
Latin squares, sample size, and power

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 705: Data Analysis II

1 / 15

28.4 Latin squares

Latin squares designs use two blocking variables (assumed not to
interact!), however every combination of blocking levels only gets
one treatment.

Must have r levels of

blocking variable 1
blocking variable 2

treatment

.

A common example: In industrial settings, productivity (e.g.
number of units produced) depends on the day of the week,
machine used, operator, et cetera. These are all useful blocking
variables.

If there are 4 shifts, then can only block on 4 days of the week in a
Latin squares design!

2 / 15

Example from manufacturing

Each of the 4 days has all 4 treatments on different shifts, every
shift has all 4 treatments on different days. For example, say
i = 1, 2, 3, 4 denotes 4 different brands of injection molded plastic,
the treatment.

Day of the week
Mon Tue Wed Thu
j = 1 j = 2 j = 3 j = 4

Shift 1 k = 1 i = 3 i = 4 i = 1 i = 2
Shift 2 k = 2 i = 1 i = 2 i = 4 i = 3
Shift 3 k = 3 i = 2 i = 1 i = 3 i = 4
Shift 4 k = 4 i = 4 i = 3 i = 2 i = 1

Whole experiment over in one week!

3 / 15

Gives nT = 16 observations

Day of the week
Mon Tue Wed Thu
j = 1 j = 2 j = 3 j = 4

Shift 1 k = 1 Y311 Y421 Y131 Y241

Shift 2 k = 2 Y112 Y222 Y432 Y341

Shift 3 k = 3 Y213 Y123 Y333 Y443

Shift 4 k = 4 Y414 Y324 Y234 Y144

In a complete blocked design, we would instead need all four
treatments from each level of shift and day of the week, i.e.
nT = 64 observations (four in each of the 16 cells above instead of
one).

If only one type of plastic can be run for a given shift and day, the
experiment would require 4 weeks to complete instead of one.

4 / 15

Model

Yijk = µ+ αi︸︷︷︸
treatment

+βj + γk︸ ︷︷ ︸
blocks

+εijk ,

a three-way additive ANOVA model. We must assume that the
treatment and blocks don’t interact.

Model is fit via β̂ = (X′X)−1XY as usual.

5 / 15

Background music (pp. 1187–1188)

r = 5 types of music (A, B, C, D, E): slow, instrumental, and
vocal; medium instrumental and vocal; fast, instrumental and
vocal; medium, instrumental only; and fast, instrumental only. Yijk

is day’s productivity measure for a crew of bank tellers at a
particular bank on ith week, day j , treatment k , where all of these
indices run from 1 to 5. The results are on p. 1187.

data music;

input product week day treatment @@;

datalines;

18 1 1 4 13 2 1 3 7 3 1 1 17 4 1 5 21 5 1 2

17 1 2 3 34 2 2 2 29 3 2 4 13 4 2 1 26 5 2 5

14 1 3 1 21 2 3 5 32 3 3 2 24 4 3 3 26 5 3 4

21 1 4 2 16 2 4 1 27 3 4 5 31 4 4 4 31 5 4 3

17 1 5 5 15 2 5 4 13 3 5 3 25 4 5 2 7 5 5 1

;

* gives ANOVA table on p. 1191 (in two pieces, overall ANOVA and Type III SS);

* create lines plot to duplicate results towards bottom p. 1192;

proc glm plots=all;

class week day treatment;

model product= week day treatment;

lsmeans treatment / pdiff adjust=tukey alpha=0.05 cl;

6 / 15

Advantages

Saves money!!! Every block gets each treatment only once;
not as many experimental units needed: r2 vs. r3.

Good for preliminary studies. By assuming additivity we get
simple model interpretation and quick, crude estimates of
treatment effects.

Fractional factorial designs take this idea to an extreme.

7 / 15

Disadvantages

Number of levels of both blocking variables needs to be the
same & must equal the number of treatment levels. This can
be generalized though.

Additivity not always reasonable & this is hard to test with
incomplete block designs. Unlike RCB designs where all that
was missing is replication (to estimate an interaction), with an
incomplete block design we are missing necessary information.

r = 2⇒ dfE = 0 and r = 3⇒ dfE = (r − 1)(r − 2) = 2.
Really need r ≥ 4 to proceed.

8 / 15

Generalizations

More blocking variables lead to Graeco-Latin squares design.

Random block effects.

Factorial treatment structure.

Adding levels to one or more blocking variables. No longer a
square but analysis proceeds similarly.

Day of the week
Mon Tue Wed Thu Fri
j = 1 j = 2 j = 3 j = 4 j = 5

Shift 1 k = 1 i = 3 i = 4 i = 1 i = 2 i = 3
Shift 2 k = 2 i = 1 i = 2 i = 4 i = 3 i = 2
Shift 3 k = 3 i = 2 i = 1 i = 3 i = 4 i = 1
Shift 4 k = 4 i = 4 i = 3 i = 2 i = 1 i = 4

Replications.

Latin square crossover designs.

9 / 15

16.10 Sample size and power for one-way ANOVA

Let Yij = µi + εij where i = 1, . . . , r and j = 1, . . . , n. A simple,
balanced one-way model with nT = rn.

Want to test H0 : µ1 = · · · = µr . Power of the test is
1− β = P(reject H0|H0 not true).

As statisticians, we are often asked one of two related questions:

Given these values of µ1, . . . , µr , σ, α, and nT = nr , what is
my power 1− β?

Given these values of µ1, . . . , µr , σ, α, what sample sizes n do
I need within each group to achieve a given power 1− β?

Typically 1− β = 0.8, 0.9, or 0.95.

Sometimes you will be given δ = max{µi}−min{µi}
σ instead of

µ1, . . . , µr and σ, a minimally detectable standardized difference.
In this case, just fix σ = 1.

10 / 15

Some notation

Define φ = 1
σ

√
n
r

∑r
i=1(µi − µ̄•)2 where µ̄• = 1

r

∑n
i=1 µi . Note

that φ ≥ 0 and φ = 0⇔ H0true.

φ is measure of “how different” the µi ’s are from each other.

We reject H0 if F ∗ > F (1− α; r − 1, nT − r) where
F ∗ = MSTR/MSE . If φ > 0 is true, i.e. Ha is true, then

F ∗ ∼ F (r − 1, nT − r , φ),

a non-central F distribution with non-centrality parameter φ. This
is the distribution that is used to compute power and/or sample
size calculations.

11 / 15

Russ Lenth’s JAVA Applets

The best free power and sample calculators I’ve found are on the
web at http://homepage.stat.uiowa.edu/∼rlenth/Power/.
My browser doesn’t run these directly due to security settings, so I
downloaded them and run them directly off of my desktop.

Let σµ =
√

1
r−1

∑r
i=1(µi − µ̄•)2 be the standard deviation of the r

cell-means. This is what goes into Russ Lenth’s one-way ANOVA
Applet.

Consider textbook problem 16.27 on p. 728. Here, µ1 = 22,
µ2 = 28, µ3 = 22, and σ = 1.6. In R we find σµ = 3.464. In Russ
Lenth’s one-way ANOVA JAVA applet plug 3.464 for
SD[treatment], 1.6 for SD[Within], 3 for levels[treatment],
12 for n[Within], and 0.01 for Significance level. This yields
Power[treatment] equal to 1.00.

12 / 15

Minimum distance to detect

Your book discusses powering a study to detect
∆ = max{µi} −min{µi}, the smallest difference one needs to
detect (reject H0) with a prespecified power 1− β and significance
level α. If this is actually the largest difference among the means,
then the smallest the standard deviation occurs when two of the
means are at the maximum and the minimum, and the remaining
means are at µ̄•. Then σµ =

√
2(∆/2)2/(r − 1). This provides a

conservative sample size n to use. If the r − 2 remaining means are
actually different than µ̄• the power will be larger than using
σµ =

√
2(∆/2)2/(r − 1).

For textbook problem 16.29, r = 5, ∆ = 10, 15, 20, 30, β = 0.05,
α = 0.01 and σ = 10. We compute σµ = 3.536 for ∆ = 10 and
σµ = 5.303 for ∆ = 15. Using Russ Lenth’s software, we require
n = 50 for ∆ = 10 and n = 23 for ∆ = 15.

13 / 15

More designs

On p. 862 balanced two-way power calculations are discussed in
Sec. 19.11. On p. 909 R.C.B. designs are discussed in Sec. 21.9.
On p. 1021 multi-factor studies are discussed in Sec. 24.7. On p.
1193 Latin square designs are discussed in Sec. 28.6. All of these
use non-central F distributions to compute power.

Russ Lenth’s power and sample-size Applets can handle all of
these. His approach is slightly different than your book’s, and
requires the use of averaged effects.

For example, in a R.C.B. design define

σρ =
√

1
nb−1

∑nb
i=1(µ̄i• − µ̄••)2 and στ =

√
1

r−1
∑r

j=1(µ̄•j − µ̄••)2,

the standard deviations of the block and treatment effects about
an overall grand mean. These are used in the Randomized

complete-block design Applet.

14 / 15

Sample size in SAS

The power proc can help you calculate power and sample size in
SAS. The following code finds the sample size n necessary to get
at least 80% power for example on pp. 717–718.

proc power ;

onewayanova

groupmeans = 12.5 | 13 | 18 | 21

stddev = 3.5

alpha = 0.05

npergroup = .

power = .8;

run;

15 / 15

