STAT 705 Chapter 17: Analyzing factor level means

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 705: Data Analysis II

Inference for group means

Once the model is fit, we are typically interested in inference regarding group means μ_{1}, \ldots, μ_{r}.

In particular, if we reject the overall F-test of $H_{0}: \mu_{1}=\cdots=\mu_{r}$, we often want to know which pairs of means are significantly different. That is, we look at Cls for $\mu_{i}-\mu_{j}$ and tests of $H_{0}: \mu_{i}=\mu_{j}$.
If one looks at all possible pairs, the number of comparisons is
$\binom{r}{2}=\frac{r(r-1)}{2}$. For $r=3$, this entails looking at $\mu_{1}-\mu_{2}$, $\mu_{1}-\mu_{3}$, and $\mu_{2}-\mu_{3}$.

Alternatively, one might be interested in differences such as $\mu_{1}-\frac{1}{2}\left(\mu_{2}+\mu_{3}\right)$. Here level 1 is placebo and levels 2 and 3 are two different doses of the same allergy medicine.

17.3 Comparing factor levels

Model is $Y_{i j}=\mu_{i}+\epsilon_{i j}$, where $\epsilon_{i j} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)$.
We have mean parameters μ_{1}, \ldots, μ_{r}. Most functions of interest are linear combinations of means:

$$
L=L(\mathbf{c})=\sum_{i=1}^{r} c_{i} \mu_{i}
$$

where $\mu_{i}=E\left\{Y_{i j}\right\}$. These include

- each mean, e.g. $L=\mu_{2}$
- differences, e.g. $L=\mu_{3}-\mu_{7}$
- general contrasts, e.g. $L=\mu_{1}-\frac{1}{3} \mu_{2}-\frac{1}{3} \mu_{3}-\frac{1}{3} \mu_{4}$
- general linear forms, e.g. $L=\mu_{1}+2 \mu_{2}-10 \mu_{3}$

A linear combination is called a contrast if $\sum_{i=1}^{r} c_{i}=0$.

Estimation of L

Since $\bar{Y}_{i 0}$ is unbiased estimate of $\mu_{i}, \hat{L}=\sum_{i=1}^{r} c_{i} \bar{Y}_{i 0}$ is unbiased estimate of L.

Note that $\bar{Y}_{i \bullet} \stackrel{\text { ind. }}{\sim} N\left(\mu_{i}, \sigma^{2} / n_{i}\right)$. Then

$$
\hat{L}=\sum_{i=1}^{r} c_{i} \bar{Y}_{i \bullet} \sim N\left(\sum_{i=1}^{r} c_{i} \mu_{i}, \sigma^{2} \sum_{i=1}^{r} \frac{c_{i}^{2}}{n_{i}}\right) .
$$

The standard error of L is

$$
\operatorname{se}(\hat{L})=\sqrt{\operatorname{MSE} \sum_{i=1}^{r} \frac{c_{i}^{2}}{n_{i}}} .
$$

When the model is true, we have

$$
\frac{\hat{L}-L}{\operatorname{se}(\hat{L})} \sim t\left(n_{T}-r\right)
$$

Cl and hypothesis test

Recall $\hat{L}=\sum_{i=1}^{r} c_{i} \bar{Y}_{i \bullet}$ estimates $L=\sum_{i=1}^{r} c_{i} \mu_{i}$ and $\operatorname{se}(\hat{L})$ estimates $\sigma(\hat{L})$.
A $95 \% \mathrm{CI}$ for L is $\hat{L} \pm \operatorname{se}(\hat{L}) t\left(0.975, n_{T}-r\right)$.
To test $H_{0}: L=L_{0}$, obtain p-value $P\left\{\left|t\left(n_{T}-r\right)\right|>\left|\frac{\hat{L}-L_{0}}{\text { se }(\hat{L})}\right|\right\}$.
Both of these can be computed in SAS procedures via test, contrast, or estimate.

Example: CI for μ_{8}

pp. 737-738.
Take $c_{8}=1$ and $c_{i}=0$ for $i \neq 8$.
$\mathrm{A}(1-\alpha) 100 \% \mathrm{Cl}$ is

$$
\bar{Y}_{8 \bullet} \pm \sqrt{\frac{M S E}{n_{8}}} t\left(1-\frac{\alpha}{2}, n_{T}-r\right) .
$$

Difference $\mu_{1}-\mu_{2}$

pp. 739-740.
Take $c_{1}=1, c_{2}=-1$, and $c_{i}=0$ for $i=3, \ldots, r$.
Then

$$
\frac{\bar{Y}_{1} \bullet-\bar{Y}_{2 \bullet}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{M S E\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} \sim t\left(n_{T}-r\right)
$$

To test $H_{0}: L=0 \Leftrightarrow H_{0}: \mu_{1}=\mu_{2}$, note that if H_{0} is true then

$$
t^{*}=\frac{\bar{Y}_{1 \bullet}-\bar{Y}_{2 \bullet}}{\sqrt{\operatorname{MSE}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} \sim t\left(n_{T}-r\right) .
$$

Reject at level α if $\left|t^{*}\right|>t\left(1-\frac{\alpha}{2} ; n_{T}-r\right)$.
Two-sample t-test w/ refined estimate of σ^{2} (when $r>2$).

Kenton Foods

For Kenton Foods, one contrast of interest is
$L=\frac{1}{2}\left(\mu_{1}+\mu_{2}\right)-\frac{1}{2}\left(\mu_{3}+\mu_{4}\right)$, comparing 3-color and 5-color designs (averaged over cartoons vs. no cartoons).

```
data kenton;
input sales design @@;
datalines;
    11
23
;
proc glm data=kenton; class design;
    model sales=design / solution clparm; * solution not needed;
    lsmeans design; * not needed;
    estimate "3-color vs. 5-color" design 0.5 0.5 -0.5 -0.5;
run;
proc glimmix data=kenton; class design;
    model sales=design;
    lsmestimate design 0.5 0.5 -0.5 -0.5 / cl;
run;
```

Does having more color significantly increase sales? By how much?

17.4 Simultaneous inference

If we obtain several $95 \% \mathrm{Cl}$'s for L_{1}, \ldots, L_{g} separately, the probability that each L_{i} will be in its interval simultaneously will actually be (typically much) less than 95% :

$$
P\left(L_{1} \in I_{1}, L_{2} \in I_{2}, \ldots, L_{g} \in I_{g}\right) \leq 0.95
$$

Question: what would this probability be if the intervals are independent?

Question: what would this probability be if the intervals are perfectly correlated in that $L_{i} \in I_{i} \Leftrightarrow L_{j} \in I_{j}$ for all $i \neq j$?

Need Cl's for linear combinations L_{1}, \ldots, L_{g} such that probability of L_{1}, \ldots, L_{g} simultaneously in their respective CI's is at least $1-\alpha$.

For example, say $r=3, \boldsymbol{\beta}=\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$ and want to look at three pairwise differences $L_{12}=\mu_{1}-\mu_{2}, L_{13}=\mu_{1}-\mu_{3}, L_{23}=\mu_{2}-\mu_{3}$. Want intervals I_{12}, I_{13}, I_{23} such that

$$
P\left(L_{12} \in I_{12}, L_{13} \in I_{13}, L_{23} \in I_{23}\right) \geq 1-\alpha
$$

We'll look at (1) Tukey, (2) Scheffe, and (3) Bonferroni procedures. All three procedures produce confidence intervals that look like

$$
\bar{Y}_{i \bullet}-\bar{Y}_{j \bullet} \pm \operatorname{se}\left(\hat{L}_{i j}\right)(\text { stat }),
$$

where stat is a statistic that depends on the method.

17.5 Tukey intervals

For Tukey,

$$
\text { stat }=\frac{1}{\sqrt{2}} q\left(1-\alpha ; r, n_{T}-r\right)
$$

where q is the studentized range distribution (p. 746). Table B-9 has these values, but we'll just get them automatically from SAS. There are several examples on pp. 748-752.

- Unequal sample sizes $\left(n_{i} \neq n_{j}\right.$ for some $\left.i \neq j\right)$ gives overall confidence greater than $1-\alpha$ (Tukey-Kramer). Equal sample sizes $n_{1}=\cdots=n_{r}$ gives exact overall confidence of $1-\alpha$.
- Can be used for data "snooping" or data "dredging" - letting data suggest L's of interest.
- Derivation of the studentized range on next slide...

Derivation of Tukey intervals

Assume $n_{1}=n_{2}=\cdots=n_{r}=n$, so $n_{T}=r n$. Let $X_{i}=\bar{Y}_{i \bullet}-\mu_{i}$. Let $X_{(i)}$ be the i th order statistic.

$$
X_{1}, \ldots, X_{r} \stackrel{i i d}{\sim} N\left(0, \sigma^{2} / n\right)
$$

Define

$$
Q=\frac{X_{(r)}-X_{(1)}}{\sqrt{M S E / n}} \sim q\left(r, n_{T}-r\right)
$$

This is the definition of the studentized range distribution. Then

$$
\begin{aligned}
1-\alpha & =P\left\{\frac{X_{(r)}-X_{(1)}}{\sqrt{M S E / n}} \leq q\left(1-\alpha ; r, n_{T}-r\right)\right\} \\
& =P\left\{X_{(r)}-X_{(1)} \leq \sqrt{M S E / n} q\left(1-\alpha ; r, n_{T}-r\right)\right\} \\
& \geq P\left\{\left|X_{i}-X_{j}\right| \leq \sqrt{M S E / n} q\left(1-\alpha ; r, n_{T}-r\right) \text { for all } i, j\right\} \\
& =P\left\{\bar{Y}_{i \bullet}-\bar{Y}_{j \bullet}-\operatorname{se}\left(\hat{L}_{i j}\right)(\text { stat }) \leq \mu_{i}-\mu_{j} \leq \bar{Y}_{j \bullet}-\bar{Y}_{i \bullet}+\operatorname{se}\left(\hat{L}_{i j}\right)(\text { stat }) \text { for all } i, j\right\} .
\end{aligned}
$$

where stat $=\frac{1}{\sqrt{2}} q\left(1-\alpha ; r, n_{T}-r\right)$.

Tukey example

```
* Tukey example ;
data kenton;
input sales design @@;
datalines;
    11
```



```
;
proc glm data=kenton; class design;
    model sales=design;
    lsmeans design / pdiff adjust=tukey alpha=0.05 cl lines;
run;
```

The subcommand lines adds a lines plot illustrating which levels are not significantly different.

17.6 Scheffe multiple comparisons

Recall $L(\mathbf{c})=\sum_{i=1}^{r} c_{i} \mu_{i}$. Scheffe's method works for any number of arbitrary contrasts L_{1}, \ldots, L_{g}. The ith interval l_{i} among the g simultaneous intervals I_{1}, \ldots, l_{g} has endpoints

$$
\hat{L}\left(\mathbf{c}_{i}\right) \pm \operatorname{se}\left\{\hat{L}\left(\mathbf{c}_{i}\right)\right\} \sqrt{(r-1) F\left(1-\alpha ; r-1, n_{T}-r\right)}
$$

These intervals have the property,

$$
P\left(L_{1} \in I_{1}, L_{2} \in I_{2}, \ldots, L_{g} \in I_{g}\right) \geq 1-\alpha
$$

Example, pp. 754-755.

Comments on Scheffe

- Works for all possible contrasts, including differences in means.
- Okay for data snooping!
- If only pairwise differences are to be looked at, Tukey is better.
- If $H_{0}: \mu_{1}=\cdots=\mu_{r}$ is rejected, Scheffe's method guarantees at least one significant contrast out of all possible (p. 755).
- Here, stat $=\sqrt{(r-1) F\left(1-\alpha ; r-1, n_{T}-r\right)}$.

17.7 Bonferroni procedure (p. 756)

Recall from STAT 712, if you have events $E_{1}, E_{2}, \ldots, E_{g}$, where $P\left(E_{i}\right)=\alpha$ for $i=1, \ldots, g$, then

$$
P\left(E_{1}^{C} \cap E_{2}^{C} \cap \cdots \cap E_{g}^{C}\right) \geq 1-g \alpha
$$

We define our events to be $E_{i}=\left\{L\left(\mathbf{c}_{i}\right) \neq I_{i}\right\}$ and let I_{i} have endpoints

$$
\hat{L}\left(\mathbf{c}_{i}\right) \pm t\left(1-\frac{\alpha}{2 g}, n_{T}-r\right) \operatorname{se}\left\{\hat{L}\left(\mathbf{c}_{i}\right)\right\}
$$

Then $P\left(E_{i}\right)=\frac{\alpha}{g}$ and

$$
P\left\{L\left(\mathbf{c}_{1}\right) \in I_{1}, \ldots, L\left(\mathbf{c}_{g}\right) \in I_{g}\right\} \geq 1-g\left(\frac{\alpha}{g}\right)=1-\alpha
$$

Read this over several times to make sure you understand!

A bit more detail...

Draw a Venn diagram to convince yourself

$$
P\left(\cup_{i} E_{i}\right) \leq \sum_{i} P\left(E_{i}\right)
$$

This implies

$$
1-P\left(\cup_{i} E_{i}\right) \geq 1-\sum_{i} P\left(E_{i}\right)
$$

De Morgan implies

$$
\left(\cup_{i} E_{i}\right)^{c}=\cap_{i} E_{i}^{c} .
$$

Finally,

$$
P\left(\cap_{i} E_{i}^{c}\right)=1-P\left(\cup_{i} E_{i}\right) \geq 1-\sum_{i} P\left(E_{i}\right)=1-g \alpha .
$$

Comments on Bonferroni

- Now the \mathbf{c}_{i} 's don't even have to be contrasts - all linear combinations work.
- Here, stat $=t\left(1-\frac{\alpha}{2 g}, n_{T}-r\right)$.
- If all pairwise differences in means are to be considered, use Tukey, else Bonferroni may or may not be better.
- Bonferroni usually beats Scheffe for comparison of contrasts (provides smaller intervals) unless looking at MANY L_{i} 's. Note that Bonferroni's method has g in $t\left(1-\frac{\alpha}{2 g}, n_{T}-r\right)$, whereas Scheffe's method does not have g in $\sqrt{(r-1) F\left(1-\alpha ; r-1, n_{T}-r\right)}$.
- Not good for snooping. Need to have L_{1}, \ldots, L_{g} defined before analyzing data.

General comments

- If looking at handful g of pairwise comparisons, can calculate

$$
\frac{1}{\sqrt{2}} q\left(1-\alpha ; r, n_{T}-r\right), \sqrt{(r-1) F\left(1-\alpha ; r-1, n_{T}-r\right)}, t\left(1-\frac{\alpha}{2 g}, n_{T}-r\right),
$$

and see which is smallest!

- In estimate command in proc glm, SAS will give you \hat{L} and $\operatorname{se}(\hat{L})$ for any $L=\sum_{i=1}^{r} c_{i} \mu_{i}$. Need to use lsmestimate with cl in proc glimmix to get Cl automatically.

Kenton foods

For Kenton Foods, interest is on

- $L_{1}=\frac{1}{2}\left(\mu_{1}+\mu_{2}\right)-\frac{1}{2}\left(\mu_{3}+\mu_{4}\right)$, comparing 3-color and 5-color designs.
- $L_{2}=\frac{1}{2}\left(\mu_{1}+\mu_{3}\right)-\frac{1}{2}\left(\mu_{2}+\mu_{4}\right)$, comparing designs with and without cartoons.
- $L_{3}=\mu_{1}-\mu_{2}$, comparing the two 3-color designs.
- $L_{4}=\mu_{3}-\mu_{4}$, comparing the two 5 -color designs.

Kenton Foods SAS code

* Scheffe example, p. 734 \& pp. 754-755 ;
* glimmix does simultaneous testing and CI's ;
* use either adjust=scheffe or adjust=bon ;
proc glimmix data=kenton; class design;
model sales=design;
1smestimate design '3-color \& 5-color ' 0.5 0.5-0.5 -0.5, 'with/without cartoons' $0.5-0.50 .5-0.5$,
'two 3-color designs ' $1.0-1.0 \quad 0.0 \quad 0.0$,
'two 5-color designs ' 0.0 0.0 1.0 -1.0 / adjust=scheffe alpha=0.1 cl;
run;

