STAT 705 Chapters 20 & 21: Randomized complete block designs

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 705: Data Analysis II

Subjects placed into homogeneous groups, called *blocks*. All treatment combinations assigned randomly to subjects within blocks.

Example (p. 895): executives exposed to one of three methods (treatment, i = 1 utility method, i = 2 worry method, i = 3comparison method) of quantifying maximum risk premium they would be willing to pay to avoid uncertainty in a business decision. Response is "degree of confidence" in the method on a scale from 0 (no confidence) to 20 (complete confidence). It is thought that confidence is related to age, so the subjects are blocked according to age (j = 1, 2, 3, 4, 5 from oldest to youngest). $n_T = 15$ subjects are recruited, with three subjects in each of the 5 age categories. Within each age category, the three subjects are randomly given one of the three treatments.

- With thoughtful blocking, can provide more precise results than completely randomized design.
- There is only one replication for each pairing of treatment and block; need to assume no interaction between treatments and blocks to obtain estimate of σ².
- The blocking variable is observational, not experimental. Cannot infer causal relationship. Not a problem though...usually only care about treatments.

One observation per block/treatment combination gives $n_T = ab$. Need to fit model IV to get SSE > 0

$$Y_{ij} = \mu + \alpha_i + \beta_j + \epsilon_{ij}.$$

Estimates obtained via LS as usual,

$$Q(\alpha,\beta) = \sum_{i=1}^{a} \sum_{j=1}^{b} (Y_{ij} - [\mu + \alpha_i + \beta_j])^2$$

minimized subject to $\alpha_a = \beta_b = 0$.

Source	SS	df	MS	F	p-value
A	$SSA = b \sum_{i=1}^{a} (\bar{Y}_{i \bullet} - \bar{Y}_{\bullet \bullet})^2$	a - 1	$\frac{SSA}{a-1}$ $\frac{SSB}{b-1}$	MSA MSE	<i>p</i> 1
В	$SSB = a \sum_{j=1}^{b} (ar{Y}_{ullet j} - ar{Y}_{ullet ullet})^2$	b-1	$\frac{SSB}{b-1}$	MSA MSE MSB MSE	<i>p</i> ₂
Error	$SSE = \sum_{i=1}^{a} \sum_{j=1}^{b} (Y_{ij} - \bar{Y}_{i\bullet} - \bar{Y}_{\bullet j} + \bar{Y}_{\bullet \bullet})^2$	(a - 1)(b - 1)	$\frac{SSE}{(a-1)(b-1)}$		
Total	$SSE = \sum_{i=1}^{a} \sum_{j=1}^{b} (Y_{ij} - \bar{Y}_{ullet ullet})^2$	ab-1			

Here, $p_1 = P\{F(a-1, (a-1)(b-1)) > \frac{MSA}{MSE}\}$ tests $H_0: \alpha_1 = \cdots = \alpha_a = 0$ (no blocking effect) and $p_2 = P\{F(b-1, (a-1)(b-1)) > \frac{MSB}{MSE}\}$ tests $H_0: \beta_1 = \cdots = \beta_b = 0$ (no treatment effect). These appear in SAS as Type III tests.

If reject $H_0: \beta_j = 0$, then obtain inferences in treatment effects as usual, e.g. lsmeans B / pdiff adjust=tukey cl;

- Standard SAS diagnostic panel: e_{ij} vs. \hat{Y}_{ij} , normal probability plot of the $\{e_{ij}\}$, etc. Can also look at e_{ij} vs. either *i* or *j*, should show constant variance within blocks and treatments.
- 3 Tukey's test for additivity.

Tukey's test for additivity

Reduced model is additive $Y_{ij} = \mu + \alpha_i + \beta_j + \epsilon_{ij}$. Full model is

$$Y_{ij} = \mu + \alpha_i + \beta_j + D\alpha_i\beta_j + \epsilon_{ij}.$$

This is more restrictive than using a general interaction $(\alpha\beta)_{ij}$, leaves df to estimate error.

$$\hat{D} = \frac{\sum_{i=1}^{a} \sum_{j=1}^{b} (\bar{Y}_{i\bullet} - \bar{Y}_{\bullet\bullet}) (\bar{Y}_{\bullet j} - \bar{Y}_{\bullet\bullet})}{\sum_{i=1}^{a} (\bar{Y}_{i\bullet} - \bar{Y}_{\bullet\bullet})^2 \sum_{j=1}^{b} (\bar{Y}_{\bullet j} - \bar{Y}_{\bullet\bullet})^2}.$$

$$SSAB^* = \sum_{i=1}^{a} \sum_{j=1}^{b} \hat{D}^2 (\bar{Y}_{i\bullet} - \bar{Y}_{\bullet\bullet})^2 (\bar{Y}_{\bullet j} - \bar{Y}_{\bullet\bullet})^2,$$

and SSTO=SSA+SSB+SSAB*+SSE*.

$$F*=rac{SSAB^*}{SSE^*/(ab-a-b)}\sim F(1,ab-a-b),$$

if $H_0: D = 0$ is true.

let \hat{Y}_{ij} be fitted values from additive model. Fit ANCOVA model

$$Y_{ij} = \mu + \alpha_i + \beta_j + \gamma \hat{Y}_{ij}^2 + \epsilon_{ij}.$$

Test of $H_0: \gamma = 0$ is same as test of $H_0: D = 0$, the F-statistics are the same and the p-values are the same.

```
data conf;
input rating age$ method$ @0;
datalines:
  1 1 1 5 1 2 8 1
                          3
  2 2 1 8 2 2 14 2 3
  7 3 1 9 3 2 16 3 3
  6 4 1 13 4 2 18 4 3
 12 5 1 14 5 2 17 5 3
proc format;
value $ac '1'='youngest' '2'='age grp II' '3'='age grp III' 4='age grp IV' 5='oldest';
value $mc '1'='utility' '2'='worry' 3='compare':
* first obtain interaction plot by fitting model V;
* trajectories look reasonably parallel;
proc glm data=conf plots=all;
class age method;
model rating=age|method:
run:
```

```
* fit additive model;
proc glm data=conf plots=all;
class age method;
format age %ac. method %mc.;
model rating=age method / solution;
output out=tukeytest p=p; * p=yhat values for Tukey's test;
lsmeans method / pdiff adjust=tukey alpha=0.05 cl;
run;
* Tukey test for additivity;
* p-value=0.79 so model IV is okay;
proc glm data=tukeytest;
title 'Test for additivity is Type III p*p p-value';
class age method;
model rating=age method p*p;
```

run;