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ANalysis of COVAriance

Add a continuous predictor to an ANOVA model = ANCOVA.

Mix continuous and discrete predictors.

Useful for testing treatment effects in presence of continuous
predictor(s) that may explain much variability.

Continuous predictor may be concomitant (supplemental,
uncontrolled) or controlled (e.g. drug dose in mg).

Concomitant variable should be unaffected by treatments; i.e.
they should be “independent.” They are often measured
before study takes place.

Book examples (p. 919): prestudy attitude, age, SES,
aptitude, baseline outcomes (e.g. seizure rate).
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Simplest ANCOVA model

One treatment and one covariate that enters model linearly. Have
i = 1, . . . , r treatment levels and j = 1, . . . , ni observations within
level i . Model is

Yij = µ+ τi + γxij + εij .

Require τr = 0 for identifiability.

This gives r parallel regression lines, one for each treatment level
(a picture helps). This implies, e.g., the expected mean difference
between group i1 and group i2, both having covariate value x , is

µ+ τi1 + γx − (µ+ τi2 + γx) = τi1 − τi2 .

Can get from estimate or lsmestimate.

Your textbook recommends using the centered predictor
x∗ij = xij − x̄ij instead of xij ; Tim finds this to be unnecessary.
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Linear model formulation

Say r = 3 and n1 = n3 = 2 and n2 = 1. Full model is
Y11

Y12

Y21

Y31

Y32

 =


1 1 0 x11
1 1 0 x12
1 0 1 x21
1 0 0 x31
1 0 0 x32



µ
τ1
τ2
γ

+


ε11
ε12
ε21
ε31
ε32

 ,
or Y = Xβ + ε.

Here, β̂ = (X′X)−1X′Y, SSE (F ) = ||Y − Xβ̂||2,
dfE (F ) = 5− 4 = 1, and MSE (F ) = SSE (F )/dfE (F ).
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Test of H0 : τ1 = τ2 = τ3 = 0

Reduced model is
Y11

Y12

Y21

Y31

Y32

 =


1 x11
1 x12
1 x21
1 x31
1 x32


[
µ
γ

]
+


ε11
ε12
ε21
ε31
ε32

 ,
or Y = XRβR + εR .

Here, β̂R = (X′RXR)−1X′RY, SSE (R) = ||Y − XR β̂R ||2,
dfE (R) = 5− 2 = 3, and MSE (R) = SSE (R)/dfE (R). Define

F ∗ =
{SSE (R)− SSE (F )}/{dfE (R)− dfE (F )}

MSE (F )
.

Then if H0 : τ1 = τ2 = τ3 = 0 is true,

F ∗ ∼ F (dfE (R)− dfE (F ), dfE (F )).

Use Type III test for whatever the treatment is called.
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CI for τ2 − τ1, for example

τ2 − τ1 = [ 0 −1 1 0 ]


µ
τ1
τ2
γ

 = c′β.

Point estimate is τ̂2 − τ̂1 = c′β̂ = c′(X′X)−1X′Y.

s2{τ̂1 − τ̂2} = MSEc′(X′X)−1c.

τ̂2 − τ̂1
s{τ̂2 − τ̂1}

∼ t(dfE ).

So 95% CI is

τ̂2 − τ̂1 ± t(0.975; dfE )
√

MSEc′(X′X)−1c.

Can get via estimate, lsmeans, or lsmestimate command. I’ll
give details in class. Note that the latter two commands evaluate
the means µi at the overall mean x̄•• = 1

nT

∑r
i=1

∑ni
j=1 xij . The

continuous part of the model cancels.
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Estimating a mean response

If you want to estimate mean response given x and i , need to
estimate µ+ τi + γx .

This is a simple linear combination of model parameters, and easily
obtained via estimate. For example, if r = 3, estimate "group

2, x=5" intercept 1 group 0 1 0 gamma 5;
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22.3 Cracker sales

CRD where nT = 15 stores were randomly assigned one of
three “promotion” treatment levels:

1 i = 1 sampling of product by customers in store and regular
shelf space,

2 i = 2 additional shelf space,
3 i = 3 special display shelves at ends of aisle in addition to

regular shelf space.

Yij is number of cases sold during the promotional period.

xij is number of cases sold during the previous
(non-promotional) period.

Model fit in SAS is Yij = µ+ τi + γxij + εij where τ3 = 0.
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Cracker sales in SAS

data cracker;

input treatment cases preceding @@;

datalines;

1 38 21 1 39 26 1 36 22 1 45 28 1 33 19

2 43 34 2 38 26 2 38 29 2 27 18 2 34 25

3 24 23 3 32 29 3 31 30 3 21 16 3 28 29

;

* Figure, p. 927;

proc sgscatter;

plot cases*preceding / group=treatment loess;

run;

* Type III p-value for treatment is <0.0001 ;

* Analyses similar to those on pp. 930-932 ;

* Note all analyses conditional on preceding;

proc glimmix;

class treatment;

model cases=treatment preceding / solution;

lsmestimate treatment "mu1-mu2" 1 -1 0,

"mu1-mu3" 1 0 -1,

"mu2-mu3" 0 1 -1 / adjust=t cl alpha=0.05;

lsmeans treatment; * gives expected cases for each treatment at average value of preceding;

run;
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Checking for non-constant slopes

The assumption of parallel slopes should be checked, via plots
and/or Type III tests. Again, say r = 3. A model that allows for
slopes to change with treatment is

Yij = [µ+ τj ] + [γ + γj ]xij + εij ,

where τr = γr = 0. This is fit by SAS using zero-one dummy
variables

Yij = µ+τ1I{i = 1}+τ2I{i = 2}+γxij+γ1xij I{i = 1}+γ2xij I{i = 2}+εij .
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Checking for non-constant slopes

Have r = 3 different lines. Let µ(i , x) be the mean for level i and
covariate x .

µ(1, x) = (µ+ τ1) + (γ + γ1)xij

µ(2, x) = (µ+ τ2) + (γ + γ2)xij

µ(3, x) = µ+ γxij

This is fit via class treatment; model response=treatment

covar treatment*covar; γ1 and γ2 provide offsets to the slope
of level i = 3. A test for equal slopes is simply H0 : γ1 = γ2 = 0,
available as a Type III nested linear hypothesis test.
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Crackers

* test for parallel slopes ;

* pp. 932-933, p-value=0.40;

proc glimmix; * can also use proc glm;

class treatment;

model cases=treatment|preceding;

run;
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Generalizations

Basic model is Yij = µ+ τi + γxij + εij .

Response mean is linear function of x given i .
i = 1, . . . , r levels of one treatment modeled.
τi1 − τi2 gives mean treatment differences for a given level of x .
Similar, but simpler than a RCB with x chopped up into
categories like age group. Just treat age as continuous.
Increased efficiency if age really is linear.

Nonlinear mean, e.g. Yij = µ+ τi + γ1xij + γ2x2
ij + εij .

Mean response is parallel curves in x , one for each i .
Might be necessary if eij vs Ŷij shows a parabolic (or otherwise
nonlinear) shape.
τi1 − τi2 again gives mean treatment differences for a given
level of x .

13 / 16



Generalizations

More factors, e.g. Yijk = µ+ αi + βj + (αβ)ij + γxijk + εijk .
Here i = 1, . . . , a levels of A, j = 1, . . . , b levels of B, and
k = 1, . . . , nij replicates in A = i and B = j .
If this fits, should see approximately parallel curves in
scatterplot stratified by (i , j).
If H0 : (αβ)ij = 0 then analysis simplifies; can look at
differences in main effects. Pairwise difference, e.g. β3 − β1 do
not change with either i or x .

More concomitant variables, e.g.
Yijk = µ+ τi + γ1xi1k + γ2xi2k + εijk where xijk is variable j on
kth subject with treatment i .

Mean response is parallel surfaces in (x1, x2).
Here we are assuming parallel planes, one for each level of i .
For example when r = 3 there are three parallel mean planes:

µ(1, x1, x2) = µ+ τ1 + γ1x1 + γ2x2

µ(2, x1, x2) = µ+ τ2 + γ1x1 + γ2x2

µ(3, x1, x2) = µ+ γ1x1 + γ2x2
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22.4 Salable flowers

Factor A is flower variety: i = 1 LP, i = 2 WB.

Factor B is moisture level: j = 1 low, j = 2 high.

nT = 24 plots total; nij = 6 replications of each pairing (i , j).

Yijk is number of flowers horticulturist can sell.

xijk is plot size; expect γ > 0.

Model is Yijk = µ+ αi + βj + (αβ)ij + γxijk + εijk .

CRD with factorial treatment structure.
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Salable flowers in SAS

data flowers;

input yield plotsize variety moisture @@;

group=’11’;

if variety=1 and moisture=2 then group=’12’;

if variety=2 and moisture=1 then group=’21’;

if variety=2 and moisture=2 then group=’22’;

datalines;

98 15 1 1 60 4 1 1 77 7 1 1 80 9 1 1 95 14 1 1 64 5 1 1

55 4 2 1 60 5 2 1 75 8 2 1 65 7 2 1 87 13 2 1 78 11 2 1

71 10 1 2 80 12 1 2 86 14 1 2 82 13 1 2 46 2 1 2 55 3 1 2

76 11 2 2 68 10 2 2 43 2 2 2 47 3 2 2 62 7 2 2 70 9 2 2

;

* parallel lines indicates no interaction between plotsize and treatments;

proc sgscatter;

plot yield*plotsize / group=group loess;

run;

* p-value for treatment interaction is 0.13 so drop it

* and focus on main effects using lsmestimate;

proc glm;

class variety moisture;

model yield=plotsize variety|moisture;

run;

* change to alpha=0.025 below to do Bonferroni on p. 937;

proc glimmix;

class variety moisture;

model yield=plotsize variety moisture;

lsmestimate variety "alpha1-alpha2" 1 -1 / cl alpha=0.05;

lsmestimate moisture "beta1-beta2" 1 -1 / cl alpha=0.05;

run;
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