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Nonlinear regression

We have discussed parametric nonlinear models as well as
completely nonparametric approaches to estimating f (·) in

Yi = f (xi ) + εi , E (εi ) = 0, corr(εi , εj) = δij .

Now we will discuss another approach to estimating f (·), assuming
that f (·) belongs to a class of appropriately smooth functions.

This approach is termed basis expansions.
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Ethanol data, R help file

Ethanol fuel was burned in a single-cylinder engine. For various
settings of the engine compression and equivalence ratio, the
emissions of nitrogen oxides were recorded. Specifically, n = 88
observations on

NOx: Concentration of nitrogen oxides (NO and NO2) in
micrograms/J.

C: Compression ratio of the engine.

E: Equivalence ratio – a measure of the richness of the air and
ethanol fuel mixture.

Brinkman, N.D. (1981) Ethanol FuelA Single-Cylinder Engine
Study of Efficiency and Exhaust Emissions. SAE transactions, 90,
14101424.

We will examine how NOx varies with the equivalence ratio E.
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Ethanol data w/ LOWESS fit

library(lattice)

data(ethanol)

attach(ethanol)

plot(ethanol)

a=min(E); b=max(E)

x=seq(a,b,length=100)

n=length(E)

fit=loess(NOx~E)

pred=predict(fit,x,se=TRUE)

plot(x,pred$fit,type="l",xlab="equivalence ratio",ylab="NOx",main="Lowess Fit")

lines(x,pred$fit-1.96*pred$se.fit,lty=3)

lines(x,pred$fit+1.96*pred$se.fit,lty=3)

points(E,NOx)
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Weierstrauss approximation theorem

Weierstrauss approximation theorem : Let f : [a, b]→ R be a
continuous function. Then for each ε > 0, there exists a polynomial
pε : [a, b]→ R such that |f (x)− pε(x)| < ε for all x ∈ [a, b].

How is this different than Taylor’s theorem? Weierstrauss gives
uniform convergence, not just pointwise, and Taylor’s theorem
requires more smoothness, e.g. at least one derivative.

Basically says that any function f (·), even rough ones, can be
approximated well by smooth functions.

One such approximation is through the use of basis splines, or
B-splines for short. A B-spline is a a function defined by
polynomials over intervals that partition [a, b], and can be written

f (x) =
J∑

j=1

βjBj(x),

where Bj(x) are known, fixed basis functions.
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Basis “mother”

A B-spline is a linear combination of basis functions. Quadratic
B-spline basis function on [0, 3]:

φ(x) =


0.5x2 0 ≤ x ≤ 1
0.75− (x − 1.5)2 1 ≤ x ≤ 2
0.5(3− x)2 2 ≤ x ≤ 3
0 otherwise

 .

The basis functions Bj(·) are just shifted, shrunk/stretched
versions of these.
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J basis functions

Want J basis functions, typically J = 20.

Without detail, jth basis function is

Bj(x) = φ

(
x − a

∆
+ 3− j

)
, ∆ =

b − a

J − 2
.

Here a = min{x1, x2, . . . , xn} and b = max{x1, x2, . . . , xn}.
So (a, b) is the range of the predictors in the data.

For ethanol data, xi ∈ (0.535, 1.232).

Next slide is {B1(x), . . . ,B20(x)} for ethanol
xi ∈ (0.535, 1.232).
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J = 20 quadratic basis functions over xi ∈ (a, b)

0.535 0.8835 1.232

0.1

0.3

0.5

0.7

Here, x is the equivalence ratio E .
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B-spline fit in R

library(splines)

X=bs(E,df=20,degree=2) # slightly different than what’s in the notes

Xp=bs(x,df=20,degree=2)

fit=lm(NOx~X-1) # fit model, create 95% CI’s

lo=x; hi=x

for(i in 1:100){

lo[i]=Xp[i,]%*%fit$coef-qt(0.975,n-20)*Xp[i,]%*%summary(fit)$cov%*%Xp[i,]

hi[i]=Xp[i,]%*%fit$coef+qt(0.975,n-20)*Xp[i,]%*%summary(fit)$cov%*%Xp[i,]

}

# fit B-spline model, display fitted regression line and 95% pointwise CI’s

par(mfrow=c(1,1))

plot(E,NOx,main="B-spline, J=20")

lines(x,Xp%*%fit$coef)

lines(x,lo,lty=3)

lines(x,hi,lty=3)
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Penalized fitting

This is an example of overfitting! One fix is to reduce J, say
from 20 to 10.

Another is to penalize the spline for being too “wiggly”, but
leave J at 20.

Penalized least squares criterion is

n∑
i=1

(yi − f (xi ))2︸ ︷︷ ︸
makes f (xi ) close to yi

+ λ

∫ b

a
[f ′′(x)]2dx︸ ︷︷ ︸

bigger λ ⇒ less wiggly f (x)

.
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Penalized fitting

Maximize

L(β) = 0.5n log(σ−2)− 0.5σ−2
n∑

i=1

yi −
J∑

j=1

βjφj(xi )

2

,

subject to penalty ∫ b

a
|f ′′j (x)|2dx ≤ c .

Equivalent to maximizing penalized log-likelihood (Eilers and
Marx, 1996).

Accomplished in smooth.spline in R, e.g.
lines(smooth.spline(E,NOx)).
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Fourier cosine representation theorem

For a continuous function f : [a, b]→ R such that
∫ b
a f (x)dx = 0,

f (x) =
∞∑
j=1

aj cos

{
jπ(x − a)

b − a

}
,

where

aj =
2

b − a

∫ b

a
f (x) cos

{
jπ(x − a)

b − a

}
.

Note that this representation implies f ′(a) = f ′(b) = 0.

Lenk (1999) and Efromovich (1999) propose Bayesian and
frequentist models for f (·) with J terms

f (x) = µ+ β0x︸ ︷︷ ︸
linear part

+
J−2∑
j=1

βj cos

{
jπ(x − a)

b − a

}
︸ ︷︷ ︸

“wiggly” part integrates to zero

.

A type of penalized likelihood can be used to shrink more
oscillatory components toward zero.
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Cosine expansion with J = 12 for ethanol data

# first four basis functions for NOx vs. E

par(mfrow=c(2,2))

plot(x,cos(1*pi*(x-a)/(b-a)),main="cosine basis j=1",type="l")

plot(x,cos(2*pi*(x-a)/(b-a)),main="cosine basis j=2",type="l")

plot(x,cos(3*pi*(x-a)/(b-a)),main="cosine basis j=3",type="l")

plot(x,cos(4*pi*(x-a)/(b-a)),main="cosine basis j=4",type="l")

# create design matrix and matrix for predictions

X=matrix(rep(0,n*12),ncol=12)

Xp=matrix(rep(0,100*12),ncol=12)

for(i in 1:n){

X[i,1]=1; X[i,2]=E[i]

for(j in 3:12){X[i,j]=cos((j-2)*pi*(E[i]-a)/(b-a))}

}

fit=lm(NOx~X-1) # fit model, create CI’s

lo=x; hi=x

for(i in 1:100){

Xp[i,1]=1; Xp[i,2]=x[i]

for(j in 3:12){Xp[i,j]=cos((j-2)*pi*(x[i]-a)/(b-a))}

lo[i]=Xp[i,]%*%fit$coef-qt(0.975,n-12)*Xp[i,]%*%summary(fit)$cov%*%Xp[i,]

hi[i]=Xp[i,]%*%fit$coef+qt(0.975,n-12)*Xp[i,]%*%summary(fit)$cov%*%Xp[i,]

}

# display fitted regression line and 95% pointwise CI’s

par(mfrow=c(1,1))

plot(E,NOx,main="Cosine basis expansion, J=12")

lines(x,Xp%*%fit$coef)

lines(x,lo,lty=3)

lines(x,hi,lty=3)
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Comments

Many other bases: Legendre polynomials, wavelets, other
types of splines (e.g. thin plate), fractional polynomials, etc.

Any basis results in simple linear model in the expansion
coefficients. Often need to penalize coefficients in some way
to get estimates that are not too “wiggly” and overfit the
data.

Lots of good notes out there on the web, e.g. Emily Fox at U.
Washington.

Can built additive models by considering separate expansion
for each predictor; can also consider pairwise interaction
surfaces, available in SAS PROC GAM. Penalized B-splines
used in BayesX for Windows (free program for fitting
GAMM’s with spatial structure).

Just meant to illustrate the basic idea here. Worthy of an
entire course.
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