STAT 705 Chapter 17: Analyzing factor level means

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 705: Data Analysis II

Inference for group means

Once the model is fit, we are typically interested in inference regarding group means μ_1, \ldots, μ_r .

In particular, if we reject the overall F-test of $H_0: \mu_1 = \cdots = \mu_r$, we often want to know which *pairs* of means are significantly different. That is, we look at CIs for $\mu_i - \mu_j$ and tests of $H_0: \mu_i = \mu_j$.

If one looks at all possible pairs, the number of comparisons is $\binom{r}{2}=\frac{r(r-1)}{2}.$ For r=3, this entails looking at $\mu_1-\mu_2$, $\mu_1-\mu_3$, and $\mu_2-\mu_3$.

Alternatively, one might be interested in differences such as $\mu_1 - \frac{1}{2}(\mu_2 + \mu_3)$. Here level 1 is placebo and levels 2 and 3 are two different doses of the same allergy medicine.

17.3 Comparing factor levels

Model is $Y_{ij} = \mu_i + \epsilon_{ij}$, where $\epsilon_{ij} \stackrel{iid}{\sim} N(0, \sigma^2)$.

We have mean parameters μ_1, \ldots, μ_r . Most functions of interest are linear combinations of means:

$$L=L(\mathbf{c})=\sum_{i=1}^r c_i\mu_i,$$

where $\mu_i = E\{Y_{ij}\}$. These include

- each mean, e.g. $L = \mu_2$
- differences, e.g. $L = \mu_3 \mu_7$
- general contrasts, e.g. $L = \mu_1 \frac{1}{3}\mu_2 \frac{1}{3}\mu_3 \frac{1}{3}\mu_4$
- general linear forms, e.g. $L = \mu_1 + 2\mu_2 10\mu_3$

A linear combination is called a *contrast* if $\sum_{i=1}^{r} c_i = 0$.

Estimation of L

Since $\bar{Y}_{i\bullet}$ is unbiased estimate of μ_i , $\hat{L} = \sum_{i=1}^r c_i \bar{Y}_{i\bullet}$ is unbiased estimate of L.

Note that $\bar{Y}_{i\bullet} \stackrel{ind.}{\sim} N(\mu_i, \sigma^2/n_i)$. Then

$$\hat{L} = \sum_{i=1}^{r} c_i \bar{Y}_{i\bullet} \sim N \left(\sum_{i=1}^{r} c_i \mu_i, \sigma^2 \sum_{i=1}^{r} \frac{c_i^2}{n_i} \right).$$

The standard error of L is

$$se(\hat{L}) = \sqrt{MSE \sum_{i=1}^{r} \frac{c_i^2}{n_i}}.$$

When the model is true, we have

$$\frac{\hat{L}-L}{se(\hat{L})}\sim t(n_T-r).$$

CI and hypothesis test

Recall $\hat{L} = \sum_{i=1}^{r} c_i \bar{Y}_{i\bullet}$ estimates $L = \sum_{i=1}^{r} c_i \mu_i$ and $se(\hat{L})$ estimates $\sigma(\hat{L})$.

A 95% CI for *L* is $\hat{L} \pm se(\hat{L})t(0.975, n_T - r)$.

To test $H_0: L=L_0$, obtain p-value $P\left\{|t(n_T-r)|>|\frac{\hat{L}-L_0}{se(\hat{L})}|\right\}$.

Both of these can be computed in SAS procedures via test, contrast, or estimate.

Example: CI for μ_8

pp. 737-738.

Take $c_8 = 1$ and $c_i = 0$ for $i \neq 8$.

A $(1 - \alpha)100\%$ CI is

$$ar{Y}_{8ullet} \pm \sqrt{rac{MSE}{n_8}}t(1-rac{lpha}{2},n_T-r).$$

Difference $\mu_1 - \mu_2$

pp. 739-740.

Take $c_1 = 1$, $c_2 = -1$, and $c_i = 0$ for i = 3, ..., r.

Then

$$\frac{\bar{Y}_{1\bullet} - \bar{Y}_{2\bullet} - (\mu_1 - \mu_2)}{\sqrt{\textit{MSE}(\frac{1}{n_1} + \frac{1}{n_2})}} \sim \textit{t}(\textit{n}_T - \textit{r}).$$

To test $H_0: L=0 \Leftrightarrow H_0: \mu_1=\mu_2$, note that if H_0 is true then

$$t^* = rac{ar{Y}_{1ullet} - ar{Y}_{2ullet}}{\sqrt{\mathit{MSE}(rac{1}{n_1} + rac{1}{n_2})}} \sim t(n_T - r).$$

Reject at level α if $|t^*| > t(1 - \frac{\alpha}{2}; n_T - r)$.

Two-sample t-test w/ refined estimate of σ^2 (when r > 2).

Kenton Foods

For Kenton Foods, one contrast of interest is $L = \frac{1}{2}(\mu_1 + \mu_2) - \frac{1}{2}(\mu_3 + \mu_4)$, comparing 3-color and 5-color designs (averaged over cartoons vs. no cartoons).

Does having more color significantly increase sales? By how much?

17.4 Simultaneous inference

If we obtain several 95% CI's for L_1, \ldots, L_g separately, the probability that each L_i will be in its interval *simultaneously* will actually be (typically much) less than 95%:

$$P(L_1 \in I_1, L_2 \in I_2, \dots, L_g \in I_g) \leq 0.95.$$

Question: what would this probability be if the intervals are independent?

Question: what would this probability be if the intervals are perfectly correlated in that $L_i \in I_i \Leftrightarrow L_j \in I_j$ for all $i \neq j$?

Simultaneous inference

Need Cl's for linear combinations L_1, \ldots, L_g such that probability of L_1, \ldots, L_g simultaneously in their respective Cl's is at least $1-\alpha$.

For example, say r=3, $\beta=(\mu_1,\mu_2,\mu_3)$ and want to look at three pairwise differences $L_{12}=\mu_1-\mu_2$, $L_{13}=\mu_1-\mu_3$, $L_{23}=\mu_2-\mu_3$. Want intervals I_{12},I_{13},I_{23} such that

$$P(L_{12} \in I_{12}, L_{13} \in I_{13}, L_{23} \in I_{23}) \ge 1 - \alpha.$$

We'll look at (1) Tukey, (2) Scheffe, and (3) Bonferroni procedures. All three procedures produce confidence intervals that look like

$$\bar{Y}_{i\bullet} - \bar{Y}_{j\bullet} \pm se(\hat{L}_{ij})(stat),$$

where stat is a statistic that depends on the method.

17.5 Tukey intervals

For Tukey,

$$\mathsf{stat} = \frac{1}{\sqrt{2}} q(1 - \alpha; r, n_T - r)$$

where q is the studentized range distribution (p. 746). Table B-9 has these values, but we'll just get them automatically from SAS. There are several examples on pp. 748–752.

- Unequal sample sizes $(n_i \neq n_j \text{ for some } i \neq j)$ gives overall confidence greater than 1α (Tukey-Kramer). Equal sample sizes $n_1 = \cdots = n_r$ gives exact overall confidence of 1α .
- Can be used for data "snooping" or data "dredging" letting data suggest L's of interest.
- Derivation of the studentized range on next slide...

Derivation of Tukey intervals

Assume $n_1 = n_2 = \cdots = n_r = n$, so $n_T = rn$. Let $X_i = \bar{Y}_{i\bullet} - \mu_i$. Let $X_{(i)}$ be the *i*th order statistic.

$$X_1,\ldots,X_r\stackrel{iid}{\sim} N(0,\sigma^2/n).$$

Define

$$Q = \frac{X_{(r)} - X_{(1)}}{\sqrt{MSE/n}} \sim q(r, n_T - r).$$

This is the definition of the studentized range distribution. Then

$$\begin{split} 1-\alpha & = & P\left\{\frac{X_{(r)}-X_{(1)}}{\sqrt{MSE/n}} \leq q(1-\alpha;r,n_T-r)\right\} \\ & = & P\left\{X_{(r)}-X_{(1)} \leq \sqrt{MSE/n} \ q(1-\alpha;r,n_T-r)\right\} \\ & \geq & P\left\{|X_i-X_j| \leq \sqrt{MSE/n} \ q(1-\alpha;r,n_T-r) \text{ for all } i,j\right\} \\ & = & P\left\{\bar{Y}_{i\bullet}-\bar{Y}_{j\bullet}-\operatorname{se}(\hat{L}_{ij})(\operatorname{stat}) \leq \mu_i-\mu_j \leq \bar{Y}_{j\bullet}-\bar{Y}_{i\bullet}+\operatorname{se}(\hat{L}_{ij})(\operatorname{stat}) \text{ for all } i,j\right\}. \end{split}$$

where stat = $\frac{1}{\sqrt{2}}q(1-\alpha;r,n_T-r)$.

Tukey example

```
* Tukey example;

data kenton;
input sales design @@;
datalines;

11 1 17 1 16 1 14 1 15 1 12 2 10 2 15 2 19 2 11 2
23 3 20 3 18 3 17 3 27 4 33 4 22 4 26 4 28 4
;

proc glm data=kenton; class design;
model sales=design;
lsmeans design / pdiff adjust=tukey alpha=0.05 cl lines;
run:
```

The subcommand lines adds a lines plot illustrating which levels are not significantly different.

17.6 Scheffe multiple comparisons

Recall $L(\mathbf{c}) = \sum_{i=1}^{r} c_i \mu_i$. Scheffe's method works for any number of arbitrary contrasts L_1, \ldots, L_g . The *i*th interval I_i among the g simultaneous intervals I_1, \ldots, I_g has endpoints

$$\hat{L}(\mathbf{c}_i) \pm se\{\hat{L}(\mathbf{c}_i)\}\sqrt{(r-1)F(1-lpha;r-1,n_T-r)}.$$

These intervals have the property,

$$P(L_1 \in I_1, L_2 \in I_2, \ldots, L_g \in I_g) \geq 1 - \alpha.$$

Example, pp. 754–755.

Comments on Scheffe

- Works for all possible contrasts, including differences in means.
- Okay for data snooping!
- If only pairwise differences are to be looked at, Tukey is better.
- If $H_0: \mu_1 = \cdots = \mu_r$ is rejected, Scheffe's method guarantees at least one significant contrast out of all possible (p. 755).
- Here, stat = $\sqrt{(r-1)F(1-\alpha;r-1,n_T-r)}$.

17.7 Bonferroni procedure (p. 756)

Recall from STAT 712, if you have events E_1, E_2, \ldots, E_g , where $P(E_i) = \alpha$ for $i = 1, \ldots, g$, then

$$P(E_1^C \cap E_2^C \cap \cdots \cap E_g^C) \ge 1 - g\alpha.$$

We define our events to be $E_i = \{L(\mathbf{c}_i) \neq I_i\}$ and let I_i have endpoints

$$\hat{L}(\mathbf{c}_i) \pm t(1 - \frac{\alpha}{2\sigma}, n_T - r)se\{\hat{L}(\mathbf{c}_i)\}.$$

Then $P(E_i) = \frac{\alpha}{g}$ and

$$P\{L(\mathbf{c}_1) \in I_1, \ldots, L(\mathbf{c}_g) \in I_g\} \geq 1 - g(\frac{\alpha}{g}) = 1 - \alpha.$$

Read this over several times to make sure you understand!

A bit more detail...

Draw a Venn diagram to convince yourself

$$P(\cup_i E_i) \leq \sum_i P(E_i).$$

This implies

$$1-P\left(\cup_{i}E_{i}\right)\geq1-\sum_{i}P(E_{i}).$$

De Morgan implies

$$(\cup_i E_i)^c = \cap_i E_i^c.$$

Finally,

$$P(\cap_i E_i^c) = 1 - P(\cup_i E_i) \ge 1 - \sum_i P(E_i) = 1 - g\alpha.$$

Comments on Bonferroni

- Now the c_i's don't even have to be contrasts all linear combinations work.
- Here, stat = $t(1-\frac{\alpha}{2g},n_T-r)$.
- If all pairwise differences in means are to be considered, use Tukey, else Bonferroni may or may not be better.
- Bonferroni usually beats Scheffe for comparison of contrasts (provides smaller intervals) unless looking at MANY L_i 's. Note that Bonferroni's method has g in $t(1-\frac{\alpha}{2g},n_T-r)$, whereas Scheffe's method does not have g in $\sqrt{(r-1)F(1-\alpha;r-1,n_T-r)}$.
- Not good for snooping. Need to have L_1, \ldots, L_g defined before analyzing data.

General comments

• If looking at handful g of pairwise comparisons, can calculate

$$\frac{1}{\sqrt{2}}q(1-\alpha;r,n_T-r),\ \sqrt{(r-1)F(1-\alpha;r-1,n_T-r)},\ t(1-\frac{\alpha}{2g},n_T-r),$$

and see which is smallest!

• In estimate command in proc glm, SAS will give you \hat{L} and $se(\hat{L})$ for any $L = \sum_{i=1}^{r} c_i \mu_i$. Need to use 1smestimate with c1 in proc glimmix to get CI automatically.

Kenton foods

For Kenton Foods, interest is on

- $L_1 = \frac{1}{2}(\mu_1 + \mu_2) \frac{1}{2}(\mu_3 + \mu_4)$, comparing 3-color and 5-color designs.
- $L_2 = \frac{1}{2}(\mu_1 + \mu_3) \frac{1}{2}(\mu_2 + \mu_4)$, comparing designs with and without cartoons.
- $L_3 = \mu_1 \mu_2$, comparing the two 3-color designs.
- $L_4 = \mu_3 \mu_4$, comparing the two 5-color designs.

Kenton Foods SAS code