates:
cor
0.09439694

This tells us that the correlation coefficient is about 0.094, which is a very weak correlation. Furthermore, the
P-value for the statistical test of whether the correlation coefficient is significantly different from zero is 0.21.
This is much greater than 0.05 (which we can use here as a cutoff for statistical significance), so there is very weak
evidence that that the correlation is non-zero.

If you have a lot of variables, you can use “cor.test()” to calculate the correlation coefficient for each pair of
variables, but you might be just interested in finding out what are the most highly correlated pairs of variables. For
this you can use the function “mosthighlycorrelated()” below.

The function “mosthighlycorrelated()” will print out the linear correlation coefficients for each pair of variables in
your data set, in order of the correlation coefficient. This lets you see very easily which pair of variables are most
highly correlated.

> mosthighlycorrelated <- function(mydataframe,numtoreport)
{

find the correlations
cormatrix <- cor(mydataframe)
set the correlations on the diagonal or lower triangle to zero,
so they will not be reported as the highest ones:
diag(cormatrix) <- 0
cormatrix[lower.tri(cormatrix)] <- 0
flatten the matrix into a dataframe for easy sorting
fm <- as.data.frame(as.table(cormatrix))
assign human-friendly names
names(fm) <- c("First.Variable", "Second.Variable","Correlation")
sort and print the top n correlations
head(fm[order(abs(fm$Correlation),decreasing=T),],n=numtoreport)

}

To use this function, you will first have to copy and paste it into R. The arguments of the function are the variables
that you want to calculate the correlations for, and the number of top correlation coefficients to print out (for
example, you can tell it to print out the largest ten correlation coefficients, or the largest 20).

For example, to calculate correlation coefficients between the concentrations of the 13 chemicals in the wine
samples, and to print out the top 10 pairwise correlation coefficients, you can type:

> mosthighlycorrelated(wine[2:14], 10)
First.Variable Second.Variable Correlation

84 V7 V8 0.8645635
150 V8 V13 0.7871939
149 V7 V13 0.6999494
111 V8 V10 0.6526918
157 V2 V14 0.6437200
110 V7 V10 0.6124131
154 V12 V13 0.5654683
132 V3 V12 -0.5612957
118 V2 V11 0.5463642
137 V8 V12 0.5434786

2.5. Calculating Correlations for Multivariate Data 23

A Little Book of R For Multivariate Analysis, Release 0.1

This tells us that the pair of variables with the highest linear correlation coefficient are V7 and V8 (correlation =
0.86 approximately).

2.6 Standardising Variables

If you want to compare different variables that have different units, are very different variances, it is a good idea
to first standardise the variables.

For example, we found above that the concentrations of the 13 chemicals in the wine samples show a wide range of
standard deviations, from 0.1244533 for V9 (variance 0.01548862) to 314.9074743 for V14 (variance 99166.72).
This is a range of approximately 6,402,554-fold in the variances.

As a result, it is not a good idea to use the unstandardised chemical concentrations as the input for a principal
component analysis (PCA, see below) of the wine samples, as if you did that, the first principal component would
be dominated by the variables which show the largest variances, such as V14.

Thus, it would be a better idea to first standardise the variables so that they all have variance 1 and mean 0, and to
then carry out the principal component analysis on the standardised data. This would allow us to find the principal
components that provide the best low-dimensional representation of the variation in the original data, without
being overly biased by those variables that show the most variance in the original data.

You can standardise variables in R using the “scale()” function.

For example, to standardise the concentrations of the 13 chemicals in the wine samples, we type:

> standardisedconcentrations <- as.data.frame(scale(wine[2:14]))

Note that we use the “as.data.frame()” function to convert the output of “scale()” into a “data frame”, which is the
same type of R variable that the “wine” variable.

We can check that each of the standardised variables stored in “standardisedconcentrations” has a mean of 0 and
a standard deviation of 1 by typing:

> sapply(standardisedconcentrations,mean)
V2 V3 V4 V5 V6 V7

-8.591766e-16 -6.776446e-17 8.045176e-16 -7.720494e-17 -4.073935e-17 -1.395560e-17
V8 V9 V10 V11 V12 V13

6.958263e-17 -1.042186e-16 -1.221369e-16 3.649376e-17 2.093741e-16 3.003459e-16
V14

-1.034429e-16
> sapply(standardisedconcentrations,sd)

V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14
1 1 1 1 1 1 1 1 1 1 1 1 1

We see that the means of the standardised variables are all very tiny numbers and so are essentially equal to 0, and
the standard deviations of the standardised variables are all equal to 1.

2.7 Principal Component Analysis

The purpose of principal component analysis is to find the best low-dimensional representation of the variation in
a multivariate data set. For example, in the case of the wine data set, we have 13 chemical concentrations describ-
ing wine samples from three different cultivars. We can carry out a principal component analysis to investigate
whether we can capture most of the variation between samples using a smaller number of new variables (prin-
cipal components), where each of these new variables is a linear combination of all or some of the 13 chemical
concentrations.

To carry out a principal component analysis (PCA) on a multivariate data set, the first step is often to standardise
the variables under study using the “scale()” function (see above). This is necessary if the input variables have
very different variances, which is true in this case as the concentrations of the 13 chemicals have very different
variances (see above).

24 Chapter 2. Using R for Multivariate Analysis

A Little Book of R For Multivariate Analysis, Release 0.1

Once you have standardised your variables, you can carry out a principal component analysis using the “prcomp()”
function in R.

For example, to standardise the concentrations of the 13 chemicals in the wine samples, and carry out a principal
components analysis on the standardised concentrations, we type:

> standardisedconcentrations <- as.data.frame(scale(wine[2:14])) # standardise the variables
> wine.pca <- prcomp(standardisedconcentrations) # do a PCA

You can get a summary of the principal component analysis results using the “summary()” function on the output
of “prcomp()”:

> summary(wine.pca)
Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10
Standard deviation 2.169 1.580 1.203 0.9586 0.9237 0.8010 0.7423 0.5903 0.5375 0.5009
Proportion of Variance 0.362 0.192 0.111 0.0707 0.0656 0.0494 0.0424 0.0268 0.0222 0.0193
Cumulative Proportion 0.362 0.554 0.665 0.7360 0.8016 0.8510 0.8934 0.9202 0.9424 0.9617

PC11 PC12 PC13
Standard deviation 0.4752 0.4108 0.32152
Proportion of Variance 0.0174 0.0130 0.00795
Cumulative Proportion 0.9791 0.9920 1.00000

This gives us the standard deviation of each component, and the proportion of variance explained by each compo-
nent. The standard deviation of the components is stored in a named element called “sdev” of the output variable
made by “prcomp”:

> wine.pca$sdev
[1] 2.1692972 1.5801816 1.2025273 0.9586313 0.9237035 0.8010350 0.7423128 0.5903367
[9] 0.5374755 0.5009017 0.4751722 0.4108165 0.3215244

The total variance explained by the components is the sum of the variances of the components:

> sum((wine.pca$sdev)^2)
[1] 13

In this case, we see that the total variance is 13, which is equal to the number of standardised variables (13
variables). This is because for standardised data, the variance of each standardised variable is 1. The total variance
is equal to the sum of the variances of the individual variables, and since the variance of each standardised variable
is 1, the total variance should be equal to the number of variables (13 here).

2.7.1 Deciding How Many Principal Components to Retain

In order to decide how many principal components should be retained, it is common to summarise the results of a
principal components analysis by making a scree plot, which we can do in R using the “screeplot()” function:

> screeplot(wine.pca, type="lines")

2.7. Principal Component Analysis 25

A Little Book of R For Multivariate Analysis, Release 0.1

The most obvious change in slope in the scree plot occurs at component 4, which is the “elbow” of the scree
plot. Therefore, it cound be argued based on the basis of the scree plot that the first three components should be
retained.

Another way of deciding how many components to retain is to use Kaiser’s criterion: that we should only re-
tain principal components for which the variance is above 1 (when principal component analysis was applied to
standardised data). We can check this by finding the variance of each of the principal components:

> (wine.pca$sdev)^2
[1] 4.7058503 2.4969737 1.4460720 0.9189739 0.8532282 0.6416570 0.5510283 0.3484974
[9] 0.2888799 0.2509025 0.2257886 0.1687702 0.1033779

We see that the variance is above 1 for principal components 1, 2, and 3 (which have variances 4.71, 2.50, and
1.45, respectively). Therefore, using Kaiser’s criterion, we would retain the first three principal components.

A third way to decide how many principal components to retain is to decide to keep the number of components
required to explain at least some minimum amount of the total variance. For example, if it is important to explain
at least 80% of the variance, we would retain the first five principal components, as we can see from the output of
“summary(wine.pca)” that the first five principal components explain 80.2% of the variance (while the first four
components explain just 73.6%, so are not sufficient).

2.7.2 Loadings for the Principal Components

The loadings for the principal components are stored in a named element “rotation” of the variable returned by
“prcomp()”. This contains a matrix with the loadings of each principal component, where the first column in the
matrix contains the loadings for the first principal component, the second column contains the loadings for the
second principal component, and so on.

26 Chapter 2. Using R for Multivariate Analysis

A Little Book of R For Multivariate Analysis, Release 0.1

Therefore, to obtain the loadings for the first principal component in our analysis of the 13 chemical concentrations
in wine samples, we type:

> wine.pca$rotation[,1]
V2 V3 V4 V5 V6 V7

-0.144329395 0.245187580 0.002051061 0.239320405 -0.141992042 -0.394660845
V8 V9 V10 V11 V12 V13

-0.422934297 0.298533103 -0.313429488 0.088616705 -0.296714564 -0.376167411
V14

-0.286752227

This means that the first principal component is a linear combination of the variables: -0.144*Z2 + 0.245*Z3 +
0.002*Z4 + 0.239*Z5 - 0.142*Z6 - 0.395*Z7 - 0.423*Z8 + 0.299*Z9 -0.313*Z10 + 0.089*Z11 - 0.297*Z12 -
0.376*Z13 - 0.287*Z14, where Z2, Z3, Z4...Z14 are the standardised versions of the variables V2, V3, V4...V14
(that each have mean of 0 and variance of 1).

Note that the square of the loadings sum to 1, as this is a constraint used in calculating the loadings:

> sum((wine.pca$rotation[,1])^2)
[1] 1

To calculate the values of the first principal component, we can define our own function to calculate a principal
component given the loadings and the input variables’ values:

> calcpc <- function(variables,loadings)
{

find the number of samples in the data set
as.data.frame(variables)
numsamples <- nrow(variables)
make a vector to store the component
pc <- numeric(numsamples)
find the number of variables
numvariables <- length(variables)
calculate the value of the component for each sample
for (i in 1:numsamples)
{

valuei <- 0
for (j in 1:numvariables)
{

valueij <- variables[i,j]
loadingj <- loadings[j]
valuei <- valuei + (valueij * loadingj)

}
pc[i] <- valuei

}
return(pc)

}

We can then use the function to calculate the values of the first principal component for each sample in our wine
data:

> calcpc(standardisedconcentrations, wine.pca$rotation[,1])
[1] -3.30742097 -2.20324981 -2.50966069 -3.74649719 -1.00607049 -3.04167373 -2.44220051
[8] -2.05364379 -2.50381135 -2.74588238 -3.46994837 -1.74981688 -2.10751729 -3.44842921
[15] -4.30065228 -2.29870383 -2.16584568 -1.89362947 -3.53202167 -2.07865856 -3.11561376
[22] -1.08351361 -2.52809263 -1.64036108 -1.75662066 -0.98729406 -1.77028387 -1.23194878
[29] -2.18225047 -2.24976267 -2.49318704 -2.66987964 -1.62399801 -1.89733870 -1.40642118
[36] -1.89847087 -1.38096669 -1.11905070 -1.49796891 -2.52268490 -2.58081526 -0.66660159
...

In fact, the values of the first principal component are stored in the variable wine.pca$x[,1] that was returned by
the “prcomp()” function, so we can compare those values to the ones that we calculated, and they should agree:

2.7. Principal Component Analysis 27

A Little Book of R For Multivariate Analysis, Release 0.1

> wine.pca$x[,1]
[1] -3.30742097 -2.20324981 -2.50966069 -3.74649719 -1.00607049 -3.04167373 -2.44220051
[8] -2.05364379 -2.50381135 -2.74588238 -3.46994837 -1.74981688 -2.10751729 -3.44842921
[15] -4.30065228 -2.29870383 -2.16584568 -1.89362947 -3.53202167 -2.07865856 -3.11561376
[22] -1.08351361 -2.52809263 -1.64036108 -1.75662066 -0.98729406 -1.77028387 -1.23194878
[29] -2.18225047 -2.24976267 -2.49318704 -2.66987964 -1.62399801 -1.89733870 -1.40642118
[36] -1.89847087 -1.38096669 -1.11905070 -1.49796891 -2.52268490 -2.58081526 -0.66660159
...

We see that they do agree.

The first principal component has highest (in absolute value) loadings for V8 (-0.423), V7 (-0.395), V13 (-0.376),
V10 (-0.313), V12 (-0.297), V14 (-0.287), V9 (0.299), V3 (0.245), and V5 (0.239). The loadings for V8, V7,
V13, V10, V12 and V14 are negative, while those for V9, V3, and V5 are positive. Therefore, an interpretation
of the first principal component is that it represents a contrast between the concentrations of V8, V7, V13, V10,
V12, and V14, and the concentrations of V9, V3 and V5.

Similarly, we can obtain the loadings for the second principal component by typing:

> wine.pca$rotation[,2]
V2 V3 V4 V5 V6 V7

0.483651548 0.224930935 0.316068814 -0.010590502 0.299634003 0.065039512
V8 V9 V10 V11 V12 V13

-0.003359812 0.028779488 0.039301722 0.529995672 -0.279235148 -0.164496193
V14

0.364902832

This means that the second principal component is a linear combination of the variables: 0.484*Z2 + 0.225*Z3 +
0.316*Z4 - 0.011*Z5 + 0.300*Z6 + 0.065*Z7 - 0.003*Z8 + 0.029*Z9 + 0.039*Z10 + 0.530*Z11 - 0.279*Z12 -
0.164*Z13 + 0.365*Z14, where Z1, Z2, Z3...Z14 are the standardised versions of variables V2, V3, ... V14 that
each have mean 0 and variance 1.

Note that the square of the loadings sum to 1, as above:

> sum((wine.pca$rotation[,2])^2)
[1] 1

The second principal component has highest loadings for V11 (0.530), V2 (0.484), V14 (0.365), V4 (0.316), V6
(0.300), V12 (-0.279), and V3 (0.225). The loadings for V11, V2, V14, V4, V6 and V3 are positive, while the
loading for V12 is negative. Therefore, an interpretation of the second principal component is that it represents a
contrast between the concentrations of V11, V2, V14, V4, V6 and V3, and the concentration of V12. Note that
the loadings for V11 (0.530) and V2 (0.484) are the largest, so the contrast is mainly between the concentrations
of V11 and V2, and the concentration of V12.

2.7.3 Scatterplots of the Principal Components

The values of the principal components are stored in a named element “x” of the variable returned by “prcomp()”.
This contains a matrix with the principal components, where the first column in the matrix contains the first
principal component, the second column the second component, and so on.

Thus, in our example, “wine.pca$x[,1]” contains the first principal component, and “wine.pca$x[,2]” contains the
second principal component.

We can make a scatterplot of the first two principal components, and label the data points with the cultivar that the
wine samples come from, by typing:

> plot(wine.pca$x[,1],wine.pca$x[,2]) # make a scatterplot
> text(wine.pca$x[,1],wine.pca$x[,2], wine$V1, cex=0.7, pos=4, col="red") # add labels

28 Chapter 2. Using R for Multivariate Analysis

A Little Book of R For Multivariate Analysis, Release 0.1

The scatterplot shows the first principal component on the x-axis, and the second principal component on the y-
axis. We can see from the scatterplot that wine samples of cultivar 1 have much lower values of the first principal
component than wine samples of cultivar 3. Therefore, the first principal component separates wine samples of
cultivars 1 from those of cultivar 3.

We can also see that wine samples of cultivar 2 have much higher values of the second principal component than
wine samples of cultivars 1 and 3. Therefore, the second principal component separates samples of cultivar 2 from
samples of cultivars 1 and 3.

Therefore, the first two principal components are reasonably useful for distinguishing wine samples of the three
different cultivars.

Above, we interpreted the first principal component as a contrast between the concentrations of V8, V7, V13,
V10, V12, and V14, and the concentrations of V9, V3 and V5. We can check whether this makes sense in terms
of the concentrations of these chemicals in the different cultivars, by printing out the means of the standardised
concentration variables in each cultivar, using the “printMeanAndSdByGroup()” function (see above):

> printMeanAndSdByGroup(standardisedconcentrations,wine[1])
[1] "Means:"
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14

1 1 0.9166093 -0.2915199 0.3246886 -0.7359212 0.46192317 0.87090552 0.95419225 -0.57735640 0.5388633 0.2028288 0.4575567 0.7691811 1.1711967
2 2 -0.8892116 -0.3613424 -0.4437061 0.2225094 -0.36354162 -0.05790375 0.05163434 0.01452785 0.0688079 -0.8503999 0.4323908 0.2446043 -0.7220731
3 3 0.1886265 0.8928122 0.2572190 0.5754413 -0.03004191 -0.98483874 -1.24923710 0.68817813 -0.7641311 1.0085728 -1.2019916 -1.3072623 -0.3715295

Does it make sense that the first principal component can separate cultivar 1 from cultivar 3? In cultivar 1, the

2.7. Principal Component Analysis 29

A Little Book of R For Multivariate Analysis, Release 0.1

mean values of V8 (0.954), V7 (0.871), V13 (0.769), V10 (0.539), V12 (0.458) and V14 (1.171) are very high
compared to the mean values of V9 (-0.577), V3 (-0.292) and V5 (-0.736). In cultivar 3, the mean values of V8
(-1.249), V7 (-0.985), V13 (-1.307), V10 (-0.764), V12 (-1.202) and V14 (-0.372) are very low compared to the
mean values of V9 (0.688), V3 (0.893) and V5 (0.575). Therefore, it does make sense that principal component 1
is a contrast between the concentrations of V8, V7, V13, V10, V12, and V14, and the concentrations of V9, V3
and V5; and that principal component 1 can separate cultivar 1 from cultivar 3.

Above, we intepreted the second principal component as a contrast between the concentrations of V11, V2, V14,
V4, V6 and V3, and the concentration of V12. In the light of the mean values of these variables in the different
cultivars, does it make sense that the second principal component can separate cultivar 2 from cultivars 1 and 3? In
cultivar 1, the mean values of V11 (0.203), V2 (0.917), V14 (1.171), V4 (0.325), V6 (0.462) and V3 (-0.292) are
not very different from the mean value of V12 (0.458). In cultivar 3, the mean values of V11 (1.009), V2 (0.189),
V14 (-0.372), V4 (0.257), V6 (-0.030) and V3 (0.893) are also not very different from the mean value of V12
(-1.202). In contrast, in cultivar 2, the mean values of V11 (-0.850), V2 (-0.889), V14 (-0.722), V4 (-0.444), V6 (-
0.364) and V3 (-0.361) are much less than the mean value of V12 (0.432). Therefore, it makes sense that principal
component is a contrast between the concentrations of V11, V2, V14, V4, V6 and V3, and the concentration of
V12; and that principal component 2 can separate cultivar 2 from cultivars 1 and 3.

2.8 Linear Discriminant Analysis

The purpose of principal component analysis is to find the best low-dimensional representation of the variation in
a multivariate data set. For example, in the wine data set, we have 13 chemical concentrations describing wine
samples from three cultivars. By carrying out a principal component analysis, we found that most of the variation
in the chemical concentrations between the samples can be captured using the first two principal components,
where each of the principal components is a particular linear combination of the 13 chemical concentrations.

The purpose of linear discriminant analysis (LDA) is to find the linear combinations of the original variables
(the 13 chemical concentrations here) that gives the best possible separation between the groups (wine cultivars
here) in our data set. Linear discriminant analysis is also known as “canonical discriminant analysis”, or simply
“discriminant analysis”.

If we want to separate the wines by cultivar, the wines come from three different cultivars, so the number of groups
(G) is 3, and the number of variables is 13 (13 chemicals’ concentrations; p = 13). The maximum number of useful
discriminant functions that can separate the wines by cultivar is the minimum of G-1 and p, and so in this case it
is the minimum of 2 and 13, which is 2. Thus, we can find at most 2 useful discriminant functions to separate the
wines by cultivar, using the 13 chemical concentration variables.

You can carry out a linear discriminant analysis using the “lda()” function from the R “MASS” package. To use
this function, we first need to install the “MASS” R package (for instructions on how to install an R package, see
How to install an R package).

For example, to carry out a linear discriminant analysis using the 13 chemical concentrations in the wine samples,
we type:

> library("MASS") # load the MASS package
> wine.lda <- lda(wine$V1 ~ wine$V2 + wine$V3 + wine$V4 + wine$V5 + wine$V6 + wine$V7 +

wine$V8 + wine$V9 + wine$V10 + wine$V11 + wine$V12 + wine$V13 +
wine$V14)

2.8.1 Loadings for the Discriminant Functions

To get the values of the loadings of the discriminant functions for the wine data, we can type:

> wine.lda
Coefficients of linear discriminants:

LD1 LD2
wine$V2 -0.403399781 0.8717930699
wine$V3 0.165254596 0.3053797325
wine$V4 -0.369075256 2.3458497486

30 Chapter 2. Using R for Multivariate Analysis

A Little Book of R For Multivariate Analysis, Release 0.1

wine$V5 0.154797889 -0.1463807654
wine$V6 -0.002163496 -0.0004627565
wine$V7 0.618052068 -0.0322128171
wine$V8 -1.661191235 -0.4919980543
wine$V9 -1.495818440 -1.6309537953
wine$V10 0.134092628 -0.3070875776
wine$V11 0.355055710 0.2532306865
wine$V12 -0.818036073 -1.5156344987
wine$V13 -1.157559376 0.0511839665
wine$V14 -0.002691206 0.0028529846

This means that the first discriminant function is a linear combination of the variables: -0.403*V2 + 0.165*V3 -
0.369*V4 + 0.155*V5 - 0.002*V6 + 0.618*V7 - 1.661*V8 - 1.496*V9 + 0.134*V10 + 0.355*V11 - 0.818*V12
- 1.158*V13 - 0.003*V14, where V2, V3, ... V14 are the concentrations of the 14 chemicals found in the wine
samples. For convenience, the value for each discriminant function (eg. the first discriminant function) are scaled
so that their mean value is zero (see below).

Note that these loadings are calculated so that the within-group variance of each discriminant function for each
group (cultivar) is equal to 1, as will be demonstrated below.

These scalings are also stored in the named element “scaling” of the variable returned by the lda() function. This
element contains a matrix, in which the first column contains the loadings for the first discriminant function, the
second column contains the loadings for the second discriminant function and so on. For example, to extract the
loadings for the first discriminant function, we can type:

> wine.lda$scaling[,1]
wine$V2 wine$V3 wine$V4 wine$V5 wine$V6 wine$V7

-0.403399781 0.165254596 -0.369075256 0.154797889 -0.002163496 0.618052068
wine$V8 wine$V9 wine$V10 wine$V11 wine$V12 wine$V13

-1.661191235 -1.495818440 0.134092628 0.355055710 -0.818036073 -1.157559376
wine$V14

-0.002691206

To calculate the values of the first discriminant function, we can define our own function “calclda()”:

> calclda <- function(variables,loadings)
{

find the number of samples in the data set
as.data.frame(variables)
numsamples <- nrow(variables)
make a vector to store the discriminant function
ld <- numeric(numsamples)
find the number of variables
numvariables <- length(variables)
calculate the value of the discriminant function for each sample
for (i in 1:numsamples)
{

valuei <- 0
for (j in 1:numvariables)
{

valueij <- variables[i,j]
loadingj <- loadings[j]
valuei <- valuei + (valueij * loadingj)

}
ld[i] <- valuei

}
standardise the discriminant function so that its mean value is 0:
ld <- as.data.frame(scale(ld, center=TRUE, scale=FALSE))
ld <- ld[[1]]
return(ld)

}

The function calclda() simply calculates the value of a discriminant function for each sample in the data set, for
example, for the first disriminant function, for each sample we calculate the value using the equation -0.403*V2 -

2.8. Linear Discriminant Analysis 31

A Little Book of R For Multivariate Analysis, Release 0.1

0.165*V3 - 0.369*V4 + 0.155*V5 - 0.002*V6 + 0.618*V7 - 1.661*V8 - 1.496*V9 + 0.134*V10 + 0.355*V11 -
0.818*V12 - 1.158*V13 - 0.003*V14. Furthermore, the “scale()” command is used within the calclda() function
in order to standardise the value of a discriminant function (eg. the first discriminant function) so that its mean
value (over all the wine samples) is 0.

We can use the function calclda() to calculate the values of the first discriminant function for each sample in our
wine data:

> calclda(wine[2:14], wine.lda$scaling[,1])
[1] -4.70024401 -4.30195811 -3.42071952 -4.20575366 -1.50998168 -4.51868934
[7] -4.52737794 -4.14834781 -3.86082876 -3.36662444 -4.80587907 -3.42807646
[13] -3.66610246 -5.58824635 -5.50131449 -3.18475189 -3.28936988 -2.99809262
[19] -5.24640372 -3.13653106 -3.57747791 -1.69077135 -4.83515033 -3.09588961
[25] -3.32164716 -2.14482223 -3.98242850 -2.68591432 -3.56309464 -3.17301573
[31] -2.99626797 -3.56866244 -3.38506383 -3.52753750 -2.85190852 -2.79411996
...

In fact, the values of the first linear discriminant function can be calculated using the “predict()” function in R, so
we can compare those to the ones that we calculated, and they should agree:

> wine.lda.values <- predict(wine.lda, wine[2:14])
> wine.lda.values$x[,1] # contains the values for the first discriminant function

1 2 3 4 5 6
-4.70024401 -4.30195811 -3.42071952 -4.20575366 -1.50998168 -4.51868934

7 8 9 10 11 12
-4.52737794 -4.14834781 -3.86082876 -3.36662444 -4.80587907 -3.42807646

13 14 15 16 17 18
-3.66610246 -5.58824635 -5.50131449 -3.18475189 -3.28936988 -2.99809262

19 20 21 22 23 24
-5.24640372 -3.13653106 -3.57747791 -1.69077135 -4.83515033 -3.09588961

25 26 27 28 29 30
-3.32164716 -2.14482223 -3.98242850 -2.68591432 -3.56309464 -3.17301573

31 32 33 34 35 36
-2.99626797 -3.56866244 -3.38506383 -3.52753750 -2.85190852 -2.79411996
...

We see that they do agree.

It doesn’t matter whether the input variables for linear discriminant analysis are standardised or not, unlike for
principal components analysis in which it is often necessary to standardise the input variables. However, using
standardised variables in linear discriminant analysis makes it easier to interpret the loadings in a linear discrimi-
nant function.

In linear discriminant analysis, the standardised version of an input variable is defined so that it has mean zero
and within-groups variance of 1. Thus, we can calculate the “group-standardised” variable by subtracting the
mean from each value of the variable, and dividing by the within-groups standard deviation. To calculate the
group-standardised version of a set of variables, we can use the function “groupStandardise()” below:

> groupStandardise <- function(variables, groupvariable)
{

find out how many variables we have
variables <- as.data.frame(variables)
numvariables <- length(variables)
find the variable names
variablenames <- colnames(variables)
calculate the group-standardised version of each variable
for (i in 1:numvariables)
{

variablei <- variables[i]
variablei_name <- variablenames[i]
variablei_Vw <- calcWithinGroupsVariance(variablei, groupvariable)
variablei_mean <- mean(variablei)
variablei_new <- (variablei - variablei_mean)/(sqrt(variablei_Vw))
data_length <- nrow(variablei)

32 Chapter 2. Using R for Multivariate Analysis

A Little Book of R For Multivariate Analysis, Release 0.1

if (i == 1) { variables_new <- data.frame(row.names=seq(1,data_length)) }
variables_new[‘variablei_name‘] <- variablei_new

}
return(variables_new)

}

For example, we can use the “groupStandardise()” function to calculate the group-standardised versions of the
chemical concentrations in wine samples:

> groupstandardisedconcentrations <- groupStandardise(wine[2:14], wine[1])

We can then use the lda() function to perform linear disriminant analysis on the group-standardised variables:

> wine.lda2 <- lda(wine$V1 ~ groupstandardisedconcentrations$V2 + groupstandardisedconcentrations$V3 +
groupstandardisedconcentrations$V4 + groupstandardisedconcentrations$V5 +
groupstandardisedconcentrations$V6 + groupstandardisedconcentrations$V7 +
groupstandardisedconcentrations$V8 + groupstandardisedconcentrations$V9 +
groupstandardisedconcentrations$V10 + groupstandardisedconcentrations$V11 +
groupstandardisedconcentrations$V12 + groupstandardisedconcentrations$V13 +
groupstandardisedconcentrations$V14)

> wine.lda2
Coefficients of linear discriminants:

LD1 LD2
groupstandardisedconcentrations$V2 -0.20650463 0.446280119
groupstandardisedconcentrations$V3 0.15568586 0.287697336
groupstandardisedconcentrations$V4 -0.09486893 0.602988809
groupstandardisedconcentrations$V5 0.43802089 -0.414203541
groupstandardisedconcentrations$V6 -0.02907934 -0.006219863
groupstandardisedconcentrations$V7 0.27030186 -0.014088108
groupstandardisedconcentrations$V8 -0.87067265 -0.257868714
groupstandardisedconcentrations$V9 -0.16325474 -0.178003512
groupstandardisedconcentrations$V10 0.06653116 -0.152364015
groupstandardisedconcentrations$V11 0.53670086 0.382782544
groupstandardisedconcentrations$V12 -0.12801061 -0.237174509
groupstandardisedconcentrations$V13 -0.46414916 0.020523349
groupstandardisedconcentrations$V14 -0.46385409 0.491738050

It makes sense to interpret the loadings calculated using the group-standardised variables rather than the loadings
for the original (unstandardised) variables.

In the first discriminant function calculated for the group-standardised variables, the largest loadings (in absolute)
value are given to V8 (-0.871), V11 (0.537), V13 (-0.464), V14 (-0.464), and V5 (0.438). The loadings for V8,
V13 and V14 are negative, while those for V11 and V5 are positive. Therefore, the discriminant function seems
to represent a contrast between the concentrations of V8, V13 and V14, and the concentrations of V11 and V5.

We saw above that the individual variables which gave the greatest separations between the groups were V8
(separation 233.93), V14 (207.92), V13 (189.97), V2 (135.08) and V11 (120.66). These were mostly the same
variables that had the largest loadings in the linear discriminant function (loading for V8: -0.871, for V14: -0.464,
for V13: -0.464, for V11: 0.537).

We found above that variables V8 and V11 have a negative between-groups covariance (-60.41) and a positive
within-groups covariance (0.29). When the between-groups covariance and within-groups covariance for two
variables have opposite signs, it indicates that a better separation between groups can be obtained by using a linear
combination of those two variables than by using either variable on its own.

Thus, given that the two variables V8 and V11 have between-groups and within-groups covariances of opposite
signs, and that these are two of the variables that gave the greatest separations between groups when used indi-
vidually, it is not surprising that these are the two variables that have the largest loadings in the first discriminant
function.

Note that although the loadings for the group-standardised variables are easier to interpret than the loadings for the
unstandardised variables, the values of the discriminant function are the same regardless of whether we standardise
the input variables or not. For example, for wine data, we can calculate the value of the first discriminant function
calculated using the unstandardised and group-standardised variables by typing:

2.8. Linear Discriminant Analysis 33

A Little Book of R For Multivariate Analysis, Release 0.1

> wine.lda.values <- predict(wine.lda, wine[2:14])
> wine.lda.values$x[,1] # values for the first discriminant function, using the unstandardised data

1 2 3 4 5 6
-4.70024401 -4.30195811 -3.42071952 -4.20575366 -1.50998168 -4.51868934

7 8 9 10 11 12
-4.52737794 -4.14834781 -3.86082876 -3.36662444 -4.80587907 -3.42807646

13 14 15 16 17 18
-3.66610246 -5.58824635 -5.50131449 -3.18475189 -3.28936988 -2.99809262

19 20 21 22 23 24
-5.24640372 -3.13653106 -3.57747791 -1.69077135 -4.83515033 -3.09588961
...

> wine.lda.values2 <- predict(wine.lda2, groupstandardisedconcentrations)
> wine.lda.values2$x[,1] # values for the first discriminant function, using the standardised data

1 2 3 4 5 6
-4.70024401 -4.30195811 -3.42071952 -4.20575366 -1.50998168 -4.51868934

7 8 9 10 11 12
-4.52737794 -4.14834781 -3.86082876 -3.36662444 -4.80587907 -3.42807646

13 14 15 16 17 18
-3.66610246 -5.58824635 -5.50131449 -3.18475189 -3.28936988 -2.99809262

19 20 21 22 23 24
-5.24640372 -3.13653106 -3.57747791 -1.69077135 -4.83515033 -3.09588961
...

We can see that although the loadings are different for the first discriminant functions calculated using unstan-
dardised and group-standardised data, the actual values of the first discriminant function are the same.

2.8.2 Separation Achieved by the Discriminant Functions

To calculate the separation achieved by each discriminant function, we first need to calculate the value of each dis-
criminant function, by substituting the variables’ values into the linear combination for the discriminant function
(eg. -0.403*V2 - 0.165*V3 - 0.369*V4 + 0.155*V5 - 0.002*V6 + 0.618*V7 - 1.661*V8 - 1.496*V9 + 0.134*V10
+ 0.355*V11 - 0.818*V12 - 1.158*V13 - 0.003*V14 for the first discriminant function), and then scaling the
values of the discriminant function so that their mean is zero.

As mentioned above, we can do this using the “predict()” function in R. For example, to calculate the value of the
discriminant functions for the wine data, we type:

> wine.lda.values <- predict(wine.lda, standardisedconcentrations)

The returned variable has a named element “x” which is a matrix containing the linear discriminant functions: the
first column of x contains the first discriminant function, the second column of x contains the second discriminant
function, and so on (if there are more discriminant functions).

We can therefore calculate the separations achieved by the two linear discriminant functions for the wine data by
using the “calcSeparations()” function (see above), which calculates the separation as the ratio of the between-
groups variance to the within-groups variance:

> calcSeparations(wine.lda.values$x,wine[1])
[1] "variable LD1 Vw= 1 Vb= 794.652200566216 separation= 794.652200566216"
[1] "variable LD2 Vw= 1 Vb= 361.241041493455 separation= 361.241041493455"

As mentioned above, the loadings for each discriminant function are calculated in such a way that the within-group
variance (Vw) for each group (wine cultivar here) is equal to 1, as we see in the output from calcSeparations()
above.

The output from calcSeparations() tells us that the separation achieved by the first (best) discriminant function is
794.7, and the separation achieved by the second (second best) discriminant function is 361.2.

Therefore, the total separation is the sum of these, which is (794.652200566216+361.241041493455=1155.893)
1155.89, rounded to two decimal places. Therefore, the “percentage separation” achieved by the first discriminant
function is (794.652200566216*100/1155.893=) 68.75%, and the percentage separation achieved by the second
discriminant function is (361.241041493455*100/1155.893=) 31.25%.

34 Chapter 2. Using R for Multivariate Analysis

A Little Book of R For Multivariate Analysis, Release 0.1

The “proportion of trace” that is printed when you type “wine.lda” (the variable returned by the lda() function) is
the percentage separation achieved by each discriminant function. For example, for the wine data we get the same
values as just calculated (68.75% and 31.25%):

> wine.lda
Proportion of trace:
LD1 LD2

0.6875 0.3125

Therefore, the first discriminant function does achieve a good separation between the three groups (three cultivars),
but the second discriminant function does improve the separation of the groups by quite a large amount, so is it
worth using the second discriminant function as well. Therefore, to achieve a good separation of the groups
(cultivars), it is necessary to use both of the first two discriminant functions.

We found above that the largest separation achieved for any of the individual variables (individual chemical con-
centrations) was 233.9 for V8, which is quite a lot less than 794.7, the separation achieved by the first discriminant
function. Therefore, the effect of using more than one variable to calculate the discriminant function is that we
can find a discriminant function that achieves a far greater separation between groups than achieved by any one
variable alone.

The variable returned by the lda() function also has a named element “svd”, which contains the ratio of between-
and within-group standard deviations for the linear discriminant variables, that is, the square root of the “separa-
tion” value that we calculated using calcSeparations() above. When we calculate the square of the value stored in
“svd”, we should get the same value as found using calcSeparations():

> (wine.lda$svd)^2
[1] 794.6522 361.2410

2.8.3 A Stacked Histogram of the LDA Values

A nice way of displaying the results of a linear discriminant analysis (LDA) is to make a stacked histogram of the
values of the discriminant function for the samples from different groups (different wine cultivars in our example).

We can do this using the “ldahist()” function in R. For example, to make a stacked histogram of the first discrimi-
nant function’s values for wine samples of the three different wine cultivars, we type:

> ldahist(data = wine.lda.values$x[,1], g=wine$V1)

2.8. Linear Discriminant Analysis 35

A Little Book of R For Multivariate Analysis, Release 0.1

We can see from the histogram that cultivars 1 and 3 are well separated by the first discriminant function, since
the values for the first cultivar are between -6 and -1, while the values for cultivar 3 are between 2 and 6, and so
there is no overlap in values.

However, the separation achieved by the linear discriminant function on the training set may be an overestimate.
To get a more accurate idea of how well the first discriminant function separates the groups, we would need to see
a stacked histogram of the values for the three cultivars using some unseen “test set”, that is, using a set of data
that was not used to calculate the linear discriminant function.

We see that the first discriminant function separates cultivars 1 and 3 very well, but does not separate cultivars 1
and 2, or cultivars 2 and 3, so well.

We therefore investigate whether the second discriminant function separates those cultivars, by making a stacked
histogram of the second discriminant function’s values:

> ldahist(data = wine.lda.values$x[,2], g=wine$V1)

36 Chapter 2. Using R for Multivariate Analysis

A Little Book of R For Multivariate Analysis, Release 0.1

We see that the second discriminant function separates cultivars 1 and 2 quite well, although there is a little overlap
in their values. Furthermore, the second discriminant function also separates cultivars 2 and 3 quite well, although
again there is a little overlap in their values so it is not perfect.

Thus, we see that two discriminant functions are necessary to separate the cultivars, as was discussed above (see
the discussion of percentage separation above).

2.8.4 Scatterplots of the Discriminant Functions

We can obtain a scatterplot of the best two discriminant functions, with the data points labelled by cultivar, by
typing:

> plot(wine.lda.values$x[,1],wine.lda.values$x[,2]) # make a scatterplot
> text(wine.lda.values$x[,1],wine.lda.values$x[,2],wine$V1,cex=0.7,pos=4,col="red") # add labels

2.8. Linear Discriminant Analysis 37

A Little Book of R For Multivariate Analysis, Release 0.1

From the scatterplot of the first two discriminant functions, we can see that the wines from the three cultivars are
well separated in the scatterplot. The first discriminant function (x-axis) separates cultivars 1 and 3 very well, but
doesn’t not perfectly separate cultivars 1 and 3, or cultivars 2 and 3.

The second discriminant function (y-axis) achieves a fairly good separation of cultivars 1 and 3, and cultivars 2
and 3, although it is not totally perfect.

To achieve a very good separation of the three cultivars, it would be best to use both the first and second dis-
criminant functions together, since the first discriminant function can separate cultivars 1 and 3 very well, and the
second discriminant function can separate cultivars 1 and 2, and cultivars 2 and 3, reasonably well.

2.8.5 Allocation Rules and Misclassification Rate

We can calculate the mean values of the discriminant functions for each of the three cultivars using the “print-
MeanAndSdByGroup()” function (see above):

> printMeanAndSdByGroup(wine.lda.values$x,wine[1])
[1] "Means:"

V1 LD1 LD2
1 1 -3.42248851 1.691674
2 2 -0.07972623 -2.472656
3 3 4.32473717 1.578120

We find that the mean value of the first discriminant function is -3.42248851 for cultivar 1, -0.07972623 for

38 Chapter 2. Using R for Multivariate Analysis

A Little Book of R For Multivariate Analysis, Release 0.1

cultivar 2, and 4.32473717 for cultivar 3. The mid-way point between the mean values for cultivars 1 and 2 is
(-3.42248851-0.07972623)/2=-1.751107, and the mid-way point between the mean values for cultivars 2 and 3 is
(-0.07972623+4.32473717)/2 = 2.122505.

Therefore, we can use the following allocation rule:

• if the first discriminant function is <= -1.751107, predict the sample to be from cultivar 1

• if the first discriminant function is > -1.751107 and <= 2.122505, predict the sample to be from cultivar 2

• if the first discriminant function is > 2.122505, predict the sample to be from cultivar 3

We can examine the accuracy of this allocation rule by using the “calcAllocationRuleAccuracy()” function below:

> calcAllocationRuleAccuracy <- function(ldavalue, groupvariable, cutoffpoints)
{

find out how many values the group variable can take
groupvariable2 <- as.factor(groupvariable[[1]])
levels <- levels(groupvariable2)
numlevels <- length(levels)
calculate the number of true positives and false negatives for each group
numlevels <- length(levels)
for (i in 1:numlevels)
{

leveli <- levels[i]
levelidata <- ldavalue[groupvariable==leveli]
see how many of the samples from this group are classified in each group
for (j in 1:numlevels)
{

levelj <- levels[j]
if (j == 1)
{

cutoff1 <- cutoffpoints[1]
cutoff2 <- "NA"
results <- summary(levelidata <= cutoff1)

}
else if (j == numlevels)
{

cutoff1 <- cutoffpoints[(numlevels-1)]
cutoff2 <- "NA"
results <- summary(levelidata > cutoff1)

}
else
{

cutoff1 <- cutoffpoints[(j-1)]
cutoff2 <- cutoffpoints[(j)]
results <- summary(levelidata > cutoff1 & levelidata <= cutoff2)

}
trues <- results["TRUE"]
trues <- trues[[1]]
print(paste("Number of samples of group",leveli,"classified as group",levelj," : ",

trues,"(cutoffs:",cutoff1,",",cutoff2,")"))
}

}
}

For example, to calculate the accuracy for the wine data based on the allocation rule for the first discriminant
function, we type:

> calcAllocationRuleAccuracy(wine.lda.values$x[,1], wine[1], c(-1.751107, 2.122505))
[1] "Number of samples of group 1 classified as group 1 : 56 (cutoffs: -1.751107 , NA)"
[1] "Number of samples of group 1 classified as group 2 : 3 (cutoffs: -1.751107 , 2.122505)"
[1] "Number of samples of group 1 classified as group 3 : NA (cutoffs: 2.122505 , NA)"
[1] "Number of samples of group 2 classified as group 1 : 5 (cutoffs: -1.751107 , NA)"
[1] "Number of samples of group 2 classified as group 2 : 65 (cutoffs: -1.751107 , 2.122505)"

2.8. Linear Discriminant Analysis 39

A Little Book of R For Multivariate Analysis, Release 0.1

[1] "Number of samples of group 2 classified as group 3 : 1 (cutoffs: 2.122505 , NA)"
[1] "Number of samples of group 3 classified as group 1 : NA (cutoffs: -1.751107 , NA)"
[1] "Number of samples of group 3 classified as group 2 : NA (cutoffs: -1.751107 , 2.122505)"
[1] "Number of samples of group 3 classified as group 3 : 48 (cutoffs: 2.122505 , NA)"

This can be displayed in a “confusion matrix”:

Allocated to group 1 Allocated to group 2 Allocated to group 3
Is group 1 56 3 0
Is group 2 5 65 1
Is group 3 0 0 48

There are 3+5+1=9 wine samples that are misclassified, out of (56+3+5+65+1+48=) 178 wine samples: 3 samples
from cultivar 1 are predicted to be from cultivar 2, 5 samples from cultivar 2 are predicted to be from cultivar
1, and 1 sample from cultivar 2 is predicted to be from cultivar 3. Therefore, the misclassification rate is 9/178,
or 5.1%. The misclassification rate is quite low, and therefore the accuracy of the allocation rule appears to be
relatively high.

However, this is probably an underestimate of the misclassification rate, as the allocation rule was based on this
data (this is the “training set”). If we calculated the misclassification rate for a separate “test set” consisting of data
other than that used to make the allocation rule, we would probably get a higher estimate of the misclassification
rate.

2.9 Links and Further Reading

Here are some links for further reading.

For a more in-depth introduction to R, a good online tutorial is available on the “Kickstarting R” website, cran.r-
project.org/doc/contrib/Lemon-kickstart.

There is another nice (slightly more in-depth) tutorial to R available on the “Introduction to R” website, cran.r-
project.org/doc/manuals/R-intro.html.

To learn about multivariate analysis, I would highly recommend the book “Multivariate analysis” (product code
M249/03) by the Open University, available from the Open University Shop.

There is a book available in the “Use R!” series on using R for multivariate analyses, An Introduction to Applied
Multivariate Analysis with R by Everitt and Hothorn.

2.10 Acknowledgements

Many of the examples in this booklet are inspired by examples in the excellent Open University book, “Multivari-
ate Analysis” (product code M249/03), available from the Open University Shop.

I am grateful to the UCI Machine Learning Repository, http://archive.ics.uci.edu/ml, for making data sets available
which I have used in the examples in this booklet.

Thank you to the following users for very helpful comments: to Rich O’Hara and Patrick Hausmann for pointing
out that sd(<data.frame>) and mean(<data.frame>) is deprecated; to Arnau Serra-Cayuela for pointing out a typo
in the LDA section; to John Christie for suggesting a more compact form for my printMeanAndSdByGroup()
function, and to Rama Ramakrishnan for suggesting a more compact form for my mosthighlycorrelated() function.

2.11 Contact

I will be grateful if you will send me (Avril Coghlan) corrections or suggestions for improvements to my email
address alc@sanger.ac.uk

40 Chapter 2. Using R for Multivariate Analysis

http://cran.r-project.org/doc/contrib/Lemon-kickstart/
http://cran.r-project.org/doc/contrib/Lemon-kickstart/
http://cran.r-project.org/doc/manuals/R-intro.html
http://cran.r-project.org/doc/manuals/R-intro.html
http://www.ouw.co.uk/store/
http://www.springer.com/statistics/statistical+theory+and+methods/book/978-1-4419-9649-7
http://www.springer.com/statistics/statistical+theory+and+methods/book/978-1-4419-9649-7
http://www.ouw.co.uk/store/
http://archive.ics.uci.edu/ml
http://www.sanger.ac.uk/research/projects/parasitegenomics/
mailto:alc@sanger.ac.uk

A Little Book of R For Multivariate Analysis, Release 0.1

2.12 License

The content in this book is licensed under a Creative Commons Attribution 3.0 License.

2.12. License 41

http://creativecommons.org/licenses/by/3.0/

A Little Book of R For Multivariate Analysis, Release 0.1

42 Chapter 2. Using R for Multivariate Analysis

CHAPTER 3

Acknowledgements

Thank you to Noel O’Boyle for helping in using Sphinx, http://sphinx.pocoo.org, to create this document, and
github, https://github.com/, to store different versions of the document as I was writing it, and readthedocs,
http://readthedocs.org/, to build and distribute this document.

43

http://sphinx.pocoo.org
https://github.com/
http://readthedocs.org/

A Little Book of R For Multivariate Analysis, Release 0.1

44 Chapter 3. Acknowledgements

CHAPTER 4

Contact

I will be very grateful if you will send me (Avril Coghlan) corrections or suggestions for improvements to my
email address alc@sanger.ac.uk

45

http://www.sanger.ac.uk/research/projects/parasitegenomics/
mailto:alc@sanger.ac.uk

A Little Book of R For Multivariate Analysis, Release 0.1

46 Chapter 4. Contact

CHAPTER 5

License

The content in this book is licensed under a Creative Commons Attribution 3.0 License.

47

http://creativecommons.org/licenses/by/3.0/

	How to install R
	Introduction to R
	Installing R
	Installing R packages
	Running R
	A brief introduction to R
	Links and Further Reading
	Acknowledgements
	Contact
	License

	Using R for Multivariate Analysis
	Multivariate Analysis
	Reading Multivariate Analysis Data into R
	Plotting Multivariate Data
	Calculating Summary Statistics for Multivariate Data
	Calculating Correlations for Multivariate Data
	Standardising Variables
	Principal Component Analysis
	Linear Discriminant Analysis
	Links and Further Reading
	Acknowledgements
	Contact
	License

	Acknowledgements
	Contact
	License

