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CHAPTER 1 STAT 520, J. TEBBS

1 Introduction and Examples

Complementary reading: Chapter 1 (CC).

TERMINOLOGY : A time series is a sequence of ordered data. The “ordering” refers

generally to time, but other orderings could be envisioned (e.g., over space, etc.). In this

class, we will be concerned exclusively with time series that are

• measured on a single continuous random variable Y

• equally spaced in discrete time; that is, we will have a single realization of Y at

each second, hour, day, month, year, etc.

UBIQUITY : Time series data arise in a variety of fields. Here are just a few examples.

• In business, we observe daily stock prices, weekly interest rates, quarterly sales,

monthly supply figures, annual earnings, etc.

• In agriculture, we observe annual yields (e.g., crop production), daily crop prices,

annual herd sizes, etc.

• In engineering, we observe electric signals, voltage measurements, etc.

• In natural sciences, we observe chemical yields, turbulence in ocean waves, earth

tectonic plate positions, etc.

• In medicine, we observe EKG measurements on patients, drug concentrations,

blood pressure readings, etc.

• In epidemiology, we observe the number of flu cases per day, the number of

health-care clinic visits per week, annual tuberculosis counts, etc.

• In meteorology, we observe daily high temperatures, annual rainfall, hourly wind

speeds, earthquake frequency, etc.

• In social sciences, we observe annual birth and death rates, accident frequencies,

crime rates, school enrollments, etc.

PAGE 1
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Figure 1.1: Global temperature data. The data are a combination of land-air average

temperature anomalies, measured in degrees Centigrade.

Example 1.1. Global temperature data. “Global warming” refers to an increase in

the average temperature of the Earth’s near-surface air and oceans since the mid-20th

century and its projected continuation. The data in Figure 1.1 are annual temperature

deviations (1856-1997) in deg C, measured from a baseline average.

• Data file: globaltemps

• There are n = 142 observations.

• Measurements are taken each year.

• What are the noticeable patterns?

• Predictions? (Are we doomed?)

PAGE 2



CHAPTER 1 STAT 520, J. TEBBS

Year

A
m

ou
nt

 o
f m

ilk
 p

ro
du

ce
d

1994 1996 1998 2000 2002 2004 2006

13
00

14
00

15
00

16
00

17
00

Figure 1.2: United States milk production data. Monthly production figures, measured

in millions of pounds, from January, 1994 to December, 2005.

Example 1.2. Milk production data. Commercial dairy farming produces the vast

majority of milk in the United States. The data in Figure 1.2 are the monthly U.S. milk

production (in millions of pounds) from January, 1994 to December, 2005.

• Data file: milk (TSA)

• There are n = 144 observations.

• Measurements are taken each month.

• What are the noticeable patterns?

• Predictions?

PAGE 3
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Figure 1.3: CREF stock data. Daily values of one unit of CREF stock values: August

26, 2004 to August 15, 2006.

Example 1.3. CREF stock data. TIAA-CREF is the leading provider of retirement

accounts and products to employees in academic, research, medical, and cultural in-

stitutions. The data in Figure 1.3 are daily values of one unit of the CREF (College

Retirement Equity Fund) stock fund from 8/26/04 to 8/15/06.

• Data file: CREF (TSA)

• There are n = 501 observations.

• Measurements are taken each trading day.

• What are the noticeable patterns?

• Predictions? (My retirement depends on these!)

PAGE 4
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Figure 1.4: Homerun data. Number of homeruns hit by the Boston Red Sox each year

during 1909-2010.

Example 1.4. Homerun data. The Boston Red Sox are a professional baseball team

based in Boston, Massachusetts, and a member of the Major League Baseball’s American

League Eastern Division. The data in Figure 1.4 are the number of homeruns hit by the

team each year from 1909 to 2010. Source: Ted Hornback (Spring, 2010).

• Data file: homeruns

• There are n = 102 observations.

• Measurements are taken each year.

• What are the noticeable patterns?

• Predictions?
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Figure 1.5: Earthquake data. Number of “large” earthquakes per year from 1900-1998.

Example 1.5. Earthquake data. An earthquake occurs when there is a sudden release

of energy in the Earth’s crust. Earthquakes are caused mostly by rupture of geological

faults, but also by other events such as volcanic activity, landslides, mine blasts, and

nuclear tests. The data in Figure 1.5 are the number of global earthquakes annually

(with intensities of 7.0 or greater) during 1900-1998. Source: Craig Whitlow (Spring,

2010).

• Data file: earthquake

• There are n = 99 observations.

• Measurements are taken each year.

• What are the noticeable patterns?

• Predictions?

PAGE 6
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Figure 1.6: University of South Carolina fall enrollment data. Number of students reg-

istered for classes on the Columbia campus during 1954-2010.

Example 1.6. Enrollment data. The data in Figure 1.6 are the annual fall enroll-

ment counts for USC (Columbia campus only, 1954-2010). The data were obtained from

the USC website http://www.ipr.sc.edu/enrollment/, which contains the enrollment

counts for all campuses in the USC system.

• Data file: enrollment

• There are n = 57 observations.

• Measurements are taken each year.

• What are the noticeable patterns?

• Predictions?

PAGE 7
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Figure 1.7: Star brightness data. Measurements for a single star taken over 600 consec-

utive nights.

Example 1.7. Star brightness data. Two factors determine the brightness of a star:

its luminosity (how much energy it puts out in a given time) and its distance from the

Earth. The data in Figure 1.7 are nightly brightness measurements (in magnitude) of a

single star over a period of 600 nights.

• Data file: star (TSA)

• There are n = 600 observations.

• Measurements are taken each night.

• What are the noticeable patterns?

• Predictions?

PAGE 8
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Figure 1.8: Airline passenger mile data. The number of miles, in thousands, traveled by

passengers in the United States from January, 1996 to May, 2005.

Example 1.8. Airline mile data. The Bureau of Transportation Statistics publishes

monthly passenger traffic data reflecting 100 percent of scheduled operations for airlines

in the United States. The data in Figure 1.8 are monthly U.S. airline passenger miles

traveled from 1/1996 to 5/2005.

• Data file: airmiles (TSA)

• There are n = 113 observations.

• Measurements are taken each month.

• What are the noticeable patterns?

• Predictions?

PAGE 9
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Figure 1.9: S&P Index price data. Daily values of the index from June 6, 1999 to June

5, 2000.

Example 1.9. S&P500 Index data. The S&P500 is a capitalization-weighted index

(published since 1957) of the prices of 500 large-cap common stocks actively traded in

the United States. The data in Figure 1.9 are the daily S&P500 Index prices measured

during June 6, 1999 to June 5, 2000.

• Data file: sp500

• There are n = 254 observations.

• Measurements are taken each trading day.

• What are the noticeable patterns?

• Predictions?

PAGE 10
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Figure 1.10: Ventilation data. Ventilation measurements on a single cyclist at 15 second

intervals.

Example 1.10. Ventilation data. Collecting expired gases during exercise allows one to

quantify many outcomes during an exercise test. One such outcome is the ventilatory

threshold; i.e., the point at which lactate begins to accumulate in the blood. The data

in Figure 1.10 are ventilation observations (L/min) on a single cyclist during exercise.

Observations are recorded every 15 seconds. Source: Joe Alemany (Spring, 2010).

• Data file: ventilation

• There are n = 195 observations.

• Measurements are taken each 15 seconds.

• What are the noticeable patterns?

• Predictions?

PAGE 11
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Figure 1.11: Exchange rate data. Weekly exchange rate of US dollar compared to the

British pound, from 1980-1988.

Example 1.11. Exchange rate data. The pound sterling, often simply called “the

pound,” is the currency of the United Kingdom and many of its territories. The data in

Figure 1.11 are weekly exchange rates of the US dollar and the British pound between

the years 1980 and 1988.

• Data file: exchangerate

• There are n = 470 observations.

• Measurements are taken each week.

• What are the noticeable patterns?

• Predictions?
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Figure 1.12: Crude oil price data. Monthly spot prices in dollars from Cushing, OK,

from 1/1986 to 1/2006.

Example 1.12. Oil price data. Crude oil prices behave much as any other commodity

with wide price swings in times of shortage or oversupply. The crude oil price cycle may

extend over several years responding to changes in demand. The data in Figure 1.12 are

monthly spot prices for crude oil (measured in U.S. dollars per barrel) from Cushing,

OK.

• Data file: oil.price (TSA)

• There are n = 241 observations.

• Measurements are taken each month.

• What are the noticeable patterns?

• Predictions?

PAGE 13
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Figure 1.13: Los Angeles rainfall data. Annual precipitation measurements, in inches,

during 1878-1992.

Example 1.13. Annual rainfall data. Los Angeles averages 15 inches of precipitation

annually, which mainly occurs during the winter and spring (November through April)

with generally light rain showers, but sometimes as heavy rainfall and thunderstorms.

The data in Figure 1.13 are annual rainfall totals for Los Angeles during 1878-1992.

• Data file: larain (TSA)

• There are n = 115 observations.

• Measurements are taken each year.

• What are the noticeable patterns?

• Predictions?

PAGE 14
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Figure 1.14: Australian clay brick production data. Number of bricks (in millions)

produced from 1956-1994.

Example 1.14. Brick production data. Clay bricks remain extremely popular for the

cladding of houses and small commercial buildings throughout Australia due to their

versatility of use, tensile strength, thermal properties and attractive appearance. The

data in Figure 1.14 represent the number of bricks produced in Australia (in millions)

during 1956-1994. The data are quarterly.

• Data file: brick

• There are n = 155 observations.

• Measurements are taken each quarter.

• What are the noticeable patterns?

• Predictions?
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Figure 1.15: United States Supreme Court data. Percent of cases granted review during

1926-2004.

Example 1.15. Supreme Court data. The Supreme Court of the United States has

ultimate (but largely discretionary) appellate jurisdiction over all state and federal courts,

and original jurisdiction over a small range of cases. The data in Figure 1.15 represent

the acceptance rate of cases appealed to the Supreme Court during 1926-2004. Source:

Jim Manning (Spring, 2010).

• Data file: supremecourt

• There are n = 79 observations.

• Measurements are taken each year.

• What are the noticeable patterns?

• Predictions?

PAGE 16



CHAPTER 1 STAT 520, J. TEBBS

IMPORTANCE : The purpose of time series analysis is twofold:

1. to model the stochastic (random) mechanism that gives rise to the series of data

2. to predict (forecast) the future values of the series based on the previous history.

NOTES : The analysis of time series data calls for a “new way of thinking” when compared

to other statistical methods courses. Essentially, we get to see only a single measurement

from a population (at time t) instead of a sample of measurements at a fixed point in

time (cross-sectional data).

• The special feature of time series data is that they are not independent! Instead,

observations are correlated through time.

– Correlated data are generally more difficult to analyze.

– Statistical theory in the absence of independence becomes markedly more

difficult.

• Most classical statistical methods (e.g., regression, analysis of variance, etc.) as-

sume that observations are statistically independent. For example, in the simple

linear regression model

Yi = β0 + β1xi + ϵi,

or an ANOVA model like

Yijk = µ+ αi + βj + (αβ)ij + ϵijk,

we typically assume that the ϵ error terms are independent and identically dis-

tributed (iid) normal random variables with mean 0 and constant variance.

• There can be additional trends or seasonal variation patterns (seasonality) that

may be difficult to identify and model.

• The data may be highly non-normal in appearance and be possibly contaminated

by outliers.

PAGE 17
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MODELING : Our overarching goal in this course is to build (and use) time series models

for data. This breaks down into different parts.

1. Model specification (identification)

• Consider different classes of time series models for stationary processes.

• Use descriptive statistics, graphical displays, subject matter knowledge, etc.

to make sensible candidate selections.

• Abide by the Principle of Parsimony.

2. Model fitting

• Once a candidate model is chosen, estimate the parameters in the model.

• We will use least squares and/or maximum likelihood to do this.

3. Model diagnostics

• Use statistical inference and graphical displays to check how well the model

fits the data.

• This part of the analysis may suggest the candidate model is inadequate and

may point to more appropriate models.

TIME SERIES PLOT : The time series plot is the most basic graphical display in the

analysis of time series data. The plot is a basically a scatterplot of Yt versus t, with

straight lines connecting the points. Notationally,

Yt = value of the variable Y at time t, for t = 1, 2, ..., n.

The subscript t tells us to which time point the measurement Yt corresponds. Note that

in the sequence Y1, Y2, ..., Yn, the subscripts are very important because they correspond

to a particular ordering of the data. This is perhaps a change in mind set from other

methods courses where the time element is ignored.
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Figure 1.16: Airline passenger mile data. The number of miles, in thousands, traveled

by passengers in the United States from January, 1996 to May, 2005. Monthly plotting

symbols have been added.

GRAPHICS : The time series plot is vital, both to describe the data and to help formulat-

ing a sensible model. Here are some simple, but important, guidelines when constructing

these plots.

• Give a clear, self-explanatory title or figure caption.

• State the units of measurement in the axis labels or figure caption.

• Choose the scales carefully (including the size of the intercept). Default settings

from software may be sufficient.

• Label axes clearly.

• Use special plotting symbols where appropriate; e.g., months of the year, days of

the week, actual numerical values for outlying values, etc.
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2 Fundamental Concepts

Complementary reading: Chapter 2 (CC).

2.1 Summary of important distribution theory

DISCLAIMER: Going forward, we must be familiar with the following results from prob-

ability and distribution theory (e.g., STAT 511, etc.). If you have not had this material,

you should find a suitable reference and study up on your own. See also pp 24-26 (CC).

REVIEW : Informally, a random variable Y is a variable whose value can not be

predicted with certainty. Instead, the variable is said to vary according to a probability

distribution which describes which values Y can assume and with what probability

it assumes those values. There are basically two types of random variables. Discrete

random variables take on specific values with positive probability. Continuous random

variables have positive probability assigned to intervals of possible values. In this course,

we will restrict attention to random variables Y which are best viewed as continuous (or

at least quantitative).

2.1.1 Univariate random variables

DEFINITION : The (cumulative) distribution function (cdf) of a random variable

Y , denoted by FY (y), is a function that gives the probability FY (y) = P (Y ≤ y), for all

−∞ < y < ∞. Mathematically, a random variable Y is said to be continuous if its cdf

FY (y) is a continuous function of y.

TERMINOLOGY : Let Y be a continuous random variable with cdf FY (y). The prob-

ability density function (pdf) for Y , denoted by fY (y), is given by

fY (y) =
d

dy
FY (y),

provided that this derivative exists.
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PROPERTIES : Suppose that Y is a continuous random variable with pdf fY (y) and

support R (that is, the set of all values that Y can assume). Then

(1) fY (y) > 0, for all y ∈ R,

(2) the function fY (y) satisfies
∫
R
fY (y)dy = 1.

RESULT : Suppose Y is a continuous random variable with pdf fY (y) and cdf FY (y).

Then

P (a < Y < b) =

∫ b

a

fY (y)dy = FY (b)− FY (a).

TERMINOLOGY : Let Y be a continuous random variable with pdf fY (y) and support

R. The expected value (or mean) of Y is given by

E(Y ) =

∫
R

yfY (y)dy.

Mathematically, we require that ∫
R

|y|fY (y)dy <∞.

If this is not true, then we say that E(Y ) does not exist. If g is a real-valued function,

then g(Y ) is a random variable and

E[g(Y )] =

∫
R

g(y)fY (y)dy,

provided that this integral exists.

PROPERTIES OF EXPECTATIONS : Let Y be a random variable with pdf fY (y) and

support R, suppose that g, g1, g2, ..., gk are real-valued functions, and let a be any real

constant. Then

(a) E(a) = a

(b) E[ag(Y )] = aE[g(Y )]

(c) E[
∑k

j=1 gj(Y )] =
∑k

j=1 E[gj(Y )].
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TERMINOLOGY : Let Y be a continuous random variable with pdf fY (y), support R,

and mean E(Y ) = µ. The variance of Y is given by

var(Y ) = E[(Y − µ)2] =

∫
R

(y − µ)2fY (y)dy.

In general, it will be easier to use the variance computing formula

var(Y ) = E(Y 2)− [E(Y )]2.

We will often use the statistical symbol σ2 or σ2
Y to denote var(Y ).

FACTS :

(a) var(Y ) ≥ 0. var(Y ) = 0 if and only if the random variable Y has a degenerate

distribution; i.e., all the probability mass is located at one support point.

(b) The larger (smaller) var(Y ) is, the more (less) spread in the possible values of Y

about the mean µ = E(Y ).

(c) var(Y ) is measured in (units)2. The standard deviation of Y is σ =
√
σ2 =

√
var(Y )

and is measured in the original units of Y .

IMPORTANT RESULT : Let Y be a random variable, and suppose that a and b are fixed

constants. Then

var(a+ bY ) = b2var(Y ).

2.1.2 Bivariate random vectors

TERMINOLOGY : Let X and Y be continuous random variables. (X, Y ) is called a

continuous random vector, and the joint probability density function (pdf) of

X and Y is denoted by fX,Y (x, y).

PROPERTIES : The function fX,Y (x, y) has the following properties:

(1) fX,Y (x, y) > 0, for all (x, y) ∈ R ⊆ R2

(2) The function fX,Y (x, y) satisfies
∫ ∫

R
fX,Y (x, y)dxdy = 1.
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RESULT : Suppose (X, Y ) is a continuous random vector with joint pdf fX,Y (x, y). Then

P [(X, Y ) ∈ B] =

∫ ∫
B

fX,Y (x, y)dxdy,

for any set B ⊂ R2.

TERMINOLOGY : Suppose that (X,Y ) is a continuous random vector with joint pdf

fX,Y (x, y). The joint cumulative distribution function (cdf) for (X, Y ) is given by

FX,Y (x, y) = P (X ≤ x, Y ≤ y) =

∫ x

−∞

∫ y

−∞
fX,Y (t, s)dtds,

for all (x, y) ∈ R2. It follows upon differentiation that the joint pdf is given by

fX,Y (x, y) =
∂2

∂x∂y
FX,Y (x, y),

wherever this mixed partial derivative is defined.

RESULT : Suppose that (X,Y ) has joint pdf fX,Y (x, y) and support R. Let g(X, Y ) be

a real vector valued function of (X,Y ); i.e., g : R2 → R. Then

E[g(X,Y )] =

∫ ∫
R

g(x, y)fX,Y (x, y)dxdy.

If this quantity is not finite, then we say that E[g(X,Y )] does not exist.

PROPERTIES OF EXPECTATIONS : Let (X,Y ) be a random vector, suppose that

g, g1, g2, ..., gk are real vector valued functions from R2 → R, and let a be any real

constant. Then

(a) E(a) = a

(b) E[ag(X, Y )] = aE[g(X, Y )]

(c) E[
∑k

j=1 gj(X, Y )] =
∑k

j=1E[gj(X, Y )].

TERMINOLOGY : Suppose that (X, Y ) is a continuous random vector with joint cdf

FX,Y (x, y), and denote the marginal cdfs of X and Y by FX(x) and FY (y), respectively.

The random variables X and Y are independent if and only if

FX,Y (x, y) = FX(x)FY (y),
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for all values of x and y. It can hence be shown that X and Y are independent if and

only if

fX,Y (x, y) = fX(x)fY (y),

for all values of x and y. That is, the joint pdf fX,Y (x, y) factors into the product the

marginal pdfs fX(x) and fY (y), respectively.

RESULT : Suppose that X and Y are independent random variables. Let g(X) be a

function of X only, and let h(Y ) be a function of Y only. Then

E[g(X)h(Y )] = E[g(X)]E[h(Y )],

provided that all expectations exist. Taking g(X) = X and h(Y ) = Y , we get

E(XY ) = E(X)E(Y ).

TERMINOLOGY : Suppose that X and Y are random variables with means E(X) = µX

and E(Y ) = µY , respectively. The covariance between X and Y is

cov(X, Y ) = E[(X − µX)(Y − µY )]

= E(XY )− E(X)E(Y ).

The latter expression is called the covariance computing formula. The covariance is

a numerical measure that describes how two variables are linearly related.

• If cov(X,Y ) > 0, then X and Y are positively linearly related.

• If cov(X,Y ) < 0, then X and Y are negatively linearly related.

• If cov(X,Y ) = 0, then X and Y are not linearly related.

RESULT : If X and Y are independent, then cov(X,Y ) = 0. The converse is not neces-

sarily true.

RESULT : Suppose that X and Y are random variables.

var(X + Y ) = var(X) + var(Y ) + 2cov(X,Y )

var(X − Y ) = var(X) + var(Y )− 2cov(X, Y ).
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RESULT : Suppose that X and Y are independent random variables.

var(X + Y ) = var(X) + var(Y )

var(X − Y ) = var(X) + var(Y ).

RESULTS : Suppose that X and Y are random variables. The covariance operator sat-

isfies the following:

(a) cov(X, Y ) = cov(Y,X)

(b) cov(X,X) = var(X).

(c) cov(a+ bX, c+ dY ) = bdcov(X, Y ), for any constants a, b, c, and d.

DEFINITION : Suppose that X and Y are random variables. The correlation between

X and Y is defined by

ρ = corr(X,Y ) =
cov(X, Y )

σXσY

.

NOTES :

(1) −1 ≤ ρ ≤ 1.

(2) If ρ = 1, then Y = β0 + β1X, where β1 > 0. That is, X and Y are perfectly

positively linearly related; i.e., the bivariate probability distribution of (X, Y ) lies

entirely on a straight line with positive slope.

(3) If ρ = −1, then Y = β0 + β1X, where β1 < 0. That is, X and Y are perfectly

negatively linearly related; i.e., the bivariate probability distribution of (X,Y ) lies

entirely on a straight line with negative slope.

(4) If ρ = 0, then X and Y are not linearly related.

RESULT : If X and Y are independent, then ρ = ρX,Y = 0. The converse is not true in

general. However,

ρ = corr(X, Y ) = 0 =⇒ X and Y independent

when (X,Y ) has a bivariate normal distribution.
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2.1.3 Multivariate extensions and linear combinations

EXTENSION : We use the notation Y = (Y1, Y2, ..., Yn) and y = (y1, y2, ..., yn). The joint

cdf of Y is

FY (y) = P (Y1 ≤ y1, Y2 ≤ y2, ..., Yn ≤ yn)

=

∫ y1

−∞

∫ y2

−∞
· · ·
∫ yn

−∞
fY (t)dt1dt2 · · · dtn,

where t = (t1, t2, ..., tn) and fY (y) denotes the joint pdf of Y .

EXTENSION : Suppose that the random vector Y = (Y1, Y2, ..., Yn) has joint cdf FY (y),

and suppose that the random variable Yi has cdf FYi
(yi), for i = 1, 2, ..., n. Then,

Y1, Y2, ..., Yn are independent random variables if and only if

FY (y) =
n∏

i=1

FYi
(yi);

that is, the joint cdf can be factored into the product of the marginal cdfs. Alternatively,

Y1, Y2, ..., Yn are independent random variables if and only if

fY (y) =
n∏

i=1

fYi
(yi);

that is, the joint pdf can be factored into the product of the marginal pdfs.

MATHEMATICAL EXPECTATION : Suppose that Y1, Y2, ..., Yn are (mutually) inde-

pendent random variables. For real valued functions g1, g2, ..., gn,

E[g1(Y1)g2(Y2) · · · gn(Yn)] = E[g1(Y1)]E[g2(Y2)] · · ·E[gn(Yn)],

provided that each expectation exists.

TERMINOLOGY : Suppose that Y1, Y2, ..., Yn are random variables and that a1, a2, ..., an

are constants. The function

U =
n∑

i=1

aiYi = a1Y1 + a2Y2 + · · ·+ anYn

is called a linear combination of the random variables Y1, Y2, ..., Yn.
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REMARK : Linear combinations are commonly seen in the theoretical development of

time series models. We therefore must be familiar with the following results.

EXPECTED VALUE OF A LINEAR COMBINATION :

E(U) = E

(
n∑

i=1

aiYi

)
=

n∑
i=1

aiE(Yi)

VARIANCE OF A LINEAR COMBINATION :

var(U) = var

(
n∑

i=1

aiYi

)
=

n∑
i=1

a2i var(Yi) + 2
∑
i<j

aiajcov(Yi, Yj)

=
n∑

i=1

a2i var(Yi) +
∑
i ̸=j

aiajcov(Yi, Yj)

COVARIANCE BETWEEN TWO LINEAR COMBINATIONS : Suppose that

U1 =
n∑

i=1

aiYi = a1Y1 + a2Y2 + · · ·+ anYn

U2 =
m∑
j=1

bjXj = b1X1 + b2X2 + · · ·+ bmXm.

Then,

cov(U1, U2) =
n∑

i=1

m∑
j=1

aibjcov(Yi, Xj).

2.1.4 Miscellaneous

GEOMETRIC SUMS : Suppose that a is any real number and that |r| < 1. Then, the

finite geometric sum
n∑

j=0

arj =
a(1− rn+1)

1− r
.

Taking limits of both sides, we get

∞∑
j=0

arj =
a

1− r
.

These formulas should be committed to memory.
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2.2 Time series and stochastic processes

TERMINOLOGY : The sequence of random variables {Yt : t = 0, 1, 2, ..., }, or more

simply denoted by {Yt}, is called a stochastic process. It is a collection of random

variables indexed by time t; that is,

Y0 = value of the process at time t = 0

Y1 = value of the process at time t = 1

Y2 = value of the process at time t = 2

...

Yn = value of the process at time t = n.

The subscripts are important because they refer to which time period the value of Y is

being measured. A stochastic process can be described as “a statistical phenomenon that

evolves through time according to a set of probabilistic laws.”

• A complete probabilistic time series model for {Yt}, in fact, would specify all of the

joint distributions of random vectors Y = (Y1, Y2, ..., Yn), for all n = 1, 2, ..., or,

equivalently, specify the joint probabilities

P (Y1 ≤ y1, Y2 ≤ y2, ..., Yn ≤ yn),

for all y = (y1, y2, ..., yn) and n = 1, 2, ...,.

• This specification is not generally needed in practice. In this course, we specify

only the first and second-order moments; i.e., expectations of the form E(Yt) and

E(YtYt−k), for k = 0, 1, 2, ..., and t = 0, 1, 2, ....

• Much of the important information in most time series processes is captured in

these first and second moments (or, equivalently, in the means, variances, and

covariances).
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2.3 Means, variances, and covariances

TERMINOLOGY : For the stochastic process {Yt : t = 0, 1, 2, ..., }, the mean function

is defined as

µt = E(Yt),

for t = 0, 1, 2, ...,. That is, µt is the theoretical (or population) mean for the series at

time t. The autocovariance function is defined as

γt,s = cov(Yt, Ys),

for t, s = 0, 1, 2, ..., where cov(Yt, Ys) = E(YtYs) − E(Yt)E(Ys). The autocorrelation

function is given by

ρt,s = corr(Yt, Ys),

where

corr(Yt, Ys) =
cov(Yt, Ys)√
var(Yt)var(Ys)

=
γt,s√
γt,tγs,s

.

• Values of ρt,s near ±1 =⇒ strong linear dependence between Yt and Ys.

• Values of ρt,s near 0 =⇒ weak linear dependence between Yt and Ys

• Values of ρt,s = 0 =⇒ Yt and Ys are uncorrelated.

2.4 Some (named) stochastic processes

Example 2.1. A stochastic process {et : t = 0, 1, 2, ..., } is called a white noise process

if it is a sequence of independent and identically distributed (iid) random variables with

E(et) = µe

var(et) = σ2
e .

• Both µe and σ2
e are constant (free of t).
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Figure 2.1: A simulated white noise process et ∼ iid N (0, σ2
e), where n = 150 and σ2

e = 1.

• It is often assumed that µe = 0; that is, {et} is a zero mean process.

• A slightly less restrictive definition would require that the et’s are uncorrelated (not

independent). However, under normality; i.e., et ∼ iid N (0, σ2
e), this distinction

becomes vacuous (for linear time series models).

AUTOCOVARIANCE FUNCTION : For t = s,

cov(et, es) = cov(et, et) = var(et) = σ2
e .

For t ̸= s,

cov(et, es) = 0,

because the et’s are independent. Thus, the autocovariance function of {et} is

γt,s =

 σ2
e , |t− s| = 0

0, |t− s| ̸= 0.
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AUTOCORRELATION FUNCTION : For t = s,

ρt,s = corr(et, es) = corr(et, et) =
γt,t√
γt,tγt,t

= 1.

For t ̸= s,

ρt,s = corr(et, es) =
γt,s√
γt,tγs,s

= 0.

Thus, the autocorrelation function is

ρt,s =

 1, |t− s| = 0

0, |t− s| ̸= 0.

REMARK : A white noise process, by itself, is rather uninteresting for modeling real

data. However, white noise processes still play a crucial role in the analysis of time series

data! Time series processes {Yt} generally contain two different types of variation:

• systematic variation (that we would like to capture and model; e.g., trends, sea-

sonal components, etc.)

• random variation (that is just inherent background noise in the process).

Our goal as data analysts is to extract the systematic part of the variation in the data (and

incorporate this into our model). If we do an adequate job of extracting the systematic

part, then the only part “left over” should be random variation, which can be modeled

as white noise.

Example 2.2. Suppose that {et} is a zero mean white noise process with var(et) = σ2
e .

Define

Y1 = e1

Y2 = e1 + e2
...

Yn = e1 + e2 + · · ·+ en.
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By this definition, note that we can write, for t > 1,

Yt = Yt−1 + et,

where E(et) = 0 and var(et) = σ2
e . The process {Yt} is called a random walk process.

Random walk processes are used to model stock prices, movements of molecules in gases

and liquids, animal locations, etc.

MEAN FUNCTION : The mean of Yt is

µt = E(Yt)

= E(e1 + e2 + · · ·+ et)

= E(e1) + E(e2) + · · ·+ E(et) = 0.

That is, {Yt} is a zero mean process.

VARIANCE FUNCTION : The variance of Yt is

var(Yt) = var(e1 + e2 + · · ·+ et)

= var(e1) + var(e2) + · · ·+ var(et) = tσ2
e ,

because var(e1) = var(e2) = · · · = var(et) = σ2
e and cov(et, es) = 0 for all t ̸= s.

AUTOCOVARIANCE FUNCTION : For t ≤ s, the autocovariance of Yt and Ys is

γt,s = cov(Yt, Ys) = cov(e1 + e2 + · · ·+ et, e1 + e2 + · · ·+ et + et+1 + · · ·+ es)

= cov(e1 + e2 + · · ·+ et, e1 + e2 + · · ·+ et)

+ cov(e1 + e2 + · · ·+ et, et+1 + · · ·+ es)

=
t∑

i=1

cov(ei, ei) +
∑∑
1≤i̸=j≤t

cov(ei, ej)

=
t∑

i=1

var(ei) = σ2
e + σ2

e + · · ·+ σ2
e = tσ2

e .

Because γt,s = γs,t, the autocovariance function for a random walk process is

γt,s = tσ2
e , for 1 ≤ t ≤ s.
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Figure 2.2: A simulated random walk process Yt = Yt−1 + et, where et ∼ iid N (0, σ2
e),

n = 150, and σ2
e = 1. This process has been constructed from the simulated white noise

process {et} in Figure 2.1.

AUTOCORRELATION FUNCTION : For 1 ≤ t ≤ s, the autocorrelation function for a

random walk process is

ρt,s = corr(Yt, Ys) =
γt,s√
γt,tγs,s

=
tσ2

e√
tσ2

esσ
2
e

=

√
t

s
.

• Note that when t is closer to s, the autocorrelation ρt,s is closer to 1. That is,

two observations Yt and Ys close together in time are likely to be close together,

especially when t and s are both large (later on in the series).

• On the other hand, when t is far away from s (that is, for two points Yt and Ys far

apart in time), the autocorrelation is closer to 0.
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Example 2.3. Suppose that {et} is a zero mean white noise process with var(et) = σ2
e .

Define

Yt =
1

3
(et + et−1 + et−2),

that is, Yt is a running (or moving) average of the white noise process (averaged across

the most recent 3 time periods). Note that this example is slightly different than that

on pp 14-15 (CC).

MEAN FUNCTION : The mean of Yt is

µt = E(Yt) = E

[
1

3
(et + et−1 + et−2)

]
=

1

3
[E(et) + E(et−1) + E(et−2)] = 0,

because {et} is a zero-mean process. {Yt} is a zero mean process.

VARIANCE FUNCTION : The variance of Yt is

var(Yt) = var

[
1

3
(et + et−1 + et−2)

]
=

1

9
var(et + et−1 + et−2)

=
1

9
[var(et) + var(et−1) + var(et−2)] =

3σ2
e

9
=

σ2
e

3
,

because var(et) = σ2
e for all t and because et, et−1, and et−2 are independent (all covariance

terms are zero).

AUTOCOVARIANCE FUNCTION : We need to consider different cases.

Case 1: If s = t, then

γt,s = γt,t = cov(Yt, Yt) = var(Yt) =
σ2
e

3
.

Case 2: If s = t+ 1, then

γt,s = γt,t+1 = cov(Yt, Yt+1)

= cov

[
1

3
(et + et−1 + et−2),

1

3
(et+1 + et + et−1)

]
=

1

9
[cov(et, et) + cov(et−1, et−1)]

=
1

9
[var(et) + var(et−1)] =

2σ2
e

9
.
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Case 3: If s = t+ 2, then

γt,s = γt,t+2 = cov(Yt, Yt+2)

= cov

[
1

3
(et + et−1 + et−2),

1

3
(et+2 + et+1 + et)

]
=

1

9
cov(et, et)

=
1

9
var(et) =

σ2
e

9
.

Case 4: If s > t + 2, then γt,s = 0 because Yt and Ys will have no common white noise

error terms.

Because γt,s = γs,t, the autocovariance function can be written as

γt,s =



σ2
e/3, |t− s| = 0

2σ2
e/9, |t− s| = 1

σ2
e/9, |t− s| = 2

0, |t− s| > 2.

AUTOCORRELATION FUNCTION : Recall that the autocorrelation function is

ρt,s = corr(Yt, Ys) =
γt,s√
γt,tγs,s

.

Because γt,t = γs,s = σ2
e/3, the autocorrelation function for this process is

ρt,s =



1, |t− s| = 0

2/3, |t− s| = 1

1/3, |t− s| = 2

0, |t− s| > 2.

• Observations Yt and Ys that are 1 unit apart in time have the same autocorrelation

regardless of the values of t and s.

• Observations Yt and Ys that are 2 units apart in time have the same autocorrelation

regardless of the values of t and s.

• Observations Yt and Ys that are more than 2 units apart in time are uncorrelated.
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Figure 2.3: A simulated moving average process Yt = 1
3
(et + et−1 + et−2), where et ∼

iid N (0, σ2
e), n = 150, and σ2

e = 1. This process has been constructed from the simulated

white noise process {et} in Figure 2.1.

Example 2.4. Suppose that {et} is a zero mean white noise process with var(et) = σ2
e .

Consider the stochastic process defined by

Yt = 0.75Yt−1 + et,

that is, Yt is directly related to the (downweighted) previous value of the process Yt−1

and the random error et (a “shock” or “innovation” that occurs at time t). This is called

an autoregressive model. Autoregression means “regression on itself.” Essentially, we

can envision “regressing” Yt on Yt−1.

NOTE : We will postpone mean, variance, autocovariance, and autocorrelation calcula-

tions for this process until Chapter 4 when we discuss autoregressive models in more

detail. A simulated realization of this process appears in Figure 2.4.
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Figure 2.4: A simulated autoregressive process Yt = 0.75Yt−1+et, where et ∼ iid N (0, σ2
e),

n = 150, and σ2
e = 1.

Example 2.5. Many time series exhibit seasonal patterns that correspond to different

weeks, months, years, etc. One way to describe seasonal patterns is to use models with

deterministic parts which are trigonometric in nature. Suppose that {et} is a zero mean

white noise process with var(et) = σ2
e . Consider the process defined by

Yt = a sin(2πωt+ ϕ) + et.

In this model, a is the amplitude, ω is the frequency of oscillation, and ϕ controls the

phase shift. With a = 2, ω = 1/52 (one cycle/52 time points), and ϕ = 0.6π, note that

E(Yt) = 2 sin(2πt/52 + 0.6π),

since E(et) = 0. Also, var(Yt) = var(et) = σ2
e . The mean function, and three realizations

of this process (one realization corresponding to σ2
e = 1, σ2

e = 4, and σ2
e = 16) are

depicted in Figure 2.5.
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Figure 2.5: Sinusoidal model illustration. Top left: E(Yt) = 2 sin(2πt/52 + 0.6π). The

other plots are simulated realizations of this process with σ2
e = 1 (top right), σ2

e = 4

(bottom left), and σ2
e = 16 (bottom right). In each simulated realization, n = 156.

2.5 Stationarity

NOTE : Stationarity is a very important concept in the analysis of time series data.

Broadly speaking, a time series is said to be stationary if there is no systematic change

in mean (no trend), if there is no systematic change in variance, and if strictly periodic

variations have been removed. In other words, the properties of one section of the data

are much like those of any other section.

IMPORTANCE : Much of the theory of time series is concerned with stationary time

series. For this reason, time series analysis often requires one to transform a nonstationary
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time series into a stationary one to use this theory. For example, it may be of interest

to remove the trend and seasonal variation from a set of data and then try to model

the variation in the residuals (the pieces “left over” after this removal) by means of a

stationary stochastic process.

STATIONARITY : The stochastic process {Yt : t = 0, 1, 2, ..., n} is said to be strictly

stationary if the joint distribution of

Yt1 , Yt2 , ..., Ytn

is the same as

Yt1−k, Yt2−k, ..., Ytn−k

for all time points t1, t2, ..., tn and for all time lags k. In other words, shifting the time

origin by an amount k has no effect on the joint distributions, which must therefore

depend only on the intervals between t1, t2, ..., tn. This is a very strong condition.

IMPLICATION : Since the above condition holds for all sets of time points t1, t2, ..., tn,

it must hold when n = 1; i.e., there is only one time point.

• This implies Yt and Yt−k have the same marginal distribution for all t and k.

• Because these marginal distributions are the same,

E(Yt) = E(Yt−k)

var(Yt) = var(Yt−k),

for all t and k.

• Therefore, for a strictly stationary process, both µt = E(Yt) and γt,t = var(Yt) are

constant over time.

ADDITIONAL IMPLICATION : Since the above condition holds for all sets of time

points t1, t2, ..., tn, it must hold when n = 2; i.e., there are only two time points.
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• This implies (Yt, Ys) and (Yt−k, Ys−k) have the same joint distribution for all t,

s, and k.

• Because these joint distributions are the same,

cov(Yt, Ys) = cov(Yt−k, Ys−k),

for all t, s, and k.

• Therefore, for a strictly stationary process, for k = s,

γt,s = cov(Yt, Ys) = cov(Yt−s, Y0) = cov(Y0, Yt−s).

But, also, for k = t, we have

cov(Yt, Ys) = cov(Y0, Ys−t).

Putting the last two results together, we have

γt,s = cov(Yt, Ys) = cov(Y0, Y|t−s|) = γ0,|t−s|.

This means that the covariance between Yt and Ys does not depend on the actual

values of t and s; it only depends on the time difference |t− s|.

NEW NOTATION : For a (strictly) stationary process, the covariance γt,s depends only

on the time difference |t− s|. The quantity |t− s| is the distance between time points Yt

and Ys. In other words, the covariance between Yt and any observation k = |t− s| time

points from it only depends on the lag k. Therefore, we write

γk = cov(Yt, Yt−k)

ρk = corr(Yt, Yt−k).

We use this simpler notation only when we refer to a process which is stationary. Note

that by taking k = 0, we have

γ0 = cov(Yt, Yt) = var(Yt).

Also,

ρk = corr(Yt, Yt−k) =
γk
γ0

.
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SUMMARY : For a process which is (strictly) stationary,

1. The mean function µt = E(Yt) is constant throughout time; i.e., µt is free of t.

2. The covariance between any two observations depends only the time lag between

them; i.e., γt,t−k depends only on k (not on t).

REMARK : Strict stationarity is a condition that is much too restrictive for most applica-

tions. Moreover, it is difficult to assess the validity of this assumption in practice. Rather

than impose conditions on all possible (marginal and joint) distributions of a process, we

will use a milder form of stationarity that only deals with the first two moments.

DEFINITION : The stochastic process {Yt : t = 0, 1, 2, ..., n} is said to be weakly sta-

tionary (or second-order stationary) if

1. The mean function µt = E(Yt) is constant throughout time; i.e., µt is free of t.

2. The covariance between any two observations depends only the time lag between

them; i.e., γt,t−k depends only on k (not on t).

Nothing is assumed about the collection of joint distributions of the process. Instead, we

only are specifying the characteristics of the first two moments of the process.

REALIZATION : Clearly, strict stationarity implies weak stationarity. It is also clear that

the converse to statement is not true, in general. However, if we append the additional

assumption of multivariate normality (for the Yt process), then the two definitions do

coincide; that is,

weak stationarity + multivariate normality =⇒ strict stationarity.

CONVENTION : For the purpose of modeling time series data in this course, we will

rarely (if ever) make the distinction between strict stationarity and weak stationarity.

When we use the term “stationary process,” this is understood to mean that the process

is weakly stationary.
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EXAMPLES : We now reexamine the time series models introduced in the last section.

• Suppose that {et} is a white noise process. That is, {et} consists of iid random

variables with E(et) = µe and var(et) = σ2
e , both constant (free of t). In addition,

the autocovariance function γk = cov(Yt, Yt−k) is given by

γk =

 σ2
e , k = 0

0, k ̸= 0,

which is free of time t (i.e., γk depends only on k). Thus, a white noise process is

stationary.

• Suppose that {Yt} is a random walk process. That is,

Yt = Yt−1 + et,

where {et} is white noise with E(et) = 0 and var(et) = σ2
e . We calculated µt =

E(Yt) = 0, for all t, which is free of t. However,

cov(Yt, Yt−k) = cov(Yt−k, Yt) = (t− k)σ2
e ,

which clearly depends on time t. Thus, a random walk process is not stationary.

• Suppose that {Yt} is a moving average process given by

Yt =
1

3
(et + et−1 + et−2),

where {et} is zero mean white noise with var(et) = σ2
e . We calculated µt = E(Yt) =

0 (which is free of t) and γk = cov(Yt, Yt−k) to be

γk =



σ2
e/3, k = 0

2σ2
e/9, k = 1

σ2
e/9, k = 2

0, k > 2.

Because cov(Yt, Yt−k) is free of time t, this moving average process is stationary.
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• Suppose that {Yt} is the autoregressive process

Yt = 0.75Yt−1 + et,

where {et} is zero mean white noise with var(et) = σ2
e . We avoided the calculation

of µt = E(Yt) and cov(Yt, Yt−k) for this process, so we will not make a definite

determination here. However, it turns out that if et is independent of Yt−1, Yt−2, ...,

and if σ2
e > 0, then this autoregressive process is stationary (details coming later).

• Suppose that {Yt} is the sinusoidal process defined by

Yt = a sin(2πωt+ ϕ) + et,

where {et} is zero mean white noise with var(et) = σ2
e . Clearly µt = E(Yt) =

a sin(2πωt+ ϕ) is not free of t, so this sinusoidal process is not stationary.

• Consider the random cosine wave process

Yt = cos

[
2π

(
t

12
+ Φ

)]
,

where Φ is a uniform random variable from 0 to 1; i.e., Φ ∼ U(0, 1). The calculations

on pp 18-19 (CC) show that this process is (perhaps unexpectedly) stationary.

IMPORTANT : In order to start thinking about viable stationary time series models for

real data, we need to have a stationary process. However, as we have just seen, many

data sets exhibit nonstationary behavior. A simple, but effective, technique to convert a

nonstationary process into a stationary one is to examine data differences.

DEFINITION : Consider the process {Yt : t = 0, 1, 2, ..., n}. The (first) difference

process of {Yt} is defined by

∇Yt = Yt − Yt−1,

for t = 1, 2, ...., n. In many situations, a nonstationary process {Yt} can be “transformed”

into a stationary process by taking (first) differences. For example, the random walk

Yt = Yt−1 + et, where et ∼ iid N (0, σ2
e), is not stationary. However, the first difference

process ∇Yt = Yt − Yt−1 = et is zero mean white noise, which is stationary!
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3 Modeling Deterministic Trends

Complementary reading: Chapter 3 (CC).

3.1 Introduction

DISCUSSION : In this course, we consider time series models for realizations of a stochas-

tic process {Yt : t = 0, 1, ..., n}. This will largely center around models for stationary

processes. However, as we have seen, many time series data sets exhibit a trend; i.e., a

long-term change in the mean level. We know that such series are not stationary because

the mean changes with time.

• An obvious difficulty with the definition of a trend is deciding what is meant by the

phrase “long-term.” For example, climatic processes can display cyclical variation

over a long period of time, say, 1000 years. However, if one has just 40-50 years of

data, this long-term cyclical pattern might be missed and be interpreted as a trend

which is linear.

• Trends can be “elusive,” and an analyst may mistakenly conjecture that a trend

exists when it really does not. For example, in Figure 2.2 (page 33), we have a

realization of a random walk process

Yt = Yt−1 + et,

where et ∼ iid N (0, 1). There is no trend in the mean of this random walk process.

Recall that µt = E(Yt) = 0, for all t. However, it would be easy to incorrectly

assert that true downward and upward trends are present.

• On the other hand, it may be hard to detect trends if the data are very noisy. For

example, the lower right plot in Figure 2.5 (page 38) is a noisy realization of a

sinusoidal process considered in the last chapter. It is easy to miss the true cyclical

structure from looking at the plot.
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DETERMINISTIC TREND MODELS : In this chapter, we consider models of the form

Yt = µt +Xt,

where µt is a deterministic function that describes the trend and Xt is random error.

Note that if, in addition, E(Xt) = 0 for all t (a common assumption), then

E(Yt) = µt

is the mean function for the process {Yt}. In practice, different deterministic trend

functions could be considered. One popular choice is

µt = β0 + β1t,

which says that the mean function increases (decreases) linearly with time. The function

µt = β0 + β1t+ β2t
2

is appropriate if there is a quadratic trend present. More generally, if the deterministic

trend can be described by a kth order polynomial in time, we can consider

µt = β0 + β1t+ β2t
2 + · · ·+ βkt

k.

If the deterministic trend is cyclical, we could consider functions of the form

µt = β0 +
m∑
j=1

(αj cosωjt+ βj sinωjt),

where the αj’s and βj’s are regression parameters and the ωj’s are related to frequencies

of the trigonometric functions cosωjt and sinωjt. Fitting these and other deterministic

trend models (and even combinations of them) can be accomplished using the method

of least squares, as we will demonstrate later in this chapter.

LOOKING AHEAD : In this course, we want to deal with stationary time series models

for data. Therefore, if there is a deterministic trend present in the process, we want to

remove it. There are two general ways to do this.
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1. Estimate the trend and then subtract the estimated trend from the data (perhaps

after transforming the data). Specifically, estimate µt with µ̂t and then model the

residuals

X̂t = Yt − µ̂t

as a stationary process. We can use regression methods to estimate µt and then

implement standard diagnostics on the residuals X̂t to check for violations of sta-

tionarity and other assumptions.

• If the residuals are stationary, we can use a stationary time series model (Chap-

ter 4) to describe their behavior.

• Forecasting takes place by first forecasting the residual process {X̂t} and then

inverting the transformations described above to arrive back at forecasts for

the original series {Yt}. We will pursue forecasting techniques in Chapter 9.

IMPORTANT : If we assert that a trend exists and we fit a deterministic model

that incorporates it, we are implicitly assuming that the trend lasts “forever.” In

some applications, this might be reasonable, but probably not in most.

2. Another approach, developed extensively by Box and Jenkins, is to apply differ-

encing repeatedly to the series {Yt} until the differenced observations resemble a

realization of a stationary time series. We can then use the theory of stationary pro-

cesses for the modeling, analysis, and prediction of the stationary series and then

transform this analysis back in terms of the original series {Yt}. This approach is

studied in Chapter 5.

3.2 Estimation of a constant mean

A CONSTANT “TREND”: We first consider the most elementary type of trend, namely,

a constant trend. Specifically, we consider the model

Yt = µ+Xt,
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where µ is constant (free of t) and where E(Xt) = 0. Note that, under this zero mean

error assumption, we have

E(Yt) = µ.

That is, the process {Yt} has an overall population mean function µt = µ, for all t. The

most common estimate of µ is

Y =
1

n

n∑
t=1

Yt,

the sample mean. It is easy to check that Y is an unbiased estimator of µ; i.e.,

E(Y ) = µ. This is true because

E(Y ) = E

(
1

n

n∑
t=1

Yt

)
=

1

n

n∑
t=1

E(Yt) =
1

n

n∑
t=1

µ =
nµ

n
= µ.

Therefore, under the minimal assumption that E(Xt) = 0, we see that Y is an unbiased

estimator of µ. To assess the precision of Y as an estimator of µ, we examine var(Y ).

RESULT : If {Yt} is a stationary process with autocorrelation function ρk, then

var(Y ) =
γ0
n

[
1 + 2

n−1∑
k=1

(
1− k

n

)
ρk

]
,

where var(Yt) = γ0.

RECALL: If {Yt} is an iid process, that is, Y1, Y2, ..., Yn is an iid (random) sample, then

var(Y ) =
γ0
n
.

Therefore, var(Y ), in general, can be larger than or smaller than γ0/n depending on the

values of ρk through

γ0
n

[
1 + 2

n−1∑
k=1

(
1− k

n

)
ρk

]
− γ0

n
=

2γ0
n

n−1∑
k=1

(
1− k

n

)
ρk.

• If this quantity is smaller than zero, then Y is a better estimator of µ than Y is in

an iid sampling context; that is, var(Y ) < γ0/n.

• If this quantity is larger than zero, then Y is a worse estimator of µ than Y is in

an iid sampling context; that is, var(Y ) > γ0/n.
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Example 3.1. Suppose that {Yt} is a moving average process given by

Yt =
1

3
(et + et−1 + et−2),

where {et} is zero mean white noise with var(et) = σ2
e . In the last chapter, we calculated

γk =



σ2
e/3, k = 0

2σ2
e/9, k = 1

σ2
e/9, k = 2

0, k > 2.

The lag 1 autocorrelation for this process is

ρ1 =
γ1
γ0

=
2σ2

e/9

σ2
e/3

= 2/3.

The lag 2 autocorrelation for this process is

ρ2 =
γ2
γ0

=
σ2
e/9

σ2
e/3

= 1/3.

Also, ρk = 0 for all k > 2. Therefore,

var(Y ) =
γ0
n

[
1 + 2

n−1∑
k=1

(
1− k

n

)
ρk

]

=
γ0
n

+
4(n− 1)γ0 + 2(n− 2)γ0

3n2
>

γ0
n
.

Therefore, we lose efficiency in estimating µ with Y when compared to using Y in an iid

sampling context. The positive autocorrelations make estimation of µ less precise.

Example 3.2. Suppose that {Yt} is a stationary process with autocorrelation function

ρk = ϕk, where −1 < ϕ < 1. For this process, the autocorrelation decays exponentially as

the lag k increases. As we will see in Chapter 4, the autoregressive of order 1, AR(1),

process possesses this autocorrelation function. To examine the effect of estimating µ

with Y in this situation, we use an approximation for var(Y ) for large n, specifically,

var(Y ) =
γ0
n

[
1 + 2

n−1∑
k=1

(
1− k

n

)
ρk

]
≈ γ0

n

(
1 + 2

∞∑
k=1

ρk

)
,
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where we have taken (1− k/n) ≈ 1 for n large. Therefore, with ρk = ϕk, we have

var(Y ) ≈ γ0
n

(
1 + 2

∞∑
k=1

ρk

)

=
γ0
n

[
1 + 2

(
∞∑
k=0

ϕk − 1

)]

=
γ0
n

[
1 + 2

(
1

1− ϕ
− 1

)]
=

(
1 + ϕ

1− ϕ

)
γ0
n
.

For example, if ϕ = −0.6, then

var(Y ) ≈ 0.25
(γ0
n

)
.

Using Y produces a more precise estimate of µ than in an iid (random) sampling context.

The negative autocorrelations ρ1 = −0.6, ρ3 = (−0.6)3, etc., “outweigh” the positive ones

ρ2 = (−0.6)2, ρ4 = (−0.6)4, etc., making var(Y ) smaller than γ0/n.

Example 3.3. In Examples 3.1 and 3.2, we considered stationary processes in examining

the precision of Y as an estimator for µ. In this example, we have the same goal, but

we consider the random walk process Yt = Yt−1 + et, where {et} is a zero mean white

noise process with var(et) = σ2
e . As we already know, this process is not stationary, so

we can not use the var(Y ) formula presented earlier. However, recall that this process

can be written out as

Y1 = e1, Y2 = e1 + e2, ..., Yn = e1 + e2 + · · ·+ en,

so that

Y =
1

n

n∑
t=1

Yt =
1

n
[ne1 + (n− 1)e2 + (n− 2)e3 + · · ·+ 2en−1 + 1en] .

Therefore, we can derive an expression for var(Y ) directly:

var(Y ) =
1

n2

[
n2var(e1) + (n− 1)2var(e2) + · · ·+ 22var(en−1) + 12var(en)

]
=

σ2
e

n2
[12 + 22 + · · ·+ (n− 1)2 + n2]

=
σ2
e

n2

[
n(n+ 1)(2n+ 1)

6

]
=

σ2
e

n

[
(n+ 1)(2n+ 1)

6

]
.
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• This result is surprising! Note that as n increases, so does var(Y ). That is, av-

eraging a larger sample produces a worse (i.e., more variable) estimate of µ than

averaging a smaller one!!

• This is quite different than the results obtained for stationary processes. The

nonstationarity in the data causes very bad things to happen, even in the relatively

simple task of estimating an overall process mean.

RESULT : Suppose that Yt = µ + Xt, where µ is constant, Xt ∼ N (0, γ0), and {Xt} is

a stationary process. Under these assumptions, Yt ∼ N (µ, γ0) and {Yt} is stationary.

Therefore,

Y ∼ N

{
µ,

γ0
n

[
1 + 2

n−1∑
k=1

(
1− k

n

)
ρk

]}
so that

Z =
Y − µ√

γ0
n

[
1 + 2

∑n−1
k=1

(
1− k

n

)
ρk
] ∼ N (0, 1).

Since the sampling distribution of Z does not depend on any unknown parameters, we

say that Z is a pivotal quantity (or, more simply, a pivot). If γ0 and the ρk’s are

known, then a 100(1− α) percent confidence interval for µ is

Y ± zα/2

√√√√γ0
n

[
1 + 2

n−1∑
k=1

(
1− k

n

)
ρk

]
,

where zα/2 is the upper α/2 quantile from the standard normal distribution.

REMARK : Note that if ρk = 0, for all k, then Y ∼ N (µ, γ0/n), and the confidence

interval formula just presented reduces to

Y ± zα/2

√
γ0
n
,

which we recognize as the confidence interval for µ when random sampling is used. The

impact of the autocorrelations ρk will be the same on the confidence interval. That is,

more negative autocorrelations ρk will make the standard error

se(Y ) =

√√√√γ0
n

[
1 + 2

n−1∑
k=1

(
1− k

n

)
ρk

]
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smaller, which will make the confidence interval more precise (i.e., shorter). On the other

hand, positive autocorrelations will make this quantity larger, thereby lengthening the

interval, making it less informative.

REMARK : Of course, in real life, rarely will anyone tell us the values of γ0 and the ρk’s.

These are model (population) parameters. However, if the sample size n is large and

“good” (large-sample) estimates of these quantities can be calculated, we would expect

this interval to be approximately valid when the estimates are substituted in for the true

values. We will talk about estimation of γ0 and the autocorrelations later.

3.3 Regression methods

3.3.1 Straight line regression

STRAIGHT LINE MODEL: We now consider the deterministic time trend model

Yt = µt +Xt

= β0 + β1t+Xt,

where µt = β0 + β1t and where E(Xt) = 0. We are considering a simple linear re-

gression model for the process {Yt}, where time t is the predictor. By “fitting this

model,” we mean that we would like to estimate the regression parameters β0 and

β1 (the intercept and slope, respectively) using the observed data Y1, Y2, ..., Yn. The Xt’s

are random errors and are not observed.

LEAST SQUARES ESTIMATION : To estimate β0 and β1, we will use the method of

least squares. Specifically, we find the values of β0 and β1 that minimize the objective

function

Q(β0, β1) =
n∑

t=1

(Yt − µt)
2

=
n∑

t=1

[Yt − (β0 + β1t)]
2 =

n∑
t=1

(Yt − β0 − β1t)
2.
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This can be done using a multivariable calculus argument. Specifically, the partial deriva-

tives of Q(β0, β1) are given by

∂Q(β0, β1)

∂β0

= −2
n∑

t=1

(Yt − β0 − β1t)

∂Q(β0, β1)

∂β1

= −2
n∑

t=1

t(Yt − β0 − β1t).

Setting these derivatives equal to zero and jointly solving for β0 and β1, we get

β̂0 = Y − β̂1t.

β̂1 =

∑n
t=1(t− t)Yt∑n
t=1(t− t)2

.

These are the least squares estimators of β0 and β1.

PROPERTIES : The following results can be established algebraically. Note carefully

which statistical assumptions are needed for each result.

• Under just the mild assumption of E(Xt) = 0, for all t, the least squares estimators

are unbiased. That is, E(β̂0) = β0 and E(β̂1) = β1.

• Under the assumptions that E(Xt) = 0, {Xt} independent, and var(Xt) = γ0 (a

constant, free of t), then

var(β̂0) = γ0

[
1

n
+

t
2∑n

t=1(t− t)2

]
var(β̂1) =

γ0∑n
t=1(t− t)2

.

Note that a zero mean white noise process {Xt} satisfies these assumptions.

• In addition to the assumptions E(Xt) = 0, {Xt} independent, and var(Xt) = γ0, if

we also assume that the Xt’s are normally distributed, then

β̂0 ∼ N

{
β0, γ0

[
1

n
+

t
2∑n

t=1(t− t)2

]}
and

β̂1 ∼ N
[
β1,

γ0∑n
t=1(t− t)2

]
.
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Figure 3.1: Global temperature data. The data are a combination of land-air average

temperature anomalies, measured in degrees Centigrade. Time period: 1900-1997.

IMPORTANT : You should recall that these four assumptions on the errors Xt, that

is, zero mean, independence, homoscedasticity, and normality, are the usual as-

sumptions on the errors in a standard regression setting. However, with most time series

data sets, at least one of these assumptions will be violated. The implication, then, is

that standard errors of the estimators, confidence intervals, t tests, probability values,

etc., quantities that are often provided in computing packages (e.g., R, etc.), will not be

meaningful. Proper usage of this output requires the four assumptions mentioned above

to hold. The only instance in which these are exactly true is if {Xt} is a zero-mean

normal white noise process (an assumption you likely made in your previous methods

courses where regression was discussed).

Example 3.4. Consider the global temperature data from Example 1.1 (notes), but let’s

restrict attention to the time period 1900-1997. These data are depicted in Figure 3.1.
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Figure 3.2: Global temperature data (1900-1997) with a straight line trend fit.

Over this time period, there is an apparent upward trend in the series. Suppose that we

estimate this trend by fitting the straight line regression model

Yt = β0 + β1t+Xt,

for t = 1900, 1901, ..., 1997, where E(Xt) = 0. Here is the output from fitting this model

in R.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.219e+01 9.032e-01 -13.49 <2e-16 ***

time(globaltemps.1900) 6.209e-03 4.635e-04 13.40 <2e-16 ***

Residual standard error: 0.1298 on 96 degrees of freedom

Multiple R-squared: 0.6515, Adjusted R-squared: 0.6479

F-statistic: 179.5 on 1 and 96 DF, p-value: < 2.2e-16
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Figure 3.3: Global temperature data (1990-1997). Residuals from the straight line trend

model fit.

ANALYSIS : We interpret the regression coefficient output only. As we have learned,

standard errors, t tests, and probability values may not be meaningful! The least squares

estimates are β̂0 = −12.19 and β̂1 = 0.0062 so that the fitted regression model is

Ŷt = −12.19 + 0.0062t.

This is the equation of the line superimposed over the series in Figure 3.2.

RESIDUALS : The residuals from the least squares fit are given by

X̂t = Yt − Ŷt,

that is, the observed data Yt minus the fitted values given by the equation in Ŷt. In

this example (with the straight line model fit), the residuals are given by

X̂t = Yt − Ŷt

= Yt + 12.19− 0.0062t,
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for t = 1900, 1901, ..., 1997. Remember that one of the main reasons for fitting the

straight line model was to capture the linear trend. Now that we have done this, the

residual process defined by

X̂t = Yt + 12.19− 0.0062t

contains information in the data that is not accounted for in the straight line trend

model. For this reason, it is called the detrended series. This series is plotted in

Figure 3.3. Essentially, this is a time series plot of the residuals from the straight line fit

versus time, the predictor variable in the model. This detrended series does appear to

be somewhat stationary, at least much more so than the original series {Yt}. However,

just from looking at the plot, it is a safe bet that the residuals are not white noise.

DIFFERENCING : Instead of fitting the deterministic model to the global temperature

series to remove the linear trend, suppose that we had examined the first difference

process {∇Yt}, where

∇Yt = Yt − Yt−1.

We have learned that taking differences can be an effective means to remove non-

stationary patterns. Doing so here, as evidenced in Figure 3.4, produces a new process

that does appear to be somewhat stationary.

DISCUSSION : We have just seen, by means of an example, that both detrending

(using regression to fit the trend) and differencing can be helpful in transforming a

nonstationary process into one which is (or at least appears) stationary.

• One advantage of differencing over detrending to remove trend is that no parameters

are estimated in taking differences.

• One disadvantage of differencing is that it does not provide an “estimate” of the

error process Xt.

• If an estimate of the error process is crucial, detrending may be more appropriate.

If the goal is only to coerce the data to stationarity, differencing may be preferred.

PAGE 56



CHAPTER 3 STAT 520, J. TEBBS

Year

Gl
ob

al 
te

m
pe

ra
tu

re
 d

ev
iat

ion
 d

iffe
re

nc
es

1900 1920 1940 1960 1980 2000

−0
.3

−0
.2

−0
.1

0.
0

0.
1

0.
2

0.
3

Figure 3.4: Global temperature first data differences (1900-1997).

3.3.2 Polynomial regression

POLYNOMIAL REGRESSION : We now consider the deterministic time trend model

Yt = µt +Xt

= β0 + β1t+ β2t
2 + · · ·+ βkt

k +Xt,

where µt = β0 + β1t+ β2t
2 + · · ·+ βkt

k and where E(Xt) = 0. The mean function µt is a

polynomial function with degree k ≥ 1.

• If k = 1, µt = β0 + β1t is a linear trend function.

• If k = 2, µt = β0 + β1t+ β2t
2 is a quadratic trend function.

• If k = 3, µt = β0 + β1t+ β2t
2 + β3t

3 is a cubic trend function, and so on.
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LEAST SQUARES ESTIMATION : The least squares estimates of β0, β1, β2, ..., βk are

obtained in the same way as in the k = 1 case; namely, the estimates are obtained by

minimizing the objective function

Q(β0, β1, β2, ..., βk) =
n∑

t=1

[Yt − (β0 + β1t+ β2t
2 + · · ·+ βkt

k)]2

=
n∑

t=1

(Yt − β0 − β1t− β2t
2 − · · · − βkt

k)2

with respect to β0, β1, β2, ..., βk. Here, there are k + 1 partial derivatives and k + 1

equations to solve (in simple linear regression, k = 1, so there were 2 equations to solve).

• Unfortunately (without the use of more advanced notation), there are no conve-

nient, closed-form expressions for the least squares estimators when k > 1. This

turns out not to be a major distraction, because we use computing to fit the model

anyway.

• Under the mild assumption that the errors have zero mean; i.e., that E(Xt) = 0, it

follows that the least squares estimators β̂0, β̂1, β̂2, ..., β̂k are unbiased estimators

of their population analogues; i.e., E(β̂i) = βi, for i = 0, 1, 2, ..., k.

• As in the simple linear regression case (k = 1), additional assumptions on the errors

Xt are needed to derive the sampling distribution of the least squares estimators,

namely, independence, constant variance, and normality.

• Regression output (e.g., in R, etc.) is correct only under these additional assump-

tions. Thee analyst must keep this in mind.

Example 3.5. Data file: gold (TSA). Of all the precious metals, gold is the most

popular as an investment. Like most commodities, the price of gold is driven by supply

and demand as well as speculation. Figure 3.5 contains a time series of n = 254 daily

observations on the price of gold (per troy ounce) in US dollars during the year 2005.

There is a clear nonlinear trend in the data, so a straight-line model would not be

appropriate.
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Figure 3.5: Gold price data. Daily price in US dollars per troy ounce: 1/4/05-12/30/05.

In this example, we use R to detrend the data by fitting the quadratic regression

model

Yt = β0 + β1t+ β2t
2 +Xt,

for t = 1, 2, ..., 254, where E(Xt) = 0. Here is the output from fitting this model in R.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.346e+02 1.771e+00 245.38 <2e-16 ***

t -3.618e-01 3.233e-02 -11.19 <2e-16 ***

t.sq 2.637e-03 1.237e-04 21.31 <2e-16 ***

Residual standard error: 9.298 on 249 degrees of freedom

Multiple R-squared: 0.8838, Adjusted R-squared: 0.8828

F-statistic: 946.6 on 2 and 249 DF, p-value: < 2.2e-16
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Figure 3.6: Gold price data with a quadratic trend fit.

ANALYSIS : Again, we focus only on the values of the least squares estimates. The fitted

regression equation is

Ŷt = 434.6− 0.362t+ 0.00264t2,

for t = 1, 2, ..., 254. This fitted model is superimposed over the time series in Figure 3.6.

RESIDUALS : The residual process is

X̂t = Yt − Ŷt

= Yt − 434.6 + 0.362t− 0.00264t2,

for t = 1, 2, ..., 254, and is depicted in Figure 3.7. This detrended series appears to be

somewhat stationary, at least, much more so than the original time series. However, it

should be obvious that the detrended (residual) process is not white noise. There is still

an enormous amount of momentum left in the residuals. Of course, we know that this

renders most of the R output on the previous page meaningless.
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Figure 3.7: Gold price data. Residuals from the quadratic trend fit.

3.3.3 Seasonal means model

SEASONAL MEANS MODEL: Consider the deterministic trend model

Yt = µt +Xt,

where E(Xt) = 0 and where the mean function

µt =



β1, t = 1, 13, 25, ...

β2, t = 2, 14, 26, ...
...

β12, t = 12, 24, 36, ...

The regression parameters β1, β2, ..., β12 are fixed constants. This is called a seasonal

means model. This model does not take the shape of the seasonal trend into account;

instead, it merely says that observations 12 months apart have the same mean, and
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this mean does not change through time. Other seasonal means models with a different

number of parameters could be specified. For instance, for quarterly data, we could

use a mean function with 4 regression parameters β1, β2, β3, and β4.

FITTING THE MODEL: We can still use least squares to fit the seasonal means model.

The least squares estimates of the regression parameters are simple to compute, but

difficult to write mathematically. In particular,

β̂1 =
1

n1

∑
t∈A1

Yt,

where the set A1 = {t : t = 1 + 12j, j = 0, 1, 2, ..., }. In essence, to compute β̂1, we sum

the values Y1, Y13, Y25, ..., and then divide by n1, the number of observations in month 1

(e.g., January). Similarly,

β̂2 =
1

n2

∑
t∈A2

Yt,

where the set A2 = {t : t = 2 + 12j, j = 0, 1, 2, ..., }. Again, we sum the values

Y2, Y14, Y26, ..., and then divide by n2, the number of observations in month 2 (e.g., Febru-

ary). In general,

β̂i =
1

ni

∑
t∈Ai

Yt,

where the set Ai = {t : t = i + 12j, j = 0, 1, 2, ..., }, for i = 1, 2, ..., 12, where ni is the

number of observations in month i.

Example 3.6. Data file: beersales (TSA). The data in Figure 3.8 are monthly beer

sales (in millions of barrels) in the United States from 1/80 through 12/90. This time

series has a relatively constant mean overall (i.e., there are no apparent linear trends and

the repeating patterns are relatively constant over time), so a seasonal means model may

be appropriate. Fitting the model can be done in R; here are the results.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

January 13.1608 0.1647 79.90 <2e-16 ***

February 13.0176 0.1647 79.03 <2e-16 ***

March 15.1058 0.1647 91.71 <2e-16 ***
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Figure 3.8: Monthly US beer sales from 1980-1990. The data are measured in millions

of barrels.

April 15.3981 0.1647 93.48 <2e-16 ***

May 16.7695 0.1647 101.81 <2e-16 ***

June 16.8792 0.1647 102.47 <2e-16 ***

July 16.8270 0.1647 102.16 <2e-16 ***

August 16.5716 0.1647 100.61 <2e-16 ***

September 14.4045 0.1647 87.45 <2e-16 ***

October 14.2848 0.1647 86.72 <2e-16 ***

November 12.8943 0.1647 78.28 <2e-16 ***

December 12.3404 0.1647 74.92 <2e-16 ***

DISCUSSION : The only quantities that have relevance are the least squares estimates.

The estimate β̂i is simply the sample mean of the observations for month i; thus, β̂i is an

unbiased estimate of the ith (population) mean monthly sales βi. The test statistics and

p-values are used to test H0 : βi = 0, a largely nonsensical hypothesis in this example.

PAGE 63



CHAPTER 3 STAT 520, J. TEBBS

0 20 40 60 80 100 120

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

Time

Re
sid

ua
ls

Figure 3.9: Beer sales data. Residuals from the seasonal means model fit.

RESIDUALS : A plot of the residuals from the seasonal means model fit, that is,

X̂t = Yt − Ŷt

= Yt −
12∑
i=1

β̂iIAi
(t)

is in Figure 3.9. The expression
∑12

i=1 β̂iIAi
(t), where I(·) is the indicator function, is

simply the sample mean for the set of observations at time t. This residual process looks

somewhat stationary, although I can detect a slightly increasing trend.

3.3.4 Cosine trend model

REMARK : The seasonal means model is somewhat simplistic in that it does not take the

shape of the seasonal trend into account. We now consider a more elaborate regression

equation that can be used to model data with seasonal trends.

PAGE 64



CHAPTER 3 STAT 520, J. TEBBS

COSINE TREND MODEL: Consider the deterministic time trend model

Yt = µt +Xt

= β cos(2πft+ Φ) +Xt,

where µt = β cos(2πft + Φ) and where E(Xt) = 0. The trigonometric mean function µt

consists of different parts:

• β is the amplitude. The function µt oscillates between −β and β.

• f is the frequency =⇒ 1/f is the period (the time it takes to complete one

full cycle of the function). For monthly data, the period is 12 months; i.e., the

frequency is f = 1/12.

• Φ controls the phase shift. This represents a horizontal shift in the mean function.

MODEL FITTING : Fitting this model is difficult unless we transform the mean function

into a simpler expression. We use the trigonometric identity

cos(a+ b) = cos(a) cos(b)− sin(a) sin(b)

to write

β cos(2πft+ Φ) = β cos(2πft) cos(Φ)− β sin(2πft) sin(Φ)

= β1 cos(2πft) + β2 sin(2πft),

where β1 = β cosΦ and β2 = −β sinΦ, so that the phase shift parameter

Φ = tan−1

(
−β2

β1

)
and the amplitude β =

√
β2
1 + β2

2 . The rewritten expression,

µt = β1 cos(2πft) + β2 sin(2πft),

is a linear function of β1 and β2, where cos(2πft) and sin(2πft) play the roles of predictor

variables. Adding an intercept term for flexibility, say β0, we get

Yt = β0 + β1 cos(2πft) + β2 sin(2πft) +Xt.
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REMARK : When we fit this model, we must be aware of the values used for the time t,

as it has a direct impact on how we specify the frequency f . For example,

• if we have monthly data and use the generic time specification t = 1, 2, ..., 12, 13, ...,

then we specify f = 1/12.

• if we have monthly data, but we use the years themselves as predictors; i.e., t =

1990, 1991, 1992, etc., we use f = 1, because 12 observations arrive each year.

Example 3.6 (continued). We now use R to fit the cosine trend model to the beer sales

data. Because the predictor variable t is measured in years 1980, 1981, ..., 1990 (with 12

observations each year), we use f = 1. Here is the output:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.80446 0.05624 263.25 <2e-16 ***

har.cos(2*pi*t) -2.04362 0.07953 -25.70 <2e-16 ***

har.sin(2*pi*t) 0.92820 0.07953 11.67 <2e-16 ***

Residual standard error: 0.6461 on 129 degrees of freedom

Multiple R-squared: 0.8606, Adjusted R-squared: 0.8584

F-statistic: 398.2 on 2 and 129 DF, p-value: < 2.2e-16

ANALYSIS : The fitted model

Ŷt = 14.8− 2.04 cos(2πt) + 0.93 sin(2πt),

is superimposed over the data in Figure 3.10. The least squares estimates β̂0 = 14.8,

β̂1 = −2.04, and β̂2 = 0.93 are the only useful pieces of information in the output.

RESIDUALS : The (detrended) residual process is

X̂t = Yt − Ŷt

= Yt − 14.8 + 2.04 cos(2πt)− 0.93 sin(2πt),
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Figure 3.10: Beer sales data with a cosine trend model fit.

which is depicted in Figure 3.11. The residuals from the cosine trend fit appear to be

somewhat stationary, but are probably not white noise.

REMARK : The seasonal means and cosine trend models are competing models; that is,

both models are useful for seasonal data.

• The cosine trend model is more parsimonious; i.e., it is a simpler model because

there are 3 regression parameters to estimate. On the other hand, the (monthly)

seasonal means model has 12 parameters that need to be estimated!

• Remember, regression parameters (in any model) are estimated with the data. The

more parameters we have in a model, the more data we need to use to estimate them.

This leaves us with less information to estimate other quantities (e.g., residual

variance, etc.). In the end, we have regression estimates that are less precise.

• The mathematical argument on pp 36-39 (CC) should convince you of this result.
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Figure 3.11: Beer sales data. Residuals from the cosine trend model fit.

3.4 Interpreting regression output

RECALL: In fitting the deterministic model

Yt = µt +Xt,

we have learned the following:

• for least squares estimates to be unbiased, all we need is E(Xt) = 0, for all t.

• for the variances of the least squares estimates (and standard errors) seen in R

output to be meaningful, we need E(Xt) = 0, {Xt} independent, and var(Xt) = γ0

(constant). These assumptions are met if {Xt} is a white noise process.

• for t tests and probability values to be valid, we need the last three assumptions to

hold; in addition, normality is needed on the error process {Xt}.
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NEW RESULT : If var(Xt) = γ0 is constant, an estimate of γ0 is given by

S2 =
1

n− p

n∑
t=1

(Yt − µ̂t)
2,

where µ̂t is the least squares estimate of µt and p is the number of regression parameters

in µt. The term n− p is called the error degrees of freedom. If {Xt} is independent,

then E(S2) = γ0; i.e., S
2 is an unbiased estimator of γ0. The residual standard

deviation is defined by,

S =
√
S2 =

√√√√ 1

n− p

n∑
t=1

(Yt − µ̂t)2,

the (positive) square root of S2.

• The smaller S is, the better fit of the model. Therefore, in comparing two model

fits (for two different models), we can look at the value of S in each model to judge

which model may be preferred (caution is needed in doing this).

• The larger S is, the noisier the error process likely is. This makes the least squares

estimates more variable and predictions less precise.

RESULT : For any data set {Yt : t = 1, 2, ..., n}, we can write algebraically

n∑
t=1

(Yt − Y )2︸ ︷︷ ︸
SST

=
n∑

t=1

(Ŷt − Y )2︸ ︷︷ ︸
SSR

+
n∑

t=1

(Yt − Ŷt)
2

︸ ︷︷ ︸
SSE

.

These quantities are called sums of squares and form the basis for the following anal-

ysis of variance (ANOVA) table.

Source df SS MS F

Model p− 1 SSR MSR = SSR
p−1

F = MSR
MSE

Error n− p SSE MSE = SSE
n−p

Total n− 1 SST
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COEFFICIENT OF DETERMINATION : Since SST = SSR + SSE, it follows that the

proportion of the total variation in the data explained by the deterministic model is

R2 =
SSR

SST
= 1− SSE

SST
,

the coefficient of determination. The larger R2 is, the better the deterministic part

of the model explains the variability in the data. Clearly, 0 ≤ R2 ≤ 1.

IMPORTANT : It is critical to understand what R2 does and does not measure. Its value

is computed under the assumption that the deterministic trend model is correct and

assesses how much of the variation in the data may be attributed to that relationship

rather than just to inherent variation.

• If R2 is small, it may be that there is a lot of random inherent variation in the data,

so that, although the deterministic trend model is reasonable, it can only explain

so much of the observed overall variation.

• Alternatively, R2 may be close to 1, but a particular model may not be the best

model. In fact, R2 could be very “high,” but not relevant because a better model

may exist.

ADJUSTED R2: A slight variant of the coefficient of determination is

R
2
= 1− SSE/(n− p)

SST/(n− 1)
.

This is called the adjusted R2 statistic. It is useful for comparing models with different

numbers of parameters.

3.5 Residual analysis (model diagnostics)

RESIDUALS : Consider the deterministic trend model

Yt = µt +Xt,

PAGE 70



CHAPTER 3 STAT 520, J. TEBBS

where E(Xt) = 0. In this chapter, we have talked about using the method of least squares

to fit models of this type (e.g., straight line regression, polynomial regression, seasonal

means, cosine trends, etc.). The fitted model is Ŷt = µ̂t and the residual process is

X̂t = Yt − Ŷt.

The residuals from the model fit are important. In essence, they serve as proxies (pre-

dictions) for the true errors Xt, which are not observed. The residuals can help us learn

about the validity of the assumptions made in our model.

STANDARDIZED RESIDUALS : If the model above is fit using least squares (and there

is an intercept term in the model), then algebraically,
n∑

t=1

(Yt − Ŷt) = 0,

that is, the sum of the residuals is equal to zero. Thus, the residuals have mean zero and

the standardized residuals, defined by

X̂∗
t =

X̂t

S
,

are unitless quantities. If desired, we can use the standardized residuals for model diag-

nostic purposes. The standardized residuals defined here are not exactly zero mean, unit

variance quantities, but they are approximately so. Thus, if the model is adequate, we

would expect most standardized residuals to fall between −3 and 3.

3.5.1 Assessing normality

NORMALITY : If the error process {Xt} is normally distributed, then we would expect

the residuals to also be approximately normally distributed. We can therefore diag-

nose this assumption by examining the (standardized) residuals and looking for evidence

of normality. We can use histograms and normal probability plots (also known as

quantile-quantile, or qq plots) to do this.

• Histograms which resemble heavily skewed empirical distributions are evidence

against normality.
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• A normal probability plot is a scatterplot of ordered residuals X̂t (or standardized

residuals X̂∗
t ) versus the ordered theoretical normal quantiles (or normal scores).

The idea behind this plot is simple. If the residuals are normally distributed, then

plotting them versus the corresponding normal quantiles (i.e., values from a normal

distribution) should produce a straight line (or at least close).

Example 3.4 (continued). In Example 3.4, we fit a straight line trend model to the

global temperature data. Below are the histogram and qq plot for the standardized

residuals. Does normality seem to be supported?
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SHAPIRO-WILK TEST : Histograms and qq plots provide only visual evidence of nor-

mality. The Shapiro-Wilk test is a formal hypothesis test that can be used to test

H0 : the (standardized) residuals are normally distributed

versus

H1 : the (standardized) residuals are not normally distributed.

The test is carried out by calculating a statistic W approximately equal to the sample

correlation between the ordered (standardized) residuals and the normal scores. The
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higher this correlation, the higher the value of W . Therefore, small values of W are

evidence against H0. The null distribution of W is very complicated, but probability

values (p-values) are produced in R automatically. If the p-value is smaller than the

significance level for the test (e.g., α = 0.05, etc.), then we reject H0 and conclude that

there is a violation in the normality assumption. Otherwise, we do not reject H0.

Example 3.4 (continued). In Example 3.4, we fit a straight line trend model to the

global temperature data. The Shapiro-Wilk test on the standardized residuals produces

the following output:

> shapiro.test(rstudent(fit))

Shapiro-Wilk normality test

data: rstudent(fit)

W = 0.9934, p-value = 0.915

Because the p-value for the test is not small, we do not reject H0. This test does not

provide evidence of non-normality for the standardized residuals.

3.5.2 Assessing independence

INDEPENDENCE : Plotting the residuals versus time can provide visual insight on

whether or not the (standardized) residuals exhibit independence (although it is often

easier to detect gross violations of independence). Residuals that “hang together” are not

what we would expect to see from a sequence of independent random variables. Similarly,

residuals that oscillate back and forth too notably also do not resemble this sequence.

RUNS TEST : A runs test is a nonparametric test which calculates the number of runs

in the (standardized) residuals. The formal test is

H0 : the (standardized) residuals are independent

versus

H1 : the (standardized) residuals are not independent.
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Figure 3.12: Standardized residuals from the straight line trend model fit for the global

temperature data. A horizontal line at zero has been added.

In particular, the test examines the (standardized) residuals in sequence to look for

patterns that would give evidence against independence. Runs above or below 0 (the

approximate median of the residuals) are counted.

• A small number of runs would indicate that neighboring values are positively

dependent and tend to hang together over time.

• Too many runs would indicate that the data oscillate back and forth across their

median. This suggests that neighboring residuals are negatively dependent.

• Therefore, either too few or too many runs lead us to reject independence.

Example 3.4 (continued). In Example 3.4, we fit a straight line trend model to the

global temperature data. A runs test on the standardized residuals produces the following

output:
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> runs(rstudent(fit))

$pvalue

[1] 3.65e-06

$observed.runs

[1] 27

$expected.runs

[1] 49.81633

The p-value for the test is extremely small, so we would reject H0. The evidence points

to the standardized residuals being not independent. The R output also produces the ex-

pected number of runs (computed under the assumption of independence). The observed

number of runs is too much lower than the expected number to support independence.

BACKGROUND : If the (standardized) residuals are truly independent, it is possible to

write out the probability mass function of R, the number of runs. This mass function is

fR(r) =


(

n1−1
(r/2)−1

)(
n2−1

(r/2)−1

)
/
(
n1+n2

n1

)
, if r is even[(

n1−1
(r−1)/2

)(
n2−1

(r−3)/2

)
+
(

n1−1
(r−3)/2

)(
n2−1

(r−1)/2

)]/(
n1+n2

n1

)
, if r is odd,

where

• n1 = the number of residuals less than zero

• n2 = the number of residuals greater than zero

• r1 = the number of runs less than zero

• r2 = the number of runs less than zero

• r = r1 + r2.

IMPLEMENTATION : When n1 and n2 are large, the number of runs R is approximately

normally distribution with mean

µR = 1 +
2n1n2

n

and variance

σ2
R =

2n1n2(2n1n2 − n)

n2(n− 1)
.
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Therefore, values of

Z =
|R− µR|

σR

> zα/2

lead to the rejection of H0. The notation zα/2 denotes the upper α/2 quantile of the

N (0, 1) distribution.

3.5.3 Sample autocorrelation function

RECALL: Consider the stationary stochastic process {Yt : t = 1, 2, ..., n}. In Chapter 2,

we defined the autocorrelation function to be

ρk = corr(Yt, Yt−k) =
γk
γ0

,

where γk = cov(Yt, Yt−k) and γ0 = var(Yt). Perhaps more aptly named, ρk is the pop-

ulation autocorrelation function because it depends on the true parameters for the

process {Yt}. In real life (that is, with real data) these population parameters are un-

known, so we don’t get to know the true ρk. However, we can estimate it. This leads to

the definition of the sample autocorrelation function.

TERMINOLOGY : For a set of time series data Y1, Y2, ..., Yn, we define the sample

autocorrelation function, at lag k, by

rk =

∑n
t=k+1(Yt − Y )(Yt−k − Y )∑n

t=1(Yt − Y )2
,

where Y is the sample mean of Y1, Y2, ..., Yn (i.e., all the data are used to compute Y ).

The sample version rk is a point estimate of the true (population) autocorrelation ρk.

USAGE WITH STANDARDIZED RESIDUALS : Because we are talking about using

standardized residuals to check regression model assumptions, we can examine the sample

autocorrelation function of the standardized residual process {X̂∗
t }. Replacing Yt with

X̂∗
t and Y with X̂∗ in the above definition, we get

r∗k =

∑n
t=k+1(X̂

∗
t − X̂∗)(X̂∗

t−k − X̂∗)∑n
t=1(X̂

∗
t − X̂∗)2

.

PAGE 76



CHAPTER 3 STAT 520, J. TEBBS

Note that when the sum of the standardized residuals equals zero (which occurs when

least squares is used and when an intercept is included in the model), we also have

X̂∗ = 0. Therefore, the formula above reduces to

r∗k =

∑n
t=k+1 X̂

∗
t X̂

∗
t−k∑n

t=1(X̂
∗
t )

2
.

IMPORTANT : If the standardized residual process {X̂∗
t } is white noise, then

r∗k ∼ AN
(
0,

1

n

)
,

for n large. The notation AN is read “approximately normal.” For k ̸= l, it also turns

out that cov(r∗k, r
∗
l ) ≈ 0. These facts are established in Chapter 6.

• If the standardized residuals are truly white noise, then we would expect r∗k to fall

within 2 standard errors of 0. That is, values of r∗k within ±2/
√
n are within the

margin of error under the white noise assumption.

• Values of r∗k larger than ±2/
√
n (in absolute value) are outside the margin of error,

and, thus, are not consistent with what we would see from a white noise process.

More specifically, this would suggest that there is dependence (autocorrelation) at

lag k in the standardized residual process.

GRAPHICAL TOOL: The plot of rk (or r∗k if we are examining standardized residuals)

versus k is called a correlogram. If we are assessing whether or not the process is white

noise, it is helpful to put horizontal dashed lines at ±2/
√
n so we can easily see if the

sample autocorrelations fall outside the margin of error.

Example 3.4 (continued). In Example 3.4, we fit a straight line trend model to the

global temperature data. In Figure 3.13, we display the correlogram for the standardized

residuals {X̂∗
t } from the straight line fit.

• Note that many of the sample estimates r∗k fall outside the ±2/
√
n margin of error

cutoff. These residuals likely do not resemble a white noise process.
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Figure 3.13: Global temperature data. Sample autocorrelation function for the standard-

ized residuals from the straight line model fit.

• There is still a substantial amount of structure left in the residuals. In particular,

there is strong positive autocorrelation at early lags and the sample ACF tends to

decay somewhat as k increases.

SIMULATION EXERCISE : Let’s generate some white noise processes and examine their

sample autocorrelation functions! Figure 3.14 (left) displays two simulated white noise

processes et ∼ iid N (0, 1), where n = 100. With n = 100, the margin of error for each

sample autocorrelation rk is

margin of error = ±2/
√
100 = ±0.2.

Figure 3.14 (right) displays the sample correlograms (one for each simulated white noise

series) with horizontal lines at the ±0.2 margin of error cutoffs. Even though the gener-

ated data are truly white noise, we still do see some values of rk (one for each realization)

PAGE 78



CHAPTER 3 STAT 520, J. TEBBS

Time

W
hi

te
 n

oi
se

 p
ro

ce
ss

.1

0 20 40 60 80 100

−3
−2

−1
0

1
2

5 10 15 20

−0
.2

−0
.1

0.
0

0.
1

0.
2

Lag

AC
F

Sample ACF

Time

W
hi

te
 n

oi
se

 p
ro

ce
ss

.2

0 20 40 60 80 100

−2
0

1
2

3

5 10 15 20
−0

.2
0.

0
0.

1
0.

2

Lag

AC
F

Sample ACF

Figure 3.14: Two simulated standard normal white noise processes with their associated

sample autocorrelation functions.

that fall outside the margin of error cutoffs. Why does this happen?

• In essence, every time we compare rk to its margin of error cutoffs ±2/
√
n, we are

performing a hypothesis test, namely, we are testing H0 : ρk = 0 at a significance

level of approximately α = 0.05.

• Therefore, 5 percent of the time on average, we will observe a significant result

which is really a “false alarm” (i.e., a Type I Error).

• When you are interpreting correlograms, keep this in mind. If there are patterns

in the values of rk and many which extend beyond the margin of error (especially

at early lags), the series is probably not white noise. On the other hand, a stray

statistically significant value of rk at, say, lag k = 17 is likely just a false alarm.
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4 Models for Stationary Time Series

Complementary reading: Chapter 4 (CC).

4.1 Introduction

RECALL: In the last chapter, we used regression to “detrend” time series data with

the hope of removing non-stationary patterns and producing residuals that resembled

a stationary process. We also learned that differencing can be an effective technique

to transform a non-stationary process into one which is stationary. In this chapter, we

consider (linear) time series models for stationary processes. Recall that stationary time

series are those whose statistical properties do not change over time.

TERMINOLOGY : Suppose {et} is a zero mean white noise process with var(et) = σ2
e .

A general linear process is defined by

Yt = et +Ψ1et−1 +Ψ2et−2 +Ψ3et−3 + · · · .

That is, Yt, the value of the process at time t, is a weighted linear combination of white

noise terms at the current and past times. The processes that we examine in this chapter

are special cases of this general linear process. In general, E(Yt) = 0 and

γk = cov(Yt, Yt−k) = σ2
e

∞∑
i=0

ΨiΨi+k,

for k ≥ 0, where we set Ψ0 = 1.

• For mathematical reasons (to ensure stationarity), we will assume that the Ψi’s are

square summable, that is,
∞∑
i=1

Ψ2
i <∞.

• A nonzero mean µ could be added to the right-hand side of the general linear

process above; this would not affect the stationarity properties of {Yt}. Therefore,

there is no harm in assuming that the process {Yt} has zero mean.
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4.2 Moving average processes

TERMINOLOGY : Suppose {et} is a zero mean white noise process with var(et) = σ2
e .

The process

Yt = et − θ1et−1 − θ2et−2 − · · · − θqet−q

is called a moving average process of order q, denoted by MA(q). Note that this

is a special case of the general linear process with Ψ0 = 1, Ψ1 = −θ1, Ψ2 = −θ2, ...,

Ψq = −θq, and Ψq∗ = 0 for all q∗ > q.

4.2.1 MA(1) process

TERMINOLOGY : With q = 1, the moving average process defined above becomes

Yt = et − θet−1.

This is called an MA(1) process. For this process, the mean is

E(Yt) = E(et − θet−1) = E(et)− θE(et−1) = 0.

The variance is

γ0 = var(Yt) = var(et − θet−1)

= var(et) + θ2var(et−1)− 2θcov(et, et−1)

= σ2
e + θ2σ2

e = σ2
e(1 + θ2).

The autocovariance at lag 1 is given by

γ1 = cov(Yt, Yt−1) = cov(et − θet−1, et−1 − θet−2)

= cov(et, et−1)− θcov(et, et−2)− θcov(et−1, et−1) + θ2cov(et−1, et−2)

= −θvar(et−1) = −θσ2
e .

For any lag k > 1, γk = cov(Yt, Yt−k) = 0, because no white noise subscripts in Yt and

Yt−k will overlap.
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AUTOCOVARIANCE FUNCTION : For an MA(1) process,

γk =


σ2
e(1 + θ2), k = 0

−θσ2
e , k = 1

0, k > 1.

AUTOCORRELATION FUNCTION : For an MA(1) process,

ρk =
γk
γ0

=


1, k = 0

− θ

1 + θ2
, k = 1

0, k > 1.

IMPORTANT : The MA(1) process has zero correlation beyond lag k = 1! Ob-

servations one time unit apart are correlated, but observations more than one time unit

apart are not. This is important to keep in mind when we entertain models for real data

using empirical evidence (e.g., sample autocorrelations rk, etc.).

FACTS : The following theoretical results hold for an MA(1) process.

• When θ = 0, the MA(1) process reduces to a white noise process.

• As θ ranges from −1 to 1, the (population) lag 1 autocorrelation ρ1 ranges from

0.5 to −0.5; see pp 58 (CC).

• The largest ρ1 can be is 0.5 (when θ = −1) and the smallest ρ1 can be is −0.5

(when θ = 1). Therefore, if we were to observe a sample lag 1 autocorrelation r1

that was well outside [−0.5, 0.5], this would be inconsistent with the MA(1) model.

• The population lag 1 autocorrelation

ρ1 = −
θ

1 + θ2

remains the same if θ is replaced by 1/θ. Therefore, if someone told you the value

of ρ1 for an MA(1) process, you could not identify the corresponding value of θ

uniquely. This is somewhat problematic and will have consequences in due course

(e.g., when we discuss invertibility).
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MA(1) simulation
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Figure 4.1: Upper left: MA(1) simulation with θ = −0.9, n = 100, and σ2
e = 1. Upper

right: Sample autocorrelation function rk. Lower left: Scatterplot of Yt versus Yt−1.

Lower right: Scatterplot of Yt versus Yt−2.

Example 4.1. We use R to simulate the MA(1) process Yt = et−θet−1, where θ = −0.9,

n = 100, and et ∼ iid N (0, 1).

• Note that

θ = −0.9 =⇒ ρ1 =
−(−0.9)

1 + (−0.9)2
≈ 0.497.

• There is a moderately strong positive autocorrelation at lag 1. Of course, ρk = 0,

for all k > 1.

• The sample ACF in Figure 4.1 (upper right) looks like what we would expect from

the MA(1) theory. There is a pronounced “spike” at k = 1 in the sample ACF and

little action elsewhere (for k > 1). The error bounds at ±2/
√
100 = 0.2 correspond
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MA(1) simulation
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Figure 4.2: Upper left: MA(1) simulation with θ = 0.9, n = 100, and σ2
e = 1. Upper

right: Sample autocorrelation function rk. Lower left: Scatterplot of Yt versus Yt−1.

Lower right: Scatterplot of Yt versus Yt−2.

to those for a white noise process; not an MA(1) process.

• The lag 1 scatterplot; i.e., the scatterplot of Yt versus Yt−1, shows a moderate

increasing linear relationship. This is expected because of the moderately strong

positive lag 1 autorcorrelation.

• The lag 2 scatterplot; i.e., the scatterplot of Yt versus Yt−2, shows no linear rela-

tionship. This is expected because ρ2 = 0 for an MA(1) process.

• Figure 4.2 displays a second MA(1) simulation, except with θ = 0.9. In this model,

ρ1 ≈ −0.497 and ρk = 0, for all k > 1. Compare Figure 4.2 with Figure 4.1.
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4.2.2 MA(2) process

TERMINOLOGY : Suppose {et} is a zero mean white noise process with var(et) = σ2
e .

The process

Yt = et − θ1et−1 − θ2et−2

is a moving average process of order 2, denoted by MA(2). For this process, the

mean is

E(Yt) = E(et − θ1et−1 − θ2et−2) = E(et)− θ1E(et−1)− θ2E(et−2) = 0.

The variance is

γ0 = var(Yt) = var(et − θ1et−1 − θ2et−2)

= var(et) + θ21var(et−1) + θ22var(et−2) + 6 covariance terms︸ ︷︷ ︸
all = 0

= σ2
e + θ21σ

2
e + θ22σ

2
e = σ2

e(1 + θ21 + θ22).

The autocovariance at lag 1 is given by

γ1 = cov(Yt, Yt−1) = cov(et − θ1et−1 − θ2et−2, et−1 − θ1et−2 − θ2et−3)

= cov(−θ1et−1, et−1) + cov(−θ2et−2,−θ1et−2)

= −θ1var(et−1) + (−θ2)(−θ1)var(et−2)

= −θ1σ2
e + θ1θ2σ

2
e = (−θ1 + θ1θ2)σ

2
e .

The autocovariance at lag 2 is given by

γ2 = cov(Yt, Yt−2) = cov(et − θ1et−1 − θ2et−2, et−2 − θ1et−3 − θ2et−4)

= cov(−θ2et−2, et−2)

= −θ2var(et−2) = −θ2σ2
e .

For any lag k > 2,

γk = cov(Yt, Yt−k) = 0,

because no white noise subscripts in Yt and Yt−k will overlap.
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AUTOCOVARIANCE FUNCTION : For an MA(2) process,

γk =



σ2
e(1 + θ21 + θ22), k = 0

(−θ1 + θ1θ2)σ
2
e , k = 1

−θ2σ2
e , k = 2

0 k > 2.

AUTOCORRELATION FUNCTION : For an MA(2) process,

ρk =
γk
γ0

=



1, k = 0
−θ1 + θ1θ2
1 + θ21 + θ22

, k = 1

−θ2
1 + θ21 + θ22

, k = 2

0 k > 2.

IMPORTANT : The MA(2) process has zero correlation beyond lag k = 2! Ob-

servations 1 or 2 time units apart are correlated. Observations more than two time units

apart are not correlated.

Example 4.2. We use R to simulate the MA(2) process

Yt = et − θ1et−1 − θ2et−2,

where θ1 = 0.9, θ2 = −0.7, n = 100, and et ∼ iid N (0, 1). For this process,

ρ1 =
−θ1 + θ1θ2
1 + θ21 + θ22

=
−0.9 + (0.9)(−0.7)
1 + (0.9)2 + (−0.7)2

≈ −0.665

and

ρ2 =
−θ2

1 + θ21 + θ22
=

−(−0.7)
1 + (0.9)2 + (−0.7)2

≈ 0.304.

Figure 4.3 displays the simulated MA(2) time series, the sample ACF, and the lag 1

and 2 scatterplots. There are pronounced “spikes” at k = 1 and k = 2 in the sample

ACF and little action elsewhere (for k > 2). The lagged scatterplots display negative

(positive) autocorrelation at lag 1 (2). All of these observations are consistent with the

MA(2) theory. Note that the error bounds at ±2/
√
100 = 0.2 correspond to those for a

white noise process; not an MA(2) process.
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Figure 4.3: Upper left: MA(2) simulation with θ1 = 0.9, θ2 = −0.7, n = 100, and σ2
e = 1.

Upper right: Sample autocorrelation function rk. Lower left: Scatterplot of Yt versus

Yt−1. Lower right: Scatterplot of Yt versus Yt−2.

4.2.3 MA(q) process

MODEL: Suppose {et} is a zero mean white noise process with var(et) = σ2
e . The MA(q)

process is

Yt = et − θ1et−1 − θ2et−2 − · · · − θqet−q.

Standard calculations show that

E(Yt) = 0

and

γ0 = var(Yt) = σ2
e(1 + θ21 + θ22 + · · ·+ θ2q).
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AUTOCORRELATION FUNCTION : For an MA(q) process,

ρk =



1, k = 0
−θk + θ1θk+1 + θ2θk+2 + · · ·+ θq−kθq

1 + θ21 + θ22 + · · ·+ θ2q
, k = 1, 2, ..., q − 1

−θq
1 + θ21 + θ22 + · · ·+ θ2q

, k = q

0 k > q.

The salient feature is that the (population) ACF ρk is nonzero for lags k = 1, 2, ..., q.

For all lags k > q, the ACF ρk = 0.

4.3 Autoregressive processes

TERMINOLOGY : Suppose {et} is a zero mean white noise process with var(et) = σ2
e .

The process

Yt = ϕ1Yt−1 + ϕ2Yt−2 + · · ·+ ϕpYt−p + et

is called an autoregressive process of order p, denoted by AR(p).

• In this model, the value of the process at time t, Yt, is a weighted linear combination

of the values of the process from the previous p time points plus a “shock” or

“innovation” term et at time t.

• We assume that et, the innovation at time t, is independent of all previous process

values Yt−1, Yt−2, ...,.

• We continue to assume that E(Yt) = 0. A nonzero mean could be added to the

model by replacing Yt with Yt−µ (for all t). This would not affect the stationarity

properties.

• This process (assuming that is stationary) is a special case of the general linear

process defined at the beginning of this chapter.
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4.3.1 AR(1) process

TERMINOLOGY : Take p = 1 in the general AR(p) process and we get

Yt = ϕYt−1 + et.

This is an AR(1) process. Note that if ϕ = 1, this process reduces to a random walk.

If ϕ = 0, this process reduces to white noise.

VARIANCE : Assuming that this process is stationary (it isn’t always), the variance of

Yt can be obtained in the following way. In the AR(1) equation, take variances of both

sides to get

var(Yt) = var(ϕYt−1 + et)

= ϕ2var(Yt−1) + var(et) + 2ϕcov(Yt−1, et)︸ ︷︷ ︸
= 0

= ϕ2var(Yt−1) + σ2
e .

Assuming stationarity, var(Yt) = var(Yt−1) = γ0. Therefore, we have

γ0 = ϕ2γ0 + σ2
e =⇒ γ0 =

σ2
e

1− ϕ2
.

Because γ0 > 0, this equation implies that 0 < ϕ2 < 1, that is, −1 < ϕ < 1.

AUTOCOVARIANCE : To find the autocovariance function γk, multiply both sides of

the AR(1) equation by Yt−k to get

YtYt−k = ϕYt−1Yt−k + etYt−k.

Taking expectations of both sides, we have

E(YtYt−k) = ϕE(Yt−1Yt−k) + E(etYt−k).

We now make the following observations:

• Because et is independent of Yt−k (by assumption), we have

E(etYt−k) = E(et)E(Yt−k) = 0.
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• Because {Yt} is a zero mean process (by assumption), we have

γk = cov(Yt, Yt−k) = E(YtYt−k)− E(Yt)E(Yt−k) = E(YtYt−k)

γk−1 = cov(Yt−1, Yt−k) = E(Yt−1Yt−k)− E(Yt−1)E(Yt−k) = E(Yt−1Yt−k).

From these two observations, we have established the following (recursive) relationship

for an AR(1) process:

γk = ϕγk−1.

When k = 1,

γ1 = ϕγ0 = ϕ

(
σ2
e

1− ϕ2

)
.

When k = 2,

γ2 = ϕγ1 = ϕ2

(
σ2
e

1− ϕ2

)
.

This pattern continues for larger k. In general, the autocovariance function for an AR(1)

process is

γk = ϕk

(
σ2
e

1− ϕ2

)
, for k = 0, 1, 2, ..., .

AUTOCORRELATION : For an AR(1) process,

ρk =
γk
γ0

=
ϕk
(

σ2
e

1−ϕ2

)
σ2
e

1−ϕ2

= ϕk, for k = 0, 1, 2, ..., .

IMPORTANT : For an AR(1) process, because −1 < ϕ < 1, the (population) ACF

ρk = ϕk decays exponentially as k increases.

• If ϕ is close to ±1, then the decay will be more slowly.

• If ϕ is not close to ±1, then the decay will take place rapidly.

• If ϕ > 0, then all of the autocorrelations will be positive.

• If ϕ < 0, then the autocorrelations will alternate from negative (k = 1), to positive

(k = 2), to negative (k = 3), to positive (k = 4), and so on.

• Remember these theoretical patterns so that when we see sample ACFs (from real

data!), we can make sensible decisions about potential model selection.
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Figure 4.4: Population ACFs for AR(1) processes. Upper left: ϕ = 0.9. Upper right:

ϕ = −0.9. Lower left: ϕ = 0.5. Lower right: ϕ = −0.5.

Example 4.3. We use R to simulate four different AR(1) processes

Yt = ϕYt−1 + et,

with et ∼ iid N (0, 1) and n = 100. We choose

• ϕ = 0.9 (large ρ1, ACF should decay slowly, all ρk positive)

• ϕ = −0.9 (large ρ1, ACF should decay slowly, ρk alternating)

• ϕ = 0.5 (moderate ρ1, ACF should decay more quickly, all ρk positive)

• ϕ = −0.5 (moderate ρ1, ACF should decay more quickly, ρk alternating).

These choices of ϕ are consistent with those in Figure 4.4, which depicts the true (pop-

ulation) AR(1) autocorrelation functions.
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Figure 4.5: AR(1) simulations with n = 100 and σ2
e = 1. Upper left: ϕ = 0.9. Upper

right: ϕ = −0.9. Lower left: ϕ = 0.5. Lower right: ϕ = −0.5.

• In Figure 4.5, note the differences between the series on the left (ϕ > 0) and the

series on the right (ϕ < 0).

– When ϕ > 0, the series tends to “hang together” (since ρ1 > 0).

– When ϕ < 0, there is more oscillation (since ρ1 < 0).

• In Figure 4.6, we display the sample autocorrelation functions. Compare the sample

ACFs to the theoretical ACFs in Figure 4.4. The fact that these figures do not agree

completely is a byproduct of the sample autocorrelations rk exhibiting sampling

variability. The error bounds at ±2/
√
100 = 0.2 correspond to those for a white

noise process; not an AR(1) process.
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Figure 4.6: Sample ACFs for AR(1) simulations with n = 100 and σ2
e = 1. Upper left:

ϕ = 0.9. Upper right: ϕ = −0.9. Lower left: ϕ = 0.5. Lower right: ϕ = −0.5.

OBSERVATION : Suppose {et} is a zero mean white noise process with var(et) = σ2
e . We

now show that the AR(1) process

Yt = ϕYt−1 + et

can be written in the form of a general linear process

Yt = et +Ψ1et−1 +Ψ2et−2 +Ψ3et−3 + · · · .

To show this, write Yt−1 = ϕYt−2 + et−1 so that

Yt = ϕYt−1 + et

= ϕ(ϕYt−2 + et−1) + et

= et + ϕet−1 + ϕ2Yt−2.
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Substituting in Yt−2 = ϕYt−3 + et−2, we get

Yt = et + ϕet−1 + ϕ2(ϕYt−3 + et−2)

= et + ϕet−1 + ϕ2et−2 + ϕ3Yt−3.

Continuing this type of substitution indefinitely, we get

Yt = et + ϕet−1 + ϕ2et−2 + ϕ3et−3 + · · · .

Therefore, the AR(1) process is a special case of the general linear process with Ψj = ϕj,

for j = 0, 1, 2, ...,.

STATIONARITY CONDITION : The AR(1) process

Yt = ϕYt−1 + et

is stationary if and only if |ϕ| < 1, that is, if −1 < ϕ < 1. If |ϕ| ≥ 1, then the AR(1)

process is not stationary.

4.3.2 AR(2) process

TERMINOLOGY : Suppose {et} is a zero mean white noise process with var(et) = σ2
e .

The AR(2) process is

Yt = ϕ1Yt−1 + ϕ2Yt−2 + et.

• The current value of the process, Yt, is a weighted linear combination of the values

of the process from the previous two time periods, plus a random innovation (error)

at the current time.

• We continue to assume that E(Yt) = 0. A nonzero mean µ could be added to model

by replacing Yt with Yt − µ for all t.

• We continue to assume that et is independent of Yt−k, for all k = 1, 2, ...,.
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• Just as the AR(1) model requires certain conditions for stationarity, the AR(2)

model does too. A thorough discussion of stationarity for the AR(2) model, and

higher order AR models, becomes very theoretical. We highlight only the basic

points.

TERMINOLOGY : First, we define the operator B to satisfy

BYt = Yt−1,

that is, B “backs up” the current value Yt one time unit to Yt−1. For this reason, we call

B the backshift operator. Similarly,

B2Yt = BBYt = BYt−1 = Yt−2.

In general, BkYt = Yt−k. Using this new notation, we can rewrite the AR(2) model

Yt = ϕ1Yt−1 + ϕ2Yt−2 + et

in the following way:

Yt = ϕ1BYt + ϕ2B
2Yt + et.

Rewriting this equation, we get

Yt − ϕ1BYt − ϕ2B
2Yt = et ⇐⇒ (1− ϕ1B − ϕ2B

2)Yt = et.

Finally, treating the B as a dummy variable for algebraic reasons (and using the more

conventional algebraic symbol x), we define the AR(2) characteristic polynomial as

ϕ(x) = 1− ϕ1x− ϕ2x
2

and the corresponding AR(2) characteristic equation to be

ϕ(x) = 1− ϕ1x− ϕ2x
2 = 0.

IMPORTANT : Characterizing the stationarity conditions for the AR(2) model is done by

examining this equation and the solutions to it; i.e., the roots of ϕ(x) = 1− ϕ1x− ϕ2x
2.
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NOTE : Applying the quadratic formula to the AR(2) characteristic equation, we see that

the roots of ϕ(x) = 1− ϕ1x− ϕ2x
2 are

x =
ϕ1 ±

√
ϕ2
1 + 4ϕ2

−2ϕ2

.

• The roots are both real if ϕ2
1 + 4ϕ2 > 0.

• The roots are both complex if ϕ2
1 + 4ϕ2 < 0

• There is a single real root with multiplicity 2 if ϕ2
1 + 4ϕ2 = 0.

STATIONARITY CONDITIONS : The AR(2) process is stationary when the roots of

ϕ(x) = 1 − ϕ1x − ϕ2x
2 both exceed 1 in absolute value (or in modulus if the roots are

complex). This occurs if and only if

ϕ1 + ϕ2 < 1 ϕ2 − ϕ1 < 1 |ϕ2| < 1

(see Appendix B, pp 84, CC). These are the stationarity conditions for the AR(2)

model. A sketch of this stationarity region (in the ϕ1-ϕ2 plane) appears in Figure 4.7.

RECALL: Define i =
√
−1 so that z = a + bi is a complex number. The modulus of

z = a+ bi is

|z| =
√
a2 + b2.

AUTOCORRELATION FUNCTION : To derive the population ACF for an AR(2) pro-

cess, start with the AR(2) model equation

Yt = ϕ1Yt−1 + ϕ2Yt−2 + et

and multiply both sides by Yt−k to get

YtYt−k = ϕ1Yt−1Yt−k + ϕ2Yt−2Yt−k + etYt−k.

Taking expectations of both sides gives

E(YtYt−k) = ϕ1E(Yt−1Yt−k) + ϕ2E(Yt−2Yt−k) + E(etYt−k).
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Figure 4.7: Stationarity region for the AR(2) model. The point (ϕ1, ϕ2) must fall inside

the triangular region to satisfy the stationarity conditions. Points falling below the curve

ϕ2
1 + 4ϕ2 = 0 are complex solutions. Those falling above ϕ2

1 + 4ϕ2 = 0 are real solutions.

Because {Yt} is a zero mean process, E(YtYt−k) = γk, E(Yt−1Yt−k) = γk−1, and

E(Yt−2Yt−k) = γk−2. Because et is independent of Yt−k, E(etYt−k) = E(et)E(Yt−k) = 0.

This proves that

γk = ϕ1γk−1 + ϕ2γk−2.

Dividing through by γ0 = var(Yt) gives

ρk = ϕ1ρk−1 + ϕ2ρk−2.

These are called the Yule-Walker equations for the AR(2) process.
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NOTE : For k = 1 and k = 2, the Yule-Walker equations provide

ρ1 = ϕ1 + ϕ2ρ1

ρ2 = ϕ1ρ1 + ϕ2,

where ρ0 = 1. Solving this system for ρ1 and ρ2, we get

ρ1 =
ϕ1

1− ϕ2

and ρ2 =
ϕ2
1 + ϕ2 − ϕ2

2

1− ϕ2

.

• Therefore, we have closed-form expressions for ρ1 and ρ2 in terms of ϕ1 and ϕ2.

• If we want to find higher lag autocorrelations, we can use the (recursive) relation

ρk = ϕ1ρk−1 + ϕ2ρk−2.

For example, ρ3 = ϕ1ρ2 + ϕ2ρ1, ρ4 = ϕ1ρ3 + ϕ2ρ2, and so on.

REMARK : For those of you that like formulas, it is possible to write out closed-form

expressions for the autocorrelations in an AR(2) process. Denote the roots of the AR(2)

characteristic polynomial by 1/G1 and 1/G2 and assume that these roots both exceed 1

in absolute value (or modulus). Straightforward algebra shows that

G1 =
ϕ1 −

√
ϕ2
1 + 4ϕ2

2

G2 =
ϕ1 +

√
ϕ2
1 + 4ϕ2

2
.

• If G1 ̸= G2, then

ρk =
(1−G2

2)G
k+1
1 − (1−G2

1)G
k+1
2

(G1 −G2)(1 +G1G2)
.

• If 1/G1 and 1/G2 are complex (i.e., when ϕ2
1 + 4ϕ2 < 0), then

ρk = Rk sin(Θk + Φ)

sin(Φ)
,

where R =
√
−ϕ2, Θ = cos−1(ϕ1/2

√
−ϕ2), and Φ = tan−1[(1− ϕ2)/(1 + ϕ2)].
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• If G1 = G2 (i.e., when ϕ2
1 + 4ϕ2 = 0), then

ρk =

[
1 + k

(
1 + ϕ2

1− ϕ2

)](
ϕ1

2

)k

.

DISCUSSION : Personally, I don’t think these formulas are all that helpful for computa-

tion purposes. So, why present them? After all, we could use the Yule-Walker equations

for computation.

• The formulas are helpful in that they reveal typical shapes of the AR(2) population

ACFs. This is important because when we see these shapes with real data (through

the sample ACFs), this will aid us in model selection/identification.

• Denote the roots of the AR(2) characteristic polynomial by 1/G1 and 1/G2. If the

AR(2) process is stationary, then both of these roots are larger than 1 (in absolute

value or modulus). However,

|1/G1| > 1, |1/G2| > 1 =⇒ |G1| < 1, |G2| < 1.

Therefore, each of

ρk =
(1−G2

2)G
k+1
1 − (1−G2

1)G
k+1
2

(G1 −G2)(1 +G1G2)

ρk = Rk sin(Θk + Φ)

sin(Φ)

ρk =

[
1 + k

(
1 + ϕ2

1− ϕ2

)](
ϕ1

2

)k

satisfies the following:

ρk → 0, as k →∞.

• Therefore, in an AR(2) process, the population autocorrelations ρk (in magnitude)

decay towards zero as k increases. Further inspection reveals that the decay is

exponential in nature. In addition, when the roots are complex, the values of ρk

resemble a sinusoidal pattern that dampens out as k increases.
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Figure 4.8: Population ACFs for AR(2) processes. Upper left: (ϕ1, ϕ2) = (0.5,−0.5).

Upper right: (ϕ1, ϕ2) = (1.1,−0.3). Lower left: (ϕ1, ϕ2) = (−0.5, 0.25). Lower right:

(ϕ1, ϕ2) = (1,−0.5).

Example 4.4. We use R to simulate four AR(2) processes Yt = ϕ1Yt−1 + ϕ2Yt−2 + et,

with et ∼ iid N (0, 1) and n = 100. We choose

• (ϕ1, ϕ2) = (0.5,−0.5). CP: ϕ(x) = 1− 0.5x+ 0.5x2. Complex roots.

• (ϕ1, ϕ2) = (1.1,−0.3). CP: ϕ(x) = 1− 1.1x+ 0.3x2. Two distinct (real) roots.

• (ϕ1, ϕ2) = (−0.5, 0.25). CP: ϕ(x) = 1 + 0.5x− 0.25x2. Two distinct (real) roots.

• (ϕ1, ϕ2) = (1,−0.5). CP: ϕ(x) = 1− x+ 0.5x2. Complex roots.

These choices of (ϕ1, ϕ2) are consistent with those in Figure 4.8 that depict the true

(population) AR(2) autocorrelation functions.
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Figure 4.9: AR(2) simulations with n = 100 and σ2
e = 1. Upper left: (ϕ1, ϕ2) =

(0.5,−0.5). Upper right: (ϕ1, ϕ2) = (1.1,−0.3). Lower left: (ϕ1, ϕ2) = (−0.5, 0.25).

Lower right: (ϕ1, ϕ2) = (1,−0.5).

• Consistent with the theory (see the population ACFs in Figure 4.8), the first (upper

left), second (upper right), and the fourth (lower right) series do “hang together;”

this is because of the positive lag 1 autocorrelation. The third series (lower left)

tends to oscillate, as we would expect since ρ1 < 0.

• The sample ACFs in Figure 4.10 resemble somewhat their theoretical counterparts

(at least at the first lag). Later lags generally deviate from the known theoretical

autocorrelations (there is a good reason for this). The error bounds at ±2/
√
100 =

0.2 correspond to those for a white noise process; not an AR(1) process.
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Figure 4.10: Sample ACFs for AR(2) simulations with n = 100 and σ2
e = 1. Upper

left: (ϕ1, ϕ2) = (0.5,−0.5). Upper right: (ϕ1, ϕ2) = (1.1,−0.3). Lower left: (ϕ1, ϕ2) =

(−0.5, 0.25). Lower right: (ϕ1, ϕ2) = (1,−0.5).

VARIANCE : For the AR(2) process,

γ0 = var(Yt) =

(
1− ϕ2

1 + ϕ2

)
σ2
e

(1− ϕ2)2 − ϕ2
1

.

NOTE : The AR(2) model can be expressed as a general linear process

Yt = et +Ψ1et−1 +Ψ2et−2 +Ψ3et−3 + · · · .

If 1/G1 and 1/G2 are the roots of the AR(2) characteristic polynomial, then

Ψj =
Gj+1

1 −Gj+1
2

G1 −G2

, Ψj = Rj sin[(j + 1)Θ]

sin(Θ)
, Ψj = (1 + j)ϕj

1,

depending on if G1 ̸= G2, G1 and G2 are complex, or G1 = G2, respectively.
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4.3.3 AR(p) process

RECALL: Suppose {et} is a zero mean white noise process with var(et) = σ2
e . The general

autoregressive process of order p, denoted AR(p), is

Yt = ϕ1Yt−1 + ϕ2Yt−2 + · · ·+ ϕpYt−p + et.

In backshift operator notation, we can write the model as

(1− ϕ1B − ϕ2B
2 − · · · − ϕpB

p)Yt = et,

yielding the AR(p) characteristic equation

ϕ(x) = 1− ϕ1x− ϕ2x
2 − · · · − ϕpx

p = 0.

IMPORTANT : An AR(p) process is stationary if and only if the p roots of ϕ(x) each

exceed 1 in absolute value (or in modulus if the roots are complex).

• Consider an AR(1) process

Yt = ϕYt−1 + et ⇐⇒ (1− ϕB)Yt = et.

The AR(1) characteristic polynomial is ϕ(x) = 1− ϕx. Therefore,

ϕ(x) = 1− ϕx = 0 =⇒ x =
1

ϕ
.

Clearly,

|x| =
∣∣∣1
ϕ

∣∣∣ > 1 ⇐⇒ |ϕ| < 1,

which was the stated stationarity condition for the AR(1) process.

• Consider an AR(2) process

Yt = ϕ1Yt−1 + ϕ2Yt−2 + et ⇐⇒ (1− ϕ1B − ϕ2B
2)Yt = et.

The AR(2) characteristic polynomial is ϕ(x) = 1− ϕ1x− ϕ2x
2 whose two roots are

x =
ϕ1 ±

√
ϕ2
1 + 4ϕ2

−2ϕ2

.
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The AR(2) process is stationary if and only if both roots are larger than 1 in

absolute value (or in modulus if complex). That is, both roots must lie outside the

unit circle.

• The same condition on the roots of ϕ(x) is needed for stationarity with any AR(p)

process.

YULE-WALKER EQUATIONS : Assuming stationarity and zero means, consider the

AR(p) process equation

Yt = ϕ1Yt−1 + ϕ2Yt−2 + · · ·+ ϕpYt−p + et

and multiply both sides by Yt−k to get

YtYt−k = ϕ1Yt−1Yt−k + ϕ2Yt−2Yt−k + · · ·+ ϕpYt−pYt−k + etYt−k.

Taking expectations gives

γk = ϕ1γk−1 + ϕ2γk−2 + · · ·+ ϕpγk−p

and dividing through by the process variance γ0, we get

ρk = ϕ1ρk−1 + ϕ2ρk−2 + · · ·+ ϕpρk−p.

Plugging in k = 1, 2, ..., p, and using the fact that ρk = ρ−k, we get

ρ1 = ϕ1 + ϕ2ρ1 + ϕ3ρ2 + · · ·+ ϕpρp−1

ρ2 = ϕ1ρ1 + ϕ2 + ϕ3ρ1 + · · ·+ ϕpρp−2

...

ρp = ϕ1ρp−1 + ϕ2ρp−2 + ϕ3ρp−3 + · · ·+ ϕp.

These are the Yule-Walker equations. For known values of ϕ1, ϕ2, ..., ϕp, we can com-

pute the first lag p autocorrelations ρ1, ρ2, ..., ρp. Values of ρk, for k > p, can be obtained

by using the recursive relation above. The AR(p) ACF tails off as k gets larger. It does

so as a mixture of exponential decays and/or damped sine waves, depending on if roots

are real or complex.
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4.4 Invertibility

TERMINOLOGY : We define a process {Yt} to be invertible if it can written as a

“mathematically meaningful” autoregressive process (possibly of infinite order). Invert-

ibility is an important theoretical property. For prediction purposes, it is important to

restrict our attention to the class of invertible models.

ILLUSTRATION : From the definition, we see that stationary autoregressive models are

automatically invertible. However, moving average models may not be. For example,

consider the MA(1) model

Yt = et − θet−1,

or, slightly rewritten,

et = Yt + θet−1.

Note that we can write

et = Yt + θ (Yt−1 + θet−2)︸ ︷︷ ︸
= et−1

= Yt + θYt−1 + θ2et−2.

Repeated similar substitution reveals that

et = Yt + θYt−1 + θ2Yt−2 + θ3Yt−3 + · · · ,

or slightly rewritten

Yt = −θYt−1 − θ2Yt−2 − θ3Yt−3 − · · · + et︸ ︷︷ ︸
“AR(∞)”

.

• For this autoregressive representation to be “mathematically meaningful,” we need

the infinite series of θ coefficients to be finite; that is, we need
∑∞

j=1 θ
j <∞. This

occurs if and only if |θ| < 1.

• We have expressed an MA(1) as an infinite-order AR model. The MA(1) process

is invertible if and only if |θ| < 1.

• Compare this MA(1) “invertibility condition” with the stationarity condition of

|ϕ| < 1 for the AR(1) model.
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IMPORTANCE : A model must be invertible for us to be able to identify the model

parameters associated with it. For example, for an MA(1) model, it is straightforward

to show that both of the following processes have the same autocorrelation function:

Yt = et − θet−1

Yt = et −
1

θ
et−1.

Put another way, if we knew the common ACF, we could not say if the MA(1) model

parameter was θ or 1/θ. Thus, we impose the condition that |θ| < 1 to ensure invertibility

(identifiability). Note that under this condition, the second MA(1) model, rewritten

Yt = −
(
1

θ

)
Yt−1 −

(
1

θ

)2

Yt−2 −
(
1

θ

)3

Yt−3 − · · · + et,

is no longer meaningful because the series
∑∞

j=1

(
1
θ

)j
diverges.

NOTE : Rewriting the MA(1) model using backshift notation, we see that

Yt = (1− θB)et.

The function θ(x) = 1− θx is called the MA(1) characteristic polynomial and

θ(x) = 1− θx = 0

is called the MA(1) characteristic equation. The root of this equation is

x =
1

θ
.

For this process to be invertible, we require the root of the characteristic equation to

exceed 1 (in absolute value). Doing so implies that |θ| < 1.

GENERALIZATION : The MA(q) process

Yt = et − θ1et−1 − θ2et−2 − · · · − θqet−q

= (1− θ1B − θ2B
2 − · · · − θqB

q)et

is invertible if and only if the roots of the MA(q) characteristic polynomial θ(x) =

1− θ1x− θ2x
2 − · · · − θqx

q all exceed 1 in absolute value (or modulus).
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SUMMARY : We have discussed two important theoretical properties of autoregressive

(AR) and moving average (MA) models, namely, stationarity and invertibility. Here

is a summary of the important findings.

• For an AR(p) process to be stationary, we need the roots of the AR characteristic

polynomial

ϕ(x) = 1− ϕ1x− ϕ2x
2 − · · · − ϕpx

p

to all exceed 1 in absolute value (or modulus).

• For an MA(q) process to be invertible, we need the roots of the MA characteristic

polynomial

θ(x) = 1− θ1x− θ2x
2 − · · · − θqx

q

to all exceed 1 in absolute value (or modulus).

• All invertible MA processes are stationary.

• All stationary AR processes are invertible.

• Any invertible MA(q) process corresponds to an infinite order AR process.

• Any stationary AR(p) process corresponds to an infinite order MA process.

4.5 Autoregressive moving average (ARMA) processes

TERMINOLOGY : Suppose {et} is a zero mean white noise process with var(et) = σ2
e .

The process

Yt = ϕ1Yt−1 + ϕ2Yt−2 + · · ·+ ϕpYt−p + et − θ1et−1 − θ2et−2 − · · · − θqet−q

is an autoregressive moving average process of orders p and q, writtenARMA(p, q).

AR(p) and MA(q) processes are each special cases of the ARMA(p, q) process.

• An ARMA(p, 0) process is the same as an AR(p) process.

• An ARMA(0, q) process is the same as an MA(q) process.
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REMARK : A stationary time series may often be adequately modeled by an ARMA

model involving fewer parameters than a pure MA or AR process by itself. This is an

example of the Principle of Parsimony; i.e., finding a model with as few parameters

as possible, but which gives an adequate representation of the data.

BACKSHIFT NOTATION : The ARMA(p, q) process, expressed using backshift nota-

tion, is

(1− ϕ1B − ϕ2B
2 − · · · − ϕpB

p)Yt = (1− θ1B − θ2B
2 − · · · − θqB

q)et

or, more succinctly, as

ϕ(B)Yt = θ(B)et,

where

ϕ(B) = 1− ϕ1B − ϕ2B
2 − · · · − ϕpB

p

θ(B) = 1− θ1B − θ2B
2 − · · · − θqB

q.

• For the ARMA(p, q) process to be stationary, we need the roots of the AR char-

acteristic polynomial ϕ(x) = 1−ϕ1x−ϕ2x
2− · · ·−ϕpx

p to all exceed 1 in absolute

value (or modulus).

• For the ARMA(p, q) process to be invertible, we need the roots of the MA char-

acteristic polynomial θ(x) = 1− θ1x− θ2x
2 − · · · − θqx

q to all exceed 1 in absolute

value (or modulus).

Example 4.5. Write each of the models

(i) Yt = 0.3Yt−1 + et

(ii) Yt = et − 1.3et−1 + 0.4et−2

(iii) Yt = 0.5Yt−1 + et − 0.3et−1 + 1.2et−2

(iv) Yt = 0.4Yt−1 + 0.45Yt−2 + et + et−1 + 0.25et−2

using backshift notation and determine whether the model is stationary and/or invertible.
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Solutions.

(i) The model in (i) is an AR(1) with ϕ = 0.3. In backshift notation, this model is

(1− 0.3B)Yt = et. The characteristic polynomial is

ϕ(x) = 1− 0.3x,

which has the root x = 10/3. Because this root exceeds 1 in absolute value, this

process is stationary. The process is also invertible since it is a stationary AR

process.

(ii) The model in (ii) is an MA(2) with θ1 = 1.3 and θ2 = −0.4. In backshift notation,

this model is Yt = (1− 1.3B + 0.4B2)et. The characteristic polynomial is

θ(x) = 1− 1.3x+ 0.4x2,

which has roots x = 2 and x = 1.25. Because these roots both exceed 1 in absolute

value, this process is invertible. The process is also stationary since it is an invertible

MA process.

(iii) The model in (iii) is an ARMA(1,2) with ϕ1 = 0.5, θ1 = 0.3 and θ2 = −1.2. In

backshift notation, this model is (1 − 0.5B)Yt = (1 − 0.3B + 1.2B2)et. The AR

characteristic polynomial is

ϕ(x) = 1− 0.5x,

which has the root x = 2. Because this root is greater than 1, this process is

stationary. The MA characteristic polynomial is

θ(x) = 1− 0.3x+ 1.2x2,

which has roots x ≈ 0.125± 0.904i. The modulus of each root is

|x| ≈
√

(0.125)2 + (0.904)2 ≈ 0.913,

which is less than 1. Therefore, this process is not invertible.
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(iv) The model in (iv), at first glance, appears to be an ARMA(2,2) with ϕ1 = 0.4,

ϕ2 = 0.45, θ1 = −1, and θ2 = −0.25. In backshift notation, this model is written

as

(1− 0.4B − 0.45B2)Yt = (1 +B + 0.25B2)et.

However, the AR and MA characteristic polynomials in this instance factor as

(1 + 0.5B)(1− 0.9B)Yt = (1 + 0.5B)(1 + 0.5B)et.

In (mixed) ARMA models, the AR and MA characteristic polynomials can not

share any common factors. Here, they do; namely, (1 + 0.5B). Canceling, we have

(1− 0.9B)Yt = (1 + 0.5B)et,

which we identify as an ARMA(1,1) model with ϕ1 = 0.9 and θ1 = −0.5. This

process is stationary since the root of ϕ(x) = 1−0.9x is x = 10/9 > 1. This process

is invertible since the root of θ(x) = 1+0.5x is x = −2, which exceeds 1 in absolute

value.

AUTOCORRELATION FUNCTION : Take the ARMA(p, q) model equation

Yt = ϕ1Yt−1 + ϕ2Yt−2 + · · ·+ ϕpYt−p + et − θ1et−1 − θ2et−2 − · · · − θqet−q

and multiply both sides by Yt−k to get

YtYt−k = ϕ1Yt−1Yt−k + ϕ2Yt−2Yt−k + · · ·+ ϕpYt−pYt−k

+ etYt−k − θ1et−1Yt−k − θ2et−2Yt−k − · · · − θqet−qYt−k.

For k > q, we have E(etYt−k) = E(et−1Yt−k) = · · · = E(et−qYt−k) = 0 so that

γk = ϕ1γk−1 + ϕ2γk−2 + · · ·+ ϕpγk−p.

Dividing through by the process variance γ0, we get, for k > q,

ρk = ϕ1ρk−1 + ϕ2ρk−2 + · · ·+ ϕpρk−p.
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Plugging in k = 1, 2, ..., p, and using the fact that ρk = ρ−k, we arrive again at the Yule

Walker equations:

ρ1 = ϕ1 + ϕ2ρ1 + ϕ3ρ2 + · · ·+ ϕpρp−1

ρ2 = ϕ1ρ1 + ϕ2 + ϕ3ρ1 + · · ·+ ϕpρp−2

...

ρp = ϕ1ρp−1 + ϕ2ρp−2 + ϕ3ρp−3 + · · ·+ ϕp.

A similar system can be derived which involves θ1, θ2, ..., θq.

• The R function ARMAacf can compute autocorrelations numerically for any station-

ary ARMA(p, q) process (including those that are purely AR or MA).

• The ACF for the ARMA(p, q) process tails off after lag q in a manner similar to

the AR(p) process.

• However, unlike the AR(p) process, the first q autocorrelations depend on both

θ1, θ2, ..., θq and ϕ1, ϕ2, ..., ϕp.

SPECIAL CASE : Suppose that {et} is a zero mean white noise process with var(et) = σ2
e .

The process

Yt = ϕYt−1 + et − θet−1

is called an ARMA(1, 1) process. This is a special case of the ARMA(p, q) process

with p = q = 1. In backshift notation, the process can be written as

(1− ϕB)Yt = (1− θB)et

yielding ϕ(x) = 1−ϕx and θ(x) = 1− θx as the AR and MA characteristic polynomials,

respectively. As usual, the conditions for stationarity and invertibility are that the roots

of both polynomials exceed 1 in absolute value.

MOMENTS : The calculations on pp 78-79 (CC) show that

γ0 =

(
1− 2ϕθ + θ2

1− ϕ2

)
σ2
e ,
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Figure 4.11: Population ACFs for ARMA(1,1) processes. Upper left: (ϕ, θ) =

(0.9,−0.25). Upper right: (ϕ, θ) = (−0.9,−0.25). Lower left: (ϕ, θ) = (0.5,−0.25).

Lower right: (ϕ, θ) = (−0.5,−0.25).

γ1 = ϕγ0 − θσ2
e , and γk = ϕγk−1, for k ≥ 2. The autocorrelation function is shown to

satisfy

ρk =

[
(1− θϕ)(ϕ− θ)

1− 2θϕ+ θ2

]
ϕk−1.

Note that when k = 1, ρ1 is equal to a quantity that depends on ϕ and θ. This is

different than the AR(1) process where ρ1 depends on ϕ only. However, as k gets larger,

the autocorrelation ρk decays in a manner similar to the AR(1) process. Figure 4.11

displays some different ARMA(1,1) ACFs.

REMARK : That the ARMA(1,1) model can be written in the general linear process form

defined at the beginning of the chapter is shown on pp 78-79 (CC).
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5 Models for Nonstationary Time Series

Complementary reading: Chapter 5 (CC).

5.1 Introduction

RECALL: Suppose {et} is a zero mean white noise process with variance var(et) = σ2
e .

In the last chapter, we considered the class of ARMA models

Yt = ϕ1Yt−1 + ϕ2Yt−2 + · · ·+ ϕpYt−p + et − θ1et−1 − θ2et−2 − · · · − θqet−q,

or, expressed more succinctly,

ϕ(B)Yt = θ(B)et,

where the AR and MA characteristic operators are

ϕ(B) = (1− ϕ1B − ϕ2B
2 − · · · − ϕpB

p)

θ(B) = (1− θ1B − θ2B
2 − · · · − θqB

q).

• We learned that a process {Yt} in this class is stationary if and only if the roots of

the AR characteristic polynomial ϕ(x) all exceed 1 in absolute value (or modulus).

• We learned that a process {Yt} in this class is invertible if and only if the roots of

the MA characteristic polynomial θ(x) all exceed 1 in absolute value (or modulus).

• In this chapter, we extend this class of models to handle processes which are non-

stationary. We accomplish this by generalizing the class of ARMA models to

include differencing.

• Doing so gives rise to a much larger class of models, the autoregressive inte-

grated moving average (ARIMA) class. This class incorporates a wide range

of nonstationary time series processes.
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TERMINOLOGY : Suppose that {Yt} is a stochastic process. The first difference

process {∇Yt} consists of

∇Yt = Yt − Yt−1.

The second difference process {∇2Yt} consists of

∇2Yt = ∇(∇Yt) = ∇Yt −∇Yt−1

= (Yt − Yt−1)− (Yt−1 − Yt−2)

= Yt − 2Yt−1 + Yt−2.

In general, the dth difference process {∇dYt} consists of

∇dYt = ∇(∇d−1Yt) = ∇d−1Yt −∇d−1Yt−1,

for d = 1, 2, ...,. We take ∇0Yt = Yt by convention.

Example 5.1. Suppose that {Yt} is a random walk process

Yt = Yt−1 + et,

where {et} is zero mean white noise with variance var(et) = σ2
e . We know that {Yt} is not

stationary because its autocovariance function depends on t (see Chapter 2). However,

the first difference process

∇Yt = Yt − Yt−1 = et

is white noise, which is stationary.

• In Figure 5.1 (top), we display a simulated random walk process with n = 150 and

σ2
e = 1. Note how the sample ACF of the series decays very, very slowly over time.

This is typical of a nonstationary series.

• The first difference (white noise) process also appears in Figure 5.1 (bottom), along

with its sample ACF. As we would expect from a white noise process, nearly all of

the sample autocorrelations rk are within the ±2/
√
n bounds.

• As this simple example shows, it is possible to “transform” a nonstationary process

into one that is stationary by taking differences.
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Figure 5.1: Top: A simulated random walk process {Yt} and its sample ACF, with

n = 150 and σ2
e = 1. Bottom: The first difference process {∇Yt} and its sample ACF.

LINEAR TREND MODELS : In Chapter 3, we talked about how to use regression meth-

ods to fit models of the form

Yt = µt +Xt,

where µt is a deterministic trend function and where {Xt} is a stochastic process with

E(Xt) = 0. Suppose that {Xt} is stationary and that the true trend function is

µt = β0 + β1t,

a linear function of time. Clearly, {Yt} is not a stationary process because

E(Yt) = E(β0 + β1t+Xt)

= β0 + β1t+ E(Xt) = β0 + β1t,
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which depends on t. The first differences are given by

∇Yt = Yt − Yt−1 = (β0 + β1t+Xt)− [β0 + β1(t− 1) +Xt−1] = β1 +Xt −Xt−1.

Note that

E(∇Yt) = E(β1 +Xt −Xt−1) = β1 + E(Xt)− E(Xt−1) = β1.

Also,

cov(∇Yt,∇Yt−k) = cov(β1 +Xt −Xt−1, β1 +Xt−k −Xt−k−1)

= cov(Xt, Xt−k)− cov(Xt, Xt−k−1)

− cov(Xt−1, Xt−k) + cov(Xt−1, Xt−k−1).

Because {Xt} is stationary, each of these covariance terms does not depend on t. There-

fore, both E(∇Yt) and cov(∇Yt,∇Yt−k) are free of t; i.e., {∇Yt} is a stationary process.

Taking first differences removes a linear determinstic trend.

QUADRATIC TRENDS : Suppose that the true deterministic trend model is

µt = β0 + β1t+ β2t
2,

a quadratic function of time. Clearly, {Yt} is not a stationary process since E(Yt) = µt.

The first difference process consists of

∇Yt = Yt − Yt−1 = (β0 + β1t+ β2t
2 +Xt)− [β0 + β1(t− 1) + β2(t− 1)2 +Xt−1]

= (β1 − β2) + 2β2t+Xt −Xt−1

and E(∇Yt) = β1 − β2 + 2β2t, which depends on t. Therefore, {∇Yt} is not a stationary

process. The second difference process consists of

∇2Yt = ∇Yt −∇Yt−1

= [(β1 − β2) + 2β2t+Xt −Xt−1]− [(β1 − β2) + 2β2(t− 1) +Xt−1 −Xt−2]

= 2β2 +Xt − 2Xt−1 +Xt−2.

Therefore, E(∇2Yt) = 2β2 and cov(∇2Yt,∇2Yt−k) are free of t. This shows that {∇2Yt}

is stationary. Taking second differences removes a quadratic deterministic trend.
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Figure 5.2: Ventilation measurements at 15 second intervals. Top: Ventilation series {Yt}

with sample ACF. Bottom: First difference process {∇Yt} with sample ACF.

GENERALIZATION : Suppose that Yt = µt + Xt, where µt is a deterministic trend

function and {Xt} is a stationary process with E(Xt) = 0. In general, if

µt = β0 + β1t+ β2t
2 + · · ·+ βdt

d

is a polynomial in t of degree d, then the dth difference process {∇dYt} is stationary.

Example 5.2. The data in Figure 5.2 are ventilation observations (L/min) on a single

cyclist recorded every 15 seconds during exercise. Source: Joe Alemany (Spring, 2010).

• The ventilation time series {Yt} does not resemble a stationary process. There is a

pronounced increasing linear trend over time. Nonstationarity is also reinforced

by examining the sample ACF for the series. In particular, the sample ACF decays

very, very slowly (a sure sign of nonstationarity).
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• The first difference series {∇Yt} does resemble a process with a constant mean. In

fact, the sample ACF for {∇Yt} looks like what we would expect from an MA(1)

process (i.e., a pronounced spike at k = 1 and little action elsewhere).

• To summarize, the evidence in Figure 5.2 suggests an MA(1) model for the differ-

ence process {∇Yt}.

5.2 Autoregressive integrated moving average (ARIMA) mod-

els

TERMINOLOGY : A stochastic process {Yt} is said to follow an autoregressive in-

tegrated moving average (ARIMA) model if the dth differences Wt = ∇dYt follow

a stationary ARMA model. There are three important values which characterize an

ARIMA process:

• p, the order of the autoregressive component

• d, the number of differences needed to arrive at a stationary ARMA(p, q) process

• q, the order of the moving average component.

In particular, we have the general relationship:

Yt is ARIMA(p, d, q) ⇐⇒ Wt = ∇dYt is ARMA(p, q).

RECALL: A stationary ARMA(p, q) process can be represented as

(1− ϕ1B − ϕ2B
2 − · · · − ϕpB

p)Yt = (1− θ1B − θ2B
2 − · · · − θqB

q)et

or, more succinctly, as

ϕ(B)Yt = θ(B)et,

where {et} is zero mean white noise with variance var(et) = σ2
e . In the ARIMA(p, d, q)

family, take d = 1 so that

Wt = ∇Yt = Yt − Yt−1 = Yt −BYt = (1−B)Yt
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follows an ARMA(p, q) model. Therefore, an ARIMA(p, 1, q) process can be written

succinctly as

ϕ(B)(1−B)Yt = θ(B)et.

Similarly, take d = 2 so that

Wt = ∇2Yt = Yt − 2Yt−1 + Yt−2

= Yt − 2BYt +B2Yt

= (1− 2B +B2)Yt = (1−B)2Yt

follows an ARMA(p, q) model. Therefore, an ARIMA(p, 2, q) process can be written as

ϕ(B)(1−B)2Yt = θ(B)et.

In general, an ARIMA(p, d, q) process can be written as

ϕ(B)(1−B)dYt = θ(B)et.

IMPORTANT : In practice (with real data), there will rarely be a need to consider values

of the differencing order d > 2. Most real time series data can be coerced into a station-

arity ARMA process by taking one difference or occasionally two differences (perhaps

after transforming the series initially).

REMARK : Autoregressive (AR) models, moving average (MA) models, and autoregres-

sive moving average (ARMA) models are all members of the ARIMA(p, d, q) family. In

particular,

• AR(p) ←→ ARIMA(p, 0, 0)

• MA(q) ←→ ARIMA(0, 0, q)

• ARMA(p, q) ←→ ARIMA(p, 0, q)

• ARI(p, d) ←→ ARIMA(p, d, 0)

• IMA(d, q) ←→ ARIMA(0, d, q).
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Figure 5.3: Top: ARI(1,1) simulation, with ϕ = 0.7, n = 150, and σ2
e = 1, and the

sample ACF. Bottom: First difference process with sample ACF.

Example 5.3. Suppose {et} is a zero mean white noise process. Identify each model

(a) Yt = 1.7Yt−1 − 0.7Yt−2 + et

(b) Yt = 1.5Yt−1 − 0.5Yt−2 + et − et−1 + 0.25et−2

as an ARIMA(p, d, q) process. That is, specify the values of p, d, and q.

Solutions.

(a) Upon first glance,

Yt = 1.7Yt−1 − 0.7Yt−2 + et

looks like an AR(2) process with ϕ1 = 1.7 and ϕ2 = −0.7. However, upon closer

inspection, we see this process is not stationary because the AR(2) stationary con-
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ditions

ϕ1 + ϕ2 < 1 ϕ2 − ϕ1 < 1 |ϕ2| < 1

are not met with ϕ1 = 1.7 and ϕ2 = −0.7 (in particular, the first condition is not

met). However, note that we can write this process as

Yt − 1.7Yt−1 + 0.7Yt−2 = et ⇐⇒ Yt − 1.7BYt + 0.7B2Yt = et

⇐⇒ (1− 1.7B + 0.7B2)Yt = et

⇐⇒ (1− 0.7B)(1−B)Yt = et

⇐⇒ (1− 0.7B)Wt = et,

where

Wt = (1−B)Yt = Yt − Yt−1

are the first differences. We identify {Wt} as a stationary AR(1) process with

ϕ = 0.7. Therefore, {Yt} is an ARIMA(1,1,0) ⇐⇒ ARI(1,1) process with ϕ = 0.7.

This ARI(1,1) process is simulated in Figure 5.3.

(b) Upon first glance,

Yt = 1.5Yt−1 − 0.5Yt−2 + et − et−1 + 0.25et−2

looks like an ARMA(2,2) process, but this process is not stationary either. To see

why, note that we can write this process as

Yt − 1.5Yt−1 + 0.5Yt−2 = et − et−1 + 0.25et−2

⇐⇒ (1− 1.5B + 0.5B2)Yt = (1−B + 0.25B2)et

⇐⇒ (1− 0.5B)(1−B)Yt = (1− 0.5B)2et

⇐⇒ (1−B)Yt = (1− 0.5B)et

⇐⇒ Wt = (1− 0.5B)et,

where Wt = (1−B)Yt = Yt−Yt−1. Here, the first differences {Wt} follow an MA(1)

model with θ = 0.5. Therefore, {Yt} is an ARIMA(0,1,1) ⇐⇒ IMA(1,1) process

with θ = 0.5. A realization of this IMA(1,1) process is shown in Figure 5.4.
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Figure 5.4: Top: IMA(1,1) simulation, with θ = 0.5, n = 150, and σ2
e = 1, and the

sample ACF. Bottom: First difference process with sample ACF.

5.2.1 IMA(1,1) process

TERMINOLOGY : Suppose {et} is a zero mean white noise process with var(et) = σ2
e .

An ARIMA(p, d, q) process with p = 0, d = 1, and q = 1 is called an IMA(1,1) process

and is given by

Yt = Yt−1 + et − θet−1.

This model is very popular in economics applications. Note that if θ = 0, the IMA(1,1)

process reduces to a random walk.

REMARK : We first note that an IMA(1,1) process can be written as

(1−B)Yt = (1− θB)et.
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If we (mistakenly) treated this as an ARMA(1,1) process with characteristic operators

ϕ(B) = 1−B

θ(B) = 1− θB,

it would be clear that this process is not stationary since the AR characteristic polynomial

ϕ(x) = 1− x has a unit root, that is, the root of ϕ(x) is x = 1. More appropriately, we

write

(1−B)Yt = (1− θB)et ⇐⇒ Wt = (1− θB)et,

and note that the first differences

Wt = (1−B)Yt = Yt − Yt−1

follow an MA(1) model with parameter θ. From Chapter 4, we know that the first

difference process {Wt} is invertible if and only if |θ| < 1. To summarize,

{Yt} follows an IMA(1,1) ⇐⇒ {Wt} follows an MA(1).

5.2.2 IMA(2,2) process

TERMINOLOGY : Suppose {et} is a zero mean white noise process with var(et) = σ2
e .

An ARIMA(p, d, q) process with p = 0, d = 2, and q = 2 is called an IMA(2,2) process

and can be expressed as

(1−B)2Yt = (1− θ1B − θ2B
2)et,

or, equivalently,

∇2Yt = et − θ1et−1 − θ2et−2.

In an IMA(2,2) process, the second differences

Wt = ∇2Yt = (1−B)2Yt

follow an MA(2) model. Invertibility is assessed by examining the MA characteristic

operator θ(B) = 1− θ1B − θ2B
2. An IMA(2,2) process is simulated in Figure 5.5.
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Figure 5.5: Top: IMA(2,2) simulation with n = 150, θ1 = 0.3, θ2 = −0.3, and σ2
e = 1.

Middle: First difference process. Bottom: Second difference process.

• The defining characteristic of an IMA(2,2) process is its very strong autocorrelation

at all lags. This is also seen in the sample ACF.

• The first difference process {∇Yt}, which is that of an IMA(1,2), is also clearly

nonstationary to the naked eye. This is also seen in the sample ACF.

• The second difference process {∇2Yt} is an (invertible) MA(2) process. This is

suggested in the sample ACF for the second differences. Note how there are clear

spikes in the ACF at lags k = 1 and k = 2.
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5.2.3 ARI(1,1) process

TERMINOLOGY : Suppose {et} is a zero mean white noise process with var(et) = σ2
e .

An ARIMA(p, d, q) process with p = 1, d = 1, and q = 0 is called an ARI(1,1) process

and can be expressed as

(1− ϕB)(1−B)Yt = et,

or, equivalently,

Yt = (1 + ϕ)Yt−1 − ϕYt−2 + et.

Note that the first differences Wt = (1−B)Yt satisfy the model

(1− ϕB)Wt = et,

which we recognize as an AR(1) process with parameter ϕ. The first difference process

{Wt} is stationary if and only if |ϕ| < 1.

REMARK : Upon first glance, the process

Yt = (1 + ϕ)Yt−1 − ϕYt−2 + et

looks like an AR(2) model. However this process is not stationary since the coefficients

satisfy (1 + ϕ)− ϕ = 1; this violates the stationarity requirements for the AR(2) model.

An ARI(1,1) process is simulated in Figure 5.3.

5.2.4 ARIMA(1,1,1) process

TERMINOLOGY : Suppose {et} is a zero mean white noise process with var(et) = σ2
e .

An ARIMA(p, d, q) process with p = 1, d = 1, and q = 1 is called an ARIMA(1,1,1)

process and can be expressed as

(1− ϕB)(1−B)Yt = (1− θB)et,

or, equivalently,

Yt = (1 + ϕ)Yt−1 − ϕYt−2 + et − θet−1.
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Figure 5.6: Top: ARIMA(1,1,1) simulation, with n = 150, ϕ = 0.5, θ = −0.5, and

σ2
e = 1, and the sample ACF. Bottom: First difference process with sample ACF.

Note that the first differences Wt = (1−B)Yt satisfy the model

(1− ϕB)Wt = (1− θB)et,

which we recognize as an ARMA(1,1) process with parameters ϕ and θ.

• The first difference process {Wt} is stationary if and only if |ϕ| < 1. The first

difference process {Wt} is invertible if and only if |θ| < 1.

• A simulated ARIMA(1,1,1) process appears in Figure 5.6. The ARIMA(1,1,1)

simulated series Yt is clearly nonstationary. The first difference series Wt = ∇Yt

appears to have a constant mean, and its sample ACF resembles that of a stationary

ARMA(1,1) process (as it should).
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5.3 Constant terms in ARIMA models

RECALL: An ARIMA(p, d, q) process can be written as

ϕ(B)(1−B)dYt = θ(B)et,

where {et} is zero mean white noise with var(et) = σ2
e . An extension of this model is

ϕ(B)(1−B)dYt = θ0 + θ(B)et,

where the parameter θ0 is a constant term.

IMPORTANT : The parameter θ0 plays very different roles when

• d = 0 (a stationary ARMA model)

• d > 0 (a nonstationary model).

STATIONARY CASE : Suppose that d = 0, in which case the no-constant model becomes

ϕ(B)Yt = θ(B)et,

a stationary ARMA process, where the AR and MA characteristic operators are

ϕ(B) = (1− ϕ1B − ϕ2B
2 − · · · − ϕpB

p)

θ(B) = (1− θ1B − θ2B
2 − · · · − θqB

q).

To examine the effects of adding a constant term, suppose that we replace Yt with Yt−µ,

where µ = E(Yt). The model becomes

ϕ(B)(Yt − µ) = θ(B)et =⇒ ϕ(B)Yt − ϕ(B)µ = θ(B)et

=⇒ ϕ(B)Yt − (1− ϕ1 − ϕ2 − · · · − ϕp)µ = θ(B)et

=⇒ ϕ(B)Yt = (1− ϕ1 − ϕ2 − · · · − ϕp)µ︸ ︷︷ ︸
= θ0

+θ(B)et,

so that

θ0 = (1− ϕ1 − ϕ2 − · · · − ϕp)µ ⇐⇒ µ =
θ0

1− ϕ1 − ϕ2 − · · · − ϕp

.
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IMPORTANT : In a stationary ARMA process {Yt}, adding a constant term θ0 to the

model does not affect the stationarity properties of {Yt}.

NONSTATIONARY CASE : The impact of adding a constant term θ0 to the model when

d > 0 is quite different. As the simplest example in the ARIMA(p, d, q) family, take

p = q = 0 and d = 1 so that

(1−B)Yt = θ0 + et ⇐⇒ Yt = θ0 + Yt−1 + et.

This model is called a random walk with drift; see pp 22 (CC). Note that we can

write via successive substitution

Yt = θ0 + Yt−1 + et

= θ0 + θ0 + Yt−2 + et−1︸ ︷︷ ︸
= Yt−1

+et

= 2θ0 + Yt−2 + et + et−1

...

= (t− k)θ0 + Yk + et + et−1 + · · ·+ et−k+1.

Therefore, the process {Yt} contains a linear deterministic trend with slope θ0.

IMPORTANT : The previous finding holds for any (nonstationary) ARIMA(p, 1, q) model,

that is, adding a constant term θ0 induces a linear deterministic trend. Also,

• adding a constant term θ0 to an ARIMA(p, 2, q) model induces a quadratic deter-

ministic trend,

• adding a constant term θ0 to an ARIMA(p, 3, q) model induces a cubic determin-

istic trend, and so on.

Note that for very large t, the constant (deterministic trend) term can become very

dominating so that it forces the time series to follow a nearly deterministic pattern.

Therefore, a constant term should be added to a nonstationary ARIMA model (i.e.,

d > 0) only if it is strongly warranted.
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5.4 Transformations

REVIEW : If we are trying to model a nonstationary time series, it may be helpful to

transform the data first before we examine any data differences (or before “detrending”

the data if we use regression methods from Chapter 3).

• For example, if there is clear evidence of nonconstant variance over time (e.g., the

variance increases over time, etc.), then a suitable transformation to the data

might remove (or lessen the impact of) the nonconstant variance pattern.

• Applying a transformation to address nonconstant variance is regarded as a “first

step.” This is done before using differencing as a means to achieve stationarity.

Example 5.4. Data file: electricity (TSA). Figure 5.7 displays monthly electricity

usage in the United States (usage from coal, natural gas, nuclear, petroleum, and wind)

between January, 1973 and December, 2005.

• From the plot, we can see that there is increasing variance over time; e.g., the series

is much more variable at later years than it is in earlier years.

• Time series that exhibit this “fanning out” shape are not stationary because the

variance changes over time.

• Before we try to model these data, we should first apply a transformation to make

the variance constant (that is, we would like to first “stabilize” the variance).

THEORY : Suppose that the variance of nonstationary process {Yt} can be written as

var(Yt) = c0f(µt),

where µt = E(Yt) and c0 is a positive constant free of µt. Therefore, the variance is not

constant because it is a function of µt, which is changing over time. Our goal is to find a

function T so that the transformed series T (Yt) has constant variance. Such a function is
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Figure 5.7: Electricity data. Monthly U.S. electricity generation, measured in millions of

kilowatt hours, from 1/1973 to 12/2005.

called a variance stabilizing transformation function. Consider approximating the

function T by a first-order Taylor-series expansion about the point µt, that is,

T (Yt) ≈ T (µt) + T ′(µt)(Yt − µt),

where T ′(µt) is the first derivative of T (Yt), evaluated at µt. Now, note that

var[T (Yt)] ≈ var[T (µt) + T ′(µt)(Yt − µt)]

= c0[T
′(µt)]

2f(µt).

Therefore, we want to find the function T which satisfies

var[T (Yt)] ≈ c0[T
′(µt)]

2f(µt)
set
= c1,

where c1 is a constant free of µt. Solving this expression for T ′(µt), we get the differential

equation

T ′(µt) =

√
c1

c0f(µt)
=

c2√
f(µt)

,
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where c2 =
√

c1/c0 is free of µt. Integrating both sides, we get

T (µt) =

∫
c2√
f(µt)

dµt + c3,

where c3 is a constant free of µt. In the calculations below, the values of c2 and c3 can

be taken to be anything, as long as they are free of µt.

• If var(Yt) = c0µt, so that the variance of the series is proportional to the mean,

then

T (µt) =

∫
c2√
µt

dµt = 2c2
√
µt + c3,

where c3 is a constant free of µt. If we take c2 = 1/2 and c3 = 0, we see that the

square root of the series, T (Yt) =
√
Yt, will provide a constant variance.

• If var(Yt) = c0µ
2
t , so that the standard deviation of the series is proportional to the

mean, then

T (µt) =

∫
c2√
µ2
t

dµt = c2 ln(µt) + c3,

where c3 is a constant free of µt. If we take c2 = 1 and c3 = 0, we see that the

logarithm of the series, T (Yt) = ln(Yt), will provide a constant variance.

• If var(Yt) = c0µ
4
t , so that the standard deviation of the series is proportional to the

square of the mean, then

T (µt) =

∫
c2√
µ4
t

dµt = c2

(
− 1

µt

)
+ c3,

where c3 is a constant free of µt. If we take c2 = −1 and c3 = 0, we see that the

reciprocal of the series, T (Yt) = 1/Yt, will provide a constant variance.

BOX-COX TRANSFORMATIONS : More generally, we can use a power transforma-

tion introduced by Box and Cox (1964). The transformation is defined by

T (Yt) =


Y λ
t − 1

λ
, λ ̸= 0

ln(Yt), λ = 0,
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Table 5.1: Box-Cox transformation parameters λ and their associated transformations.

λ T (Yt) Description

−2.0 1/Y 2
t Inverse square

−1.0 1/Yt Reciprocal

−0.5 1/
√
Yt Inverse square root

0.0 ln(Yt) Logarithm

0.5
√
Yt Square root

1.0 Yt Identity (no transformation)

2.0 Y 2
t Square

where λ is called the transformation parameter. Some common values of λ, and their

implied transformations are given in Table 5.1.

NOTE : To see why the logarithm transformation T (Yt) = ln(Yt) is used when λ = 0,

note that by L’Höptial’s Rule (from calculus),

lim
λ→0

Y λ
t − 1

λ
= lim

λ→0

Y λ
t ln(Yt)

1
= ln(Yt).

• A variance stabilizing transformation can only be performed on a positive series,

that is, when Yt > 0, for all t. This turns out not to be prohibitive, because if some

or all of the series Yt is negative, we can simply add (the same) positive constant c

to each observation, where c is chosen so that everything becomes positive. Adding

c will not affect the (non)stationarity properties of {Yt}.

• Remember, a variance stabilizing transformation, if needed, should be performed

before taking any data differences.

• Frequently, a transformation performed to stabilize the variance will also improve

an approximation of normality. We will discuss the normality assumption later

(Chapters 7-8) when we address issues in statistical inference.
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Figure 5.8: Electricity data. Log-likelihood function versus λ. Note that λ is on the

horizontal axis. A 95 percent confidence interval for λ is also depicted.

DETERMINING λ: We can let the data “suggest” a suitable transformation in the

Box-Cox power family.

• We do this by treating λ as a parameter, writing the log-likelihood function of the

data (under the normality assumption), and finding the value of λ which maximizes

the log-likelihood function; i.e., the maximum likelihood estimate (MLE) of λ.

• There is an R function BoxCox.ar that does all of the calculations. The func-

tion also provides an approximate 95 percent confidence interval for λ, which is

constructed using the large sample properties of MLEs.

• The computations needed to produce a figure like the one in Figure 5.8 can be time

consuming if the series is long (i.e., n is large). Also, the profile log-likelihood is

not always as “smooth” as that seen in Figure 5.8.
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Figure 5.9: Electricity data (transformed). Monthly U.S. electricity generation measured

on the log scale.

Example 5.4 (continued). Figure 5.8 displays the profile log-likelihood of λ for the

electricity data. The value of λ (on the horizontal axis) that maximizes the log-likelihood

function looks to be λ ≈ −0.1, suggesting the transformation

T (Yt) = Y −0.1
t .

However, this transformation makes little practical sense. An approximate 95 percent

confidence interval for λ looks to be about (−0.4, 0.2). Because λ = 0 is in this interval,

a log transformation T (Yt) = ln(Yt) is not unreasonable.

• The log-transformed series {lnYt} is displayed in Figure 5.9. We see that applying

the log transformation has notably lessened the nonconstant variance (although

there still is a mild increase in the variance over time).

• Now that we have applied the transformation, we can now return to our previous
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Figure 5.10: Electricity data. Left: Wt = log Yt − log Yt−1, the first differences of the

log-transformed data. Right: The sample autocorrelation function of the {Wt} data.

modeling techniques. For the log-transformed series, there is still a pronounced

linear trend over time. Therefore, we consider the first difference process (on the

log scale), given by

Wt = log Yt − log Yt−1 = ∇ log Yt.

• The {Wt} series is plotted in Figure 5.10 (left) along with the sample ACF of the

{Wt} series (right). The {Wt} series appears to have a constant mean.

• However, the sample ACF suggests that there is still a large amount of structure

in the data that remains after differencing the log-transformed series.

• In particular, there looks to be significant autocorrelations that arise according to

a seasonal pattern. We will consider seasonal processes that model this type of

variability in Chapter 10.

REMARK : Taking the differences of a log-transformed series, as we have done in this

example, often arises in financial applications where Yt (e.g., stock price, portfolio return,

etc.) tends to have stable percentage changes over time. See pp 99 (CC).
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6 Model Specification

Complementary reading: Chapter 6 (CC).

6.1 Introduction

RECALL: Suppose that {et} is zero mean white noise with var(et) = σ2
e . In general, an

ARIMA(p, d, q) process can be written as

ϕ(B)(1−B)dYt = θ(B)et,

where the AR and MA characteristic operators are

ϕ(B) = (1− ϕ1B − ϕ2B
2 − · · · − ϕpB

p)

θ(B) = (1− θ1B − θ2B
2 − · · · − θqB

q)

and

(1−B)dYt = ∇dYt

is the series of dth differences. In this chapter, we discuss techniques on how to choose

suitable values of p, d, and q for an observed (or transformed) time series. We want our

choices to be consistent with the underlying structure of the observed data. Bad choices

of p, d, and q lead to bad models, which, in turn, lead to bad predictions (forecasts) of

future values.

6.2 The sample autocorrelation function

RECALL: For time series data Y1, Y2, ..., Yn, the sample autocorrelation function

(ACF), at lag k, is given by

rk =

∑n
t=k+1(Yt − Y )(Yt−k − Y )∑n

t=1(Yt − Y )2
,

where Y is the sample mean of Y1, Y2, ..., Yn.
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IMPORTANT : The sample autocorrelation rk is an estimate of the true (population)

autocorrelation ρk. As with any statistic, rk has a sampling distribution which de-

scribes how it varies from sample to sample. We would like to know this distribution so

we can quantify the uncertainty in values of rk that we might see in practice.

THEORY : For a stationary ARMA(p, q) process,

√
n(rk − ρk)

d−→ N (0, ckk),

as n→∞, where

ckk =
∞∑

l=−∞

(ρ2l + ρl−kρl+k − 4ρkρlρl−k + 2ρ2kρ
2
l ).

In other words, when the sample size n is large, the sample autocorrelation rk is ap-

proximately normally distributed with mean ρk and variance ckk/n; i.e.,

rk ∼ AN
(
ρk,

ckk
n

)
.

We now examine some specific models and specialize this general result to those models.

1. WHITE NOISE: For a white noise process, the formula for ckk simplifies consid-

erably because nearly all the terms in the sum above are zero. For large n,

rk ∼ AN
(
0,

1

n

)
,

for k = 1, 2, ...,. This explains why ±2/
√
n serve as approximate margin of error

bounds for rk. Values of rk outside these bounds would be “unusual” under the

white noise model assumption.

2. AR(1): For a stationary AR(1) process Yt = ϕYt−1 + et, the formula for ckk also

reduces considerably. For large n,

rk ∼ AN (ρk, σ
2
rk
),

where ρk = ϕk and

σ2
rk

=
1

n

[
(1 + ϕ2)(1− ϕ2k)

1− ϕ2
− 2kϕ2k

]
.
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3. MA(1): For an invertible MA(1) process Yt = et − θet−1, we treat the k = 1 and

k > 1 cases separately.

• Case 1: Lag k = 1. For large n,

r1 ∼ AN (ρ1, σ
2
r1
),

where ρ1 = −θ/(1 + θ2) and

σ2
r1
=

1− 3ρ21 + 4ρ41
n

.

• Case 2: Lag k > 1. For large n,

rk ∼ AN (0, σ2
rk
),

where

σ2
rk

=
1 + 2ρ21

n
.

4. MA(q): For an invertible MA(q) process,

Yt = et − θ1et−1 − θ2et−2 − · · · − θqet−q,

the sample autocorrelation rk, for all k > q, satisfies

rk ∼ AN

[
0,

1

n

(
1 + 2

q∑
j=1

ρ2j

)]
,

when n is large.

REMARK : The MA(q) result above suggests a natural large-sample test for

H0 : MA(q) process is appropriate

versus

H1 : MA(q) process is not appropriate.

If H0 is true, then the sample autocorrelation

rq+1 ∼ AN

[
0,

1

n

(
1 + 2

q∑
j=1

ρ2j

)]
.
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Therefore, the random variable

Z =
rq+1√

1
n

(
1 + 2

∑q
j=1 ρ

2
j

) ∼ AN (0, 1).

We can not use Z as a test statistic to testH0 versusH1 because Z depends on ρ1, ρ2, ..., ρq

which, in practice, are unknown. However, when n is large, we can use rj as an estimate

for ρj. This should not severely impact the large sample distribution of Z because rj

should be “close” to ρj when n is large. Making this substitution gives the large-sample

test statistic

Z∗ =
rq+1√

1
n

(
1 + 2

∑q
j=1 r

2
j

) .
When H0 is true, Z∗ ∼ AN (0, 1). Therefore, a level α decision rule is to reject H0 in

favor of H1 when

|Z∗| > zα/2,

where zα/2 is the upper α/2 quantile from the N (0, 1) distribution. This is a two-

sided test. Of course, an equivalent decision rule is to reject H0 when the (two-sided)

probability value is less than α.

Example 6.1. From a time series of n = 200 observations, we calculate r1 = −0.49,

r2 = 0.31, r3 = −0.13, r4 = 0.07, and |rk| < 0.09 for k > 4. Which moving average (MA)

model is most consistent with these sample autocorrelations?

Solution. To test

H0 : MA(1) process is appropriate

versus

H1 : MA(1) process is not appropriate

we compute

z∗ =
r2√

1
n
(1 + 2r21)

=
0.31√

1
200

[1 + 2(−0.49)2]
≈ 3.60.

This is not a reasonable value of Z∗ under H0; e.g., the p-value is

pr(|Z∗| > 3.60) ≈ 0.0003.

Therefore, we would reject H0 and conclude that the MA(1) model is not appropriate.
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To test

H0 : MA(2) process is appropriate

versus

H1 : MA(2) process is not appropriate

we compute

z∗ =
r3√

1
n
(1 + 2r21 + 2r22)

=
−0.13√

1
200

[1 + 2(−0.49)2 + 2(0.31)2]
≈ −1.42.

This is not an unreasonable value of Z∗ under H0; e.g., the p-value is

pr(|Z∗| > 1.42) ≈ 0.16.

Therefore, we would not reject H0. An MA(2) model is not inconsistent with these

sample autocorrelations.

Example 6.2. Monte Carlo simulation. Consider the model

Yt = et + 0.7et−1,

an MA(1) process with θ = −0.7, where et ∼ iid N (0, 1) and n = 200. In this exam-

ple, we use a technique known as Monte Carlo simulation to simulate the sampling

distributions of the sample autocorrelations r1, r2, r5, and r10. Here is how this is done:

• We simulate an MA(1) process with θ = −0.7 and compute r1 with the simulated

data. Note that the R function arima.sim can be used to simulate this process.

• We repeat this simulation exercise a large number of times, say, M times. With

each simulated series, we compute r1.

• If we simulate M different series, we will have M corresponding values of r1.

• We can then plot the M values of r1 in a histogram. This histogram represents the

Monte Carlo sampling distribution of r1.

• For each simulation, we can also record the values of r2, r5, and r10. We can then

construct their corresponding histograms.
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Figure 6.1: Monte Carlo simulation. Histograms of sample autocorrelations based on

M = 2000 Monte Carlo samples of size n = 200 taken from an MA(1) process with

θ = −0.7. Upper left: r1. Upper right: r2. Lower left: r5. Lower right: r10. The

histograms are approximations to the true sampling distributions when n = 200.

• Note that the approximate sampling distribution of r1 is centered around

ρ1 =
−(−0.7)

1 + (−0.7)2
≈ 0.47.

The other sampling distributions are centered around ρ2 = 0, ρ5 = 0, and ρ10 = 0,

as expected. All distributions take on a normal shape, also as expected.

• Important: The true large-sample distribution result

√
n(rk − ρk)

d−→ N (0, ckk)

is a result that requires the sample size n → ∞. With n = 200, we see that the

normal distribution (large-sample) property has largely taken shape.
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Figure 6.2: Simulated MA(1) and MA(2) processes with n = 100 and σ2
e = 1. Moving

average error bounds are used in the corresponding sample ACFs; not the white noise

error bounds ±2/
√
n.

Example 6.3. We use R to generate data from two moving average processes:

1. Yt = et − 0.5et−1 ⇐⇒ MA(1), with θ = 0.5

2. Yt = et − 0.5et−1 + 0.5et−2 ⇐⇒ MA(2), with θ1 = 0.5 and θ2 = −0.5.

We take et ∼ iid N (0, 1) and n = 100. In Figure 6.2, we display the realized time series

and the corresponding sample autocorrelation functions (ACFs).

• However, instead of using the white noise margin of error bounds, that is,

± 2√
n
= ± 2√

100
= ±0.2,
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we use the more precise error bounds from the large sample distribution

rk ∼ AN

[
0,

1

n

(
1 + 2

q∑
j=1

ρ2j

)]
.

• In particular, for each lag k, the (estimated) standard error bounds are placed at

±1.96

√√√√ 1

100

(
1 + 2

k−1∑
j=1

r2j

)
.

• That is, error bounds at lag k are computed assuming that the MA(k−1) model is

appropriate. Values of rk which exceed these bounds are deemed to be statistically

significant. Note that the MA error bounds are not constant, unlike those computed

under the white noise assumption.

6.3 The partial autocorrelation function

RECALL: We have seen that for MA(q) models, the population ACF ρk is nonzero for

lags k ≤ q and ρk = 0 for lags greater than q. That is, the ACF for an MA(q) process

“drops off” to zero after lag q.

• Therefore, the ACF provides a considerable amount of information about the order

of the dependence when the process is truly a moving average.

• On the other hand, if the process is autoregressive (AR), then the ACF may not

tell us much about the order of the dependence.

• It is therefore worthwhile to develop a function that will behave like the ACF for

MA models, but for use with AR models instead. This function is called the partial

autocorrelation function (PACF).

MOTIVATION : To set our ideas, consider a stationary, zero mean AR(1) process

Yt = ϕYt−1 + et,
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where {et} is zero mean white noise. The autocovariance between Yt and Yt−2 is

γ2 = cov(Yt, Yt−2)

= cov(ϕYt−1 + et, Yt−2)

= cov[ϕ(ϕYt−2 + et−1) + et, Yt−2]

= cov(ϕ2Yt−2 + ϕet−1 + et, Yt−2)

= ϕ2cov(Yt−2, Yt−2) + ϕcov(et−1, Yt−2) + cov(et, Yt−2)

= ϕ2var(Yt−2) + 0 + 0 = ϕ2γ0,

where γ0 = var(Yt) = var(Yt−2). Recall that et−1 and et are independent of Yt−2.

• Note that if Yt followed an MA(1) process, then γ2 = cov(Yt, Yt−2) = 0.

• This not true for an AR(1) process because Yt depends on Yt−2 through Yt−1.

STRATEGY : Suppose that we “break” the dependence between Yt and Yt−2 in an AR(1)

process by removing (or partialing out) the effect of Yt−1. To do this, consider the

quantities Yt − ϕYt−1 and Yt−2 − ϕYt−1. Note that

cov(Yt − ϕYt−1, Yt−2 − ϕYt−1) = cov(et, Yt−2 − ϕYt−1) = 0,

because et is independent of Yt−1 and Yt−2. Now, we make the following observations.

• In the AR(1) model, if ϕ is known, we can think of

Yt − ϕYt−1

as the prediction error from regressing Yt on Yt−1 (with no intercept; this is not

needed because we are assuming a zero mean process).

• Similarly, the quantity

Yt−2 − ϕYt−1

can be thought of as the prediction error from regressing Yt−2 on Yt−1, again with

no intercept.
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• Both of these prediction errors are uncorrelated with the intervening variable

Yt−1. To see why, note that

cov(Yt − ϕYt−1, Yt−1) = cov(Yt, Yt−1)− ϕcov(Yt−1, Yt−1)

= γ1 − ϕγ0 = 0,

because γ1 = ϕγ0 in the AR(1) model. An identical argument shows that

cov(Yt−2 − ϕYt−1, Yt−1) = γ1 − ϕγ0 = 0.

AR(2): Consider a stationary, zero mean AR(2) process

Yt = ϕ1Yt−1 + ϕ2Yt−2 + et,

where {et} is zero mean white noise. Suppose that we “break” the dependence between

Yt and Yt−3 in the AR(2) process by removing the effects of both Yt−1 and Yt−2. That

is, consider the quantities

Yt − ϕ1Yt−1 − ϕ2Yt−2

and

Yt−3 − ϕ1Yt−1 − ϕ2Yt−2.

Note that

cov(Yt − ϕ1Yt−1 − ϕ2Yt−2, Yt−3 − ϕ1Yt−1 − ϕ2Yt−2) = cov(et, Yt−3 − ϕ1Yt−1 − ϕ2Yt−2) = 0,

because et is independent of Yt−1, Yt−2, and Yt−3. Again, we note the following:

• In the AR(2) case, if ϕ1 and ϕ2 are known, then the quantity

Yt − ϕ1Yt−1 − ϕ2Yt−2

can be thought of as the prediction error from regressing Yt on Yt−1 and Yt−2

(with no intercept).

• Similarly, the quantity

Yt−3 − ϕ1Yt−1 − ϕ2Yt−2

can be thought of as the prediction error from regressing Yt−3 on Yt−1 and Yt−2,

again with no intercept.
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• Both of these prediction errors are uncorrelated with the intervening variables

Yt−1 and Yt−2.

TERMINOLOGY : For a zero mean time series, let Ŷ
(k−1)
t denote the population regres-

sion of Yt on the variables Yt−1, Yt−2, ..., Yt−(k−1), that is,

Ŷ
(k−1)
t = β1Yt−1 + β2Yt−2 + · · ·+ βk−1Yt−(k−1).

Let Ŷ
(k−1)
t−k denote the population regression of Yt−k on the variables Yt−1, Yt−2, ..., Yt−(k−1),

that is,

Ŷ
(k−1)
t−k = β1Yt−(k−1) + β2Yt−(k−2) + · · ·+ βk−1Yt−1.

The partial autocorrelation function (PACF) of a stationary process {Yt}, denoted

by ϕkk, satisfies ϕ11 = ρ1 and

ϕkk = corr(Yt − Ŷ
(k−1)
t , Yt−k − Ŷ

(k−1)
t−k ),

for k = 2, 3, ...,.

• With regards to Yt and Yt−k, the quantities Ŷ
(k−1)
t and Ŷ

(k−1)
t−k are linear functions

of the intervening variables Yt−1, Yt−2, ..., Yt−(k−1).

• The quantities Yt − Ŷ
(k−1)
t and Yt−k − Ŷ

(k−1)
t−k are called the prediction errors.

The PACF at lag k is defined to be the correlation between these errors.

• If the underlying process {Yt} is normal, then an equivalent definition is

ϕkk = corr(Yt, Yt−k|Yt−1, Yt−2, ..., Yt−(k−1)),

the correlation between Yt and Yt−k, conditional on the intervening variables

Yt−1, Yt−2, ..., Yt−(k−1).

• That is, ϕkk measures the correlation between Yt and Yt−k after removing the linear

effects of Yt−1, Yt−2, ..., Yt−(k−1).
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RECALL: We now revisit our AR(1) calculations. Consider the model

Yt = ϕYt−1 + et.

We showed that

cov(Yt − ϕYt−1, Yt−2 − ϕYt−1) = cov(et, Yt−2 − ϕYt−1) = 0.

In this example, the quantities Yt−ϕYt−1 and Yt−2−ϕYt−1 are the prediction errors from

regressing Yt on Yt−1 and Yt−2 on Yt−1, respectively. That is, with k = 2, the general

expressions

Ŷ
(k−1)
t = β1Yt−1 + β2Yt−2 + · · ·+ βk−1Yt−(k−1)

Ŷ
(k−1)
t−k = β1Yt−(k−1) + β2Yt−(k−2) + · · ·+ βk−1Yt−1

become

Ŷ
(2−1)
t = ϕYt−1

Ŷ
(2−1)
t−2 = ϕYt−1.

Therefore, we have shown that for the AR(1) model,

ϕ22 = corr(Yt − Ŷ
(2−1)
t , Yt−2 − Ŷ

(2−1)
t−2 ) = 0

because

cov(Yt − Ŷ
(2−1)
t , Yt−2 − Ŷ

(2−1)
t−2 ) = cov(Yt − ϕYt−1, Yt−2 − ϕYt−1) = 0.

IMPORTANT : For the AR(1) model, it follows that ϕ11 ̸= 0 (ϕ11 = ρ1) and

ϕ22 = ϕ33 = ϕ44 = · · · = 0.

That is, ϕkk = 0, for all k > 1.

RECALL: We now revisit our AR(2) calculations. Consider the model

Yt = ϕ1Yt−1 + ϕ2Yt−2 + et.
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We showed that

cov(Yt − ϕ1Yt−1 − ϕ2Yt−2, Yt−3 − ϕ1Yt−1 − ϕ2Yt−2) = 0.

Note that in this example, the quantities Yt−ϕ1Yt−1−ϕ2Yt−2 and Yt−3−ϕ1Yt−1−ϕ2Yt−2

are the prediction errors from regressing Yt on Yt−1 and Yt−2 and Yt−3 on Yt−1 and Yt−2,

respectively. That is, with k = 3, the general expressions

Ŷ
(k−1)
t = β1Yt−1 + β2Yt−2 + · · ·+ βk−1Yt−(k−1)

Ŷ
(k−1)
t−k = β1Yt−(k−1) + β2Yt−(k−2) + · · ·+ βk−1Yt−1

become

Ŷ
(3−1)
t = ϕ1Yt−1 + ϕ2Yt−2

Ŷ
(3−1)
t−3 = ϕ1Yt−1 + ϕ2Yt−2.

Therefore, we have shown that for the AR(2) model,

ϕ33 = corr(Yt − Ŷ
(3−1)
t , Yt−3 − Ŷ

(3−1)
t−3 ) = 0

because

cov(Yt − Ŷ
(3−1)
t , Yt−3 − Ŷ

(3−1)
t−3 ) = cov(Yt − ϕ1Yt−1 − ϕ2Yt−2, Yt−3 − ϕ1Yt−1 − ϕ2Yt−2) = 0.

IMPORTANT : For the AR(2) model, it follows that ϕ11 ̸= 0, ϕ22 ̸= 0, and

ϕ33 = ϕ44 = ϕ55 = · · · = 0.

That is, ϕkk = 0, for all k > 2.

GENERAL RESULT : For an AR(p) process, we have the following results:

• ϕ11 ̸= 0, ϕ22 ̸= 0, ..., ϕpp ̸= 0; i.e., the first p partial autocorrelations are nonzero

• ϕkk = 0, for all k > p.

For an AR(p) model, the PACF “drops off” to zero after the pth lag. Therefore,

the PACF can help to determine the order of an AR(p) process just like the ACF helps

to determine the order of an MA(q) process!
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Figure 6.3: Top: AR(1) model with ϕ = 0.9; population ACF (left) and population

PACF (right). Bottom: AR(2) model with ϕ1 = −0.5 and ϕ2 = 0.25; population ACF

(left) and population PACF (right).

Example 6.4. We use R to generate observations from two autoregressive processes:

(i) Yt = 0.9Yt−1 + et ⇐⇒ AR(1), with ϕ = 0.9

(ii) Yt = −0.5Yt−1 + 0.25Yt−2 + et ⇐⇒ AR(2), with ϕ1 = −0.5 and ϕ2 = 0.25.

We take et ∼ iid N (0, 1) and n = 150. Figure 6.3 displays the true (population) ACF

and PACF for these processes. Figure 6.4 displays the simulated time series from each

AR model and the sample ACF/PACF.

• The population PACFs in Figure 6.3 display the characteristics that we have just

derived; that is, the AR(1) PACF drops off to zero when the lag k > 1. The AR(2)

PACF drops off to zero when the lag k > 2.
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Figure 6.4: Left: AR(1) simulation with et ∼ iid N (0, 1) and n = 150; sample ACF

(middle), and sample PACF (bottom). Right: AR(2) simulation with et ∼ iid N (0, 1)

and n = 150; sample ACF (middle), and sample PACF (bottom).

• Figure 6.4 displays the sample ACF/PACFs. Just as the sample ACF is an esti-

mate of the true (population) ACF, the sample PACF is an estimate of the true

(population) PACF.

• Note that the sample PACF for the AR(1) simulation declares ϕ̂kk insignificant for

k > 1. The estimates of ϕkk, for k > 1, are all within the margin of error bounds.

The sample PACF for the AR(2) simulation declares ϕ̂kk insignificant for k > 2.

• We will soon discuss why the PACF error bounds here are correct.
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Figure 6.5: Top: MA(1) model with θ = 0.9; population ACF (left) and population

PACF (right). Bottom: MA(2) model with θ1 = −0.5 and θ2 = 0.25; population ACF

(left) and population PACF (right).

CURIOSITY : How does the PACF behave for a moving average process? To answer

this, consider the invertible MA(1) model, Yt = et − θet−1. For this process, it can be

shown that

ϕkk =
θk(θ2 − 1)

1− θ2(k+1)
,

for k ≥ 1. Because |θ| < 1 (invertibility requirement), note that

lim
k→∞

ϕkk = lim
k→∞

θk(θ2 − 1)

1− θ2(k+1)
= 0.

That is, the PACF for the MA(1) process decays to zero as the lag k increases, much like

the ACF decays to zero for the AR(1). The same happens in higher order MA models.
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Figure 6.6: Left: MA(1) simulation with et ∼ iid N (0, 1) and n = 150; sample ACF

(middle), and sample PACF (bottom). Right: MA(2) simulation with et ∼ iid N (0, 1)

and n = 150; sample ACF (middle), and sample PACF (bottom).

IMPORTANT : The PACF for an MA process behaves much like the ACF for

an AR process of the same order.

Example 6.5. We use R to generate observations from two moving average processes:

(i) Yt = et − 0.9et−1 ⇐⇒ MA(1), with θ = 0.9

(ii) Yt = et + 0.5et−1 − 0.25et−2 ⇐⇒ MA(2), with θ1 = −0.5 and θ2 = 0.25.

We take et ∼ iid N (0, 1) and n = 150. Figure 6.5 displays the true (population) ACF

and PACF for these processes. Figure 6.6 displays the simulated time series from each

PAGE 152



CHAPTER 6 STAT 520, J. TEBBS

MA model and the sample ACF/PACF.

• The population ACFs in Figure 6.5 display the well-known characteristics; that is,

the MA(1) ACF drops off to zero when the lag k > 1. The MA(2) ACF drops off

to zero when the lag k > 2.

• The population PACF in Figure 6.5 for both the MA(1) and MA(2) decays to zero

as the lag k increases. This is the theoretical behavior exhibited in the ACF for an

AR process.

• The sample versions in Figure 6.6 largely agree with what we know to be true

theoretically.

COMPARISON : The following table succinctly summarizes the behavior of the ACF and

PACF for moving average and autoregressive processes.

AR(p) MA(q)

ACF Tails off Cuts off after lag q

PACF Cuts off after lag p Tails off

Therefore, the ACF is the key tool to help determine the order of a MA process. The

PACF is the key tool to help determine the order of an AR process. For mixed ARMA

processes, we need a different tool (coming up).

COMPUTATION : For any stationary ARMA process, it is possible to compute the

theoretical PACF values ϕkk, for k = 1, 2, ...,. For a fixed k, we have the following

Yule-Walker equations:

ρ1 = ϕk,1 + ρ1ϕk,2 + ρ2ϕk,3 + · · ·+ ρk−1ϕkk

ρ2 = ρ1ϕk,1 + ϕk,2 + ρ1ϕk,3 + · · ·+ ρk−2ϕkk

...

ρk = ρk−1ϕk,1 + ρk−2ϕk,2 + ρk−3ϕk,3 + · · ·+ ϕkk,
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where

ρj = corr(Yt, Yt−j)

ϕk,j = ϕk−1,j − ϕkkϕk−1,k−j, j = 1, 2, ..., k − 1

ϕkk = corr(Yt, Yt−k|Yt−1, Yt−2, ..., Yt−(k−1)).

For known ρ1, ρ2, ..., ρk, we can solve this system for ϕk,1, ϕk,2, ..., ϕk,k−1, ϕkk, and keep the

value of ϕkk.

Example 6.6. The ARMAacf function in R will compute partial autocorrelations for any

stationary ARMA model. For example, for the AR(2) model

Yt = 0.6Yt−1 − 0.4Yt−2 + et,

we compute the first ten (theoretical) autocorrelations ρk and partial autocorrelations

ϕkk. Note that I use the round function for aesthetic reasons.

> round(ARMAacf(ar = c(0.6,-0.4), lag.max = 10),digits=3)

0 1 2 3 4 5 6 7 8 9 10

1.000 0.429 -0.143 -0.257 -0.097 0.045 0.066 0.022 -0.013 -0.017 -0.005

> round(ARMAacf(ar = c(0.6,-0.4), lag.max = 10, pacf=TRUE),digits=3)

[1] 0.429 -0.400 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Similarly, for the MA(2) model

Yt = et + 0.6et−1 − 0.4et−2 + et,

we compute the first ten (theoretical) autocorrelations and partial autocorrelations.

> round(ARMAacf(ma = c(0.6,-0.4), lag.max = 10),digits=3)

0 1 2 3 4 5 6 7 8 9 10

1.000 0.237 -0.263 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

> round(ARMAacf(ma = c(0.6,-0.4), lag.max = 10, pacf=TRUE),digits=3)

[1] 0.237 -0.338 0.196 -0.189 0.149 -0.134 0.116 -0.105 0.095 -0.086
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ESTIMATION : The partial autocorrelation ϕkk can be estimated by taking the Yule-

Walker equations and substituting rk in for the true autocorrelations ρk, that is,

r1 = ϕk,1 + r1ϕk,2 + r2ϕk,3 + · · ·+ rk−1ϕkk

r2 = r1ϕk,1 + ϕk,2 + r1ϕk,3 + · · ·+ rk−2ϕkk

...

rk = rk−1ϕk,1 + rk−2ϕk,2 + rk−3ϕk,3 + · · ·+ ϕkk.

This system can then be solved for ϕk,1, ϕk,2, ..., ϕk,k−1, ϕkk as before, but now the solutions

are estimates ϕ̂k,1, ϕ̂k,2, ..., ϕ̂k,k−1, ϕ̂kk. This can be done for each k = 1, 2, ...,.

RESULT : When the AR(p) model is correct, then for large n,

ϕ̂kk ∼ AN
(
0,

1

n

)
,

for all k > p. Therefore, we can use ±zα/2/
√
n as “critical points” to test, at level α,

H0 : AR(p) model is appropriate

versus

H1 : AR(p) model is not appropriate

in the same way that we tested whether or not a specific MA model was appropriate

using the sample autocorrelations rk. See Example 6.1 (notes).

6.4 The extended autocorrelation function

REMARK : We have learned that the autocorrelation function (ACF) can help us deter-

mine the order of an MA(q) process because ρk = 0, for all lags k > q. Similarly, the

partial autocorrelation function (PACF) can help us determine the order of an AR(p)

process because ϕkk = 0, for all lags k > p. Therefore, in the sample versions of the

ACF and PACF, we can look for values of rk and ϕ̂kk, respectively, that are consistent

with this theory. We have also discussed formal testing procedures that can be used to
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determine if a given MA(q) or AR(p) model is appropriate. A problem, however, is that

neither the sample ACF nor sample PACF is all that helpful if the underlying process

is a mixture of autoregressive and moving average parts, that is, an ARMA process.

Therefore, we introduce a new function to help us identify the orders of an ARMA(p, q)

process, the extended autocorrelation function.

MOTIVATION : Suppose {et} is a zero mean white noise process with var(et) = σ2
e .

Recall that a stationary ARMA(p, q) process can be expressed as

ϕ(B)Yt = θ(B)et,

where the AR and MA characteristic operators are

ϕ(B) = (1− ϕ1B − ϕ2B
2 − · · · − ϕpB

p)

θ(B) = (1− θ1B − θ2B
2 − · · · − θqB

q).

To start our discussion, note that

Wt ≡ ϕ(B)Yt = (1− ϕ1B − ϕ2B
2 − · · · − ϕpB

p)Yt

= Yt − ϕ1Yt−1 − ϕ2Yt−2 − · · · − ϕpYt−p

follows an MA(q) model, that is,

Wt = (1− θ1B − θ2B
2 − · · · − θqB

q)et.

Of course, the {Wt} process is not observed because Wt depends on ϕ1, ϕ2, ..., ϕp, which

are unknown parameters.

STRATEGY : Suppose that we regress Yt on Yt−1, Yt−2, ..., Yt−p (that is, use the p lagged

versions of Yt as independent variables in a multiple linear regression) and use ordinary

least squares to fit the no-intercept model

Yt = ϕ1Yt−1 + ϕ2Yt−2 + · · ·+ ϕpYt−p + ϵt,

where ϵt denotes a generic error term (not the white noise term in the MA process). This

would produce estimates ϕ̂1, ϕ̂2, ..., ϕ̂p from which we could compute

Ŵt = (1− ϕ̂1B − ϕ̂2B
2 − · · · − ϕ̂pB

p)Yt

= Yt − ϕ̂1Yt−1 − ϕ̂2Yt−2 − · · · − ϕ̂pYt−p.
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These values (which are merely the residuals from the regression) serve as proxies for the

true {Wt} process, and we could now treat these residuals as our “data.”

• In particular, we could construct the sample ACF for the Ŵt data so that we can

learn about the order q of the MA part of the process.

• For example, if we fit an AR(2) model Yt = ϕ1Yt−1+ϕ2Yt−2+ϵt and the residuals Ŵt

look to follow an MA(2) process, then this would suggest that a mixed ARMA(2,2)

model is worthy of consideration.

PROBLEM : We have just laid out a sensible strategy on how to select candidate ARMA

models; i.e., choosing values for p and q. The problem is that ordinary least squares

regression estimates ϕ̂1, ϕ̂2, ..., ϕ̂p are inconsistent estimates of ϕ1, ϕ2, ..., ϕp when the

underlying process is ARMA(p, q). Inconsistency means that the estimates ϕ̂1, ϕ̂2, ..., ϕ̂p

estimate the wrong things (in a large-sample sense). Therefore, the strategy that we have

just described could lead to incorrect identification of p and q.

ADJUSTMENT : We now describe an “algorithm” to repair the approach just outlined.

0. Consider using ordinary least squares to fit the same no-intercept AR(p) model

Yt = ϕ1Yt−1 + ϕ2Yt−2 + · · ·+ ϕpYt−p + ϵt,

where ϵt denotes the error term (not the white noise term in an MA process). If the

true process is an ARMA(p, q), then the least squares estimates from the regression,

say,

ϕ̂
(0)
1 , ϕ̂

(0)
2 , ..., ϕ̂(0)

p

will be inconsistent and the least squares residuals

ϵ̂
(0)
t = Yt − ϕ̂

(0)
1 Yt−1 − ϕ̂

(0)
2 Yt−2 − · · · − ϕ̂(0)

p Yt−p

will not be white noise. In fact, if q ≥ 1 (so that the true process is ARMA), then

the residuals ϵ̂
(0)
t and lagged versions of them will contain information about the

process {Yt}.
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1. Because the residuals ϵ̂
(0)
t contain information about the value of q, we first fit the

model

Yt = ϕ
(1)
1 Yt−1 + ϕ

(1)
2 Yt−2 + · · ·+ ϕ(1)

p Yt−p + β
(1)
1 ϵ̂

(0)
t−1 + ϵ

(1)
t ,

Note that we have added the lag 1 residuals ϵ̂
(0)
t−1 from the initial model fit as a

predictor in the regression.

• If the order of the MA part of the ARMA process is truly q = 1, then the

least squares estimates

ϕ̂
(1)
1 , ϕ̂

(1)
2 , ..., ϕ̂(1)

p

will be consistent; i.e., they will estimate the true AR parameters in large

samples.

• If q > 1, then the estimates will be inconsistent and the residual process {ϵ̂(1)t }

will not be white noise.

2. If q > 1, then the residuals from the most recent regression ϵ̂
(1)
t still contain infor-

mation about the value of q, so we next fit the model

Yt = ϕ
(2)
1 Yt−1 + ϕ

(2)
2 Yt−2 + · · ·+ ϕ(2)

p Yt−p + β
(2)
1 ϵ̂

(1)
t−1 + β

(2)
2 ϵ̂

(0)
t−2 + ϵ

(2)
t .

Note that in this model, we have added the lag 2 residuals ϵ̂
(0)
t−2 from the initial

model fit as well as the lag 1 residuals ϵ̂
(1)
t−1 from the most recent fit.

• If the order of the MA part of the ARMA process is truly q = 2, then the

least squares estimates

ϕ̂
(2)
1 , ϕ̂

(2)
2 , ..., ϕ̂(2)

p

will be consistent; i.e., they will estimate the true AR parameters in large

samples.

• If q > 2, then the estimates will be inconsistent and the residual process {ϵ̂(2)t }

will not be white noise.

3. We continue this iterative process, at each step, adding the residuals from the most

recent fit in the same fashion. For example, at the next step, we would fit

Yt = ϕ
(3)
1 Yt−1 + ϕ

(3)
2 Yt−2 + · · ·+ ϕ(3)

p Yt−p + β
(3)
1 ϵ̂

(2)
t−1 + β

(3)
2 ϵ̂

(1)
t−2 + β

(3)
3 ϵ̂

(0)
t−3 + ϵ

(3)
t .

PAGE 158



CHAPTER 6 STAT 520, J. TEBBS

We continue fitting higher order models until residuals (from the most recent fit)

resemble a white noise process.

EXTENDED ACF : In practice, the true orders p and q of the ARMA(p, q) model are

unknown and have to be estimated. Based on the strategy outlined, however, we can

estimate p and q using a new type of function. For an AR(m) model fit, define the mth

sample extended autocorrelation function (EACF) ρ̂
(m)
j as the sample ACF for

the residual process

Ŵ
(j)
t = (1− ϕ̂

(j)
1 B − ϕ̂

(j)
2 B2 − · · · − ϕ̂(j)

m Bm)Yt

= Yt − ϕ̂
(j)
1 Yt−1 − ϕ̂

(j)
2 Yt−2 − · · · − ϕ̂(j)

m Yt−m,

for m = 0, 1, 2, ..., and j = 0, 1, 2, ...,. Here, the subscript j refers to the iteration number

in the aforementioned sequential fitting process (hence, j refers to the order the MA

part). The value m refers to the AR part of the process. Usually the maximum values

of m and j are taken to be 10 or so.

MA

AR 0 1 2 3 4 · · ·

0 ρ̂
(0)
1 ρ̂

(0)
2 ρ̂

(0)
3 ρ̂

(0)
4 ρ̂

(0)
5 · · ·

1 ρ̂
(1)
1 ρ̂

(1)
2 ρ̂

(1)
3 ρ̂

(1)
4 ρ̂

(1)
5 · · ·

2 ρ̂
(2)
1 ρ̂

(2)
2 ρ̂

(2)
3 ρ̂

(2)
4 ρ̂

(2)
5 · · ·

3 ρ̂
(3)
1 ρ̂

(3)
2 ρ̂

(3)
3 ρ̂

(3)
4 ρ̂

(3)
5 · · ·

4 ρ̂
(4)
1 ρ̂

(4)
2 ρ̂

(4)
3 ρ̂

(4)
4 ρ̂

(4)
5 · · ·

...
...

...
...

...
... · · ·

REPRESENTATION : It is useful to arrange the estimates ρ̂
(m)
j in a two-way table

where one direction corresponds to the AR part and the other direction corresponds to

the MA part. Mathematical arguments show that, as n→∞,

ρ̂
(m)
j −→ 0, for 0 ≤ m− p < j − q

ρ̂
(m)
j −→ c ̸= 0, otherwise.

PAGE 159



CHAPTER 6 STAT 520, J. TEBBS

Therefore, the true large-sample extended autocorrelation function (EACF) table for an

ARMA(1, 1) process, for example, looks like

MA

AR 0 1 2 3 4 5 · · ·

0 x x x x x x · · ·

1 x 0 0 0 0 0 · · ·

2 x x 0 0 0 0 · · ·

3 x x x 0 0 0 · · ·

4 x x x x 0 0 · · ·

5 x x x x x 0 · · ·
...

...
...

...
...

...
... · · ·

In this table, the “0” entries correspond to the zero limits of ρ̂
(m)
j . The “x” entries

correspond to limits of ρ̂
(m)
j which are nonzero. Therefore, the geometric pattern formed

by the zeros is a “wedge” with a tip at (1,1). This tip corresponds to the values of p = 1

and q = 1 in the ARMA model.

The true large-sample EACF table for an ARMA(2, 2) process looks like

MA

AR 0 1 2 3 4 5 · · ·

0 x x x x x x · · ·

1 x x x x x x · · ·

2 x x 0 0 0 0 · · ·

3 x x x 0 0 0 · · ·

4 x x x x 0 0 · · ·

5 x x x x x 0 · · ·
...

...
...

...
...

...
... · · ·

In this table, we see that the tip of the wedge is at the point (2,2). This tip corresponds

to the values of p = 2 and q = 2 in the ARMA model.
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The true large-sample EACF table for an ARMA(2, 1) process looks like

MA

AR 0 1 2 3 4 5 · · ·

0 x x x x x x · · ·

1 x x x x x x · · ·

2 x 0 0 0 0 0 · · ·

3 x x 0 0 0 0 · · ·

4 x x x 0 0 0 · · ·

5 x x x x 0 0 · · ·
...

...
...

...
...

...
... · · ·

In this table, we see that the tip of the wedge is at the point (2,1). This tip corresponds

to the values of p = 2 and q = 1 in the ARMA model.

DISCLAIMER: The tables shown above represent theoretical results for infinitely large

sample sizes. Of course, with real data, we would not expect the tables to follow such a

clear cut pattern. Remember, the sample EACF values ρ̂
(m)
j are estimates, so they have

inherent sampling variation! This is important to keep in mind. For some data sets, the

sample EACF table may reveal 2 or 3 models which are consistent with the estimates.

In other situations, the sample EACF may be completely ambiguous and give little or

no information, especially if the sample size n is small.

SAMPLING DISTRIBUTION : When the residual process

Ŵ
(j)
t = (1− ϕ̂

(j)
1 B − ϕ̂

(j)
2 B2 − · · · − ϕ̂(j)

m Bm)Yt

is truly white noise, then the sample extended autocorrelation function estimator

ρ̂
(m)
j ∼ AN

(
0,

1

n−m− j

)
,

when n is large. Therefore, we would expect 95 percent of the estimates ρ̂
(m)
j to fall

within ±1.96/
√
n−m− j. Values outside these cutoffs are classified with an “x” in the

sample EACF. Values within these bounds are classified with a “0.”
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Example 6.7. We use R to simulate data from three different ARMA(p, q) processes

and examine the sample EACF produced in R. The first simulation is an

• ARMA(1,1), with n = 200, ϕ = 0.6, θ = −0.8, and et ∼ iid N (0, 1).

The sample EACF produced from the simulation was

AR/MA 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 x x x x x o o o o o o o o o

1 x o o o o o o o o o o o o o

2 x o o o x o o o o o o o o o

3 x x x o o o o o o o o o o o

4 x o x o x o o o o o o o o o

5 x x x x o o o o o o o o o o

6 x x o x x o o o o o o o o o

7 x x o x o x o o o o o o o o

INTERPRETATION : This sample EACF agrees largely with the theory, which says that

there should be a wedge of zeros with tip at (1,1); the “x”s at (2,4) and (4,4) may be false

positives. If one is willing to additionally assume that the “x” at (3,2) is a false positive,

then an ARMA(2,1) model would also be deemed consistent with these estimates.

The second simulation is an

• ARMA(2,2), with n = 200, ϕ1 = 0.5, ϕ2 = −0.5, θ1 = −0.8, θ2 = 0.2, and

et ∼ iid N (0, 1).

The sample EACF produced from the simulation was

AR/MA 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 x x x o x o o o o o x o o o

1 x x x o x o o o o o x o x o

2 x o o o o o o o o o x o o o

3 x x o o o o o o o o o o o o

4 x x o x o o o o o o o o o o

5 x x x x o o o o o o o o o o

6 x x x x o o o o x o o o o o

7 x o x x x o o o o o o o o o
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INTERPRETATION : This sample EACF also agrees largely with the theory, which says

that there should be a wedge of zeros with tip at (2,2). If one is willing to additionally

assume that the “x” at (4,3) is a false positive, then an ARMA(2,1) model would also be

deemed consistent with these estimates.

Finally, we use an

• ARMA(3,3), with n = 200, ϕ1 = 0.8, ϕ2 = 0.8, ϕ3 = −0.9, θ1 = 0.9, θ2 = −0.8,

θ3 = 0.2, and et ∼ iid N (0, 1).

The sample EACF produced from the simulation was

AR/MA 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 x x x x x x x x x x x x x x

1 x x x o x x x x x x x o x x

2 x x x o x x x x x x x o x x

3 x x o x x x x x o o o o o o

4 x x o x o o o o o o o o o o

5 x o o x o o o o o o o o o o

6 x o o x o x o o o o o o o o

7 x o o x o o o o o o o o o o

INTERPRETATION : This sample EACF does not agree with the theory, which says

that there should be a wedge of zeros with tip at (3,3). There is more of a “block” of

zeros; not a wedge. If we saw this EACF in practice, it would not be all that helpful in

model selection.

6.5 Nonstationarity

REVIEW : In general, an ARIMA(p, d, q) process can be written as

ϕ(B)(1−B)dYt = θ(B)et,
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where the AR and MA characteristic operators are

ϕ(B) = (1− ϕ1B − ϕ2B
2 − · · · − ϕpB

p)

θ(B) = (1− θ1B − θ2B
2 − · · · − θqB

q)

and

(1−B)dYt = ∇dYt.

Up until now, we have discussed three functions to help us identify possible values for p

and q in stationary ARMA processes.

• The sample ACF can be used to determine the order q of a purely MA process.

• The sample PACF can be used to determine the order p of a purely AR process.

• The sample EACF can be used to determine the orders p and q of a mixed ARMA

process.

DIFFERENCING : For a series of data, a clear indicator of nonstationarity is that the

sample ACF exhibits a very slow decay across lags. This occurs because in a nonsta-

tionary process, the series tends to “hang together” and displays “trends.”

• When there is a clear trend in the data (e.g., linear) and the sample ACF for a

series decays very slowly, take first differences.

• If the sample ACF for the first differences resembles that a stationary ARMA

process (the ACF decays quickly), then take d = 1 in the ARIMA(p, d, q) family

and use the ACF, PACF, and EACF (on the first differences) to identify plausible

values of p and q.

• If the sample ACF for the first differences still exhibits a slow decay across lags,

take second differences and use d = 2. One can then use the ACF, PACF, and

EACF (on the second differences) to identify plausible values of p and q. There

should rarely be a need to consider values of d > 2. In fact, I have found that it is

not all that often that even second differences (d = 2) are needed.
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• If a transformation is warranted (e.g., because of clear evidence of heteroscedastic-

ity), implement it up front before taking any differences. Then, use these guidelines

to choose p, d, and q for the transformed series.

TERMINOLOGY : Overdifferencing occurs when we choose d to be too large. For

example, suppose that the correct model for a process {Yt} is an IMA(1,1), that is,

Yt = Yt−1 + et − θet−1,

where |θ| < 1 and {et} is zero mean white noise. The first differences are given by

∇Yt = Yt − Yt−1 = et − θet−1,

which is a stationary and invertible MA(1) process. The second differences are given by

∇2Yt = ∇Yt −∇Yt−1

= (et − θet−1)− (et−1 − θet−2)

= et − (1 + θ)et−1 + θet−2

= [1− (1 + θ)B + θB2]et.

The second difference process is not invertible because

θ(x) = 1− (1 + θ)x+ θx2

has a unit root x = 1. Therefore, by unnecessarily taking second differences, we have

created a problem. Namely, we have differenced an invertible MA(1) process (for first

differences) into one which is not invertible. Recall that if a process is not invertible

(here, the second differences), then the parameters in the model can not be estimated

uniquely. In this example, the correct value of d is d = 1. Taking d = 2 would be an

example of overdifferencing.

INFERENCE : Instead of relying on the sample ACF, which may be subjective in “bor-

derline cases,” we can formally test whether or not an observed time series is stationary

using the methodology proposed by Dickey and Fuller (1979).
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DEVELOPMENT : To set our ideas, consider the model

Yt = αYt−1 +Xt,

where {Xt} is a stationary AR(k) process, that is,

Xt = ϕ1Xt−1 + ϕ2Xt−2 + · · ·+ ϕkXt−k + et,

where {et} is zero mean white noise. Therefore,

Yt = αYt−1 + ϕ1Xt−1 + ϕ2Xt−2 + · · ·+ ϕkXt−k + et

= αYt−1 + ϕ1(Yt−1 − αYt−2) + ϕ2(Yt−2 − αYt−3) + · · ·+ ϕk(Yt−k − αYt−k−1) + et.

After some algebra, we can rewrite this model for Yt as

ϕ∗(B)Yt = et,

where

ϕ∗(B) = ϕ(B)(1− αB)

and where ϕ(B) = (1−ϕ1B−ϕ2B
2−· · ·−ϕkB

k) is the usual AR characteristic operator

of order k. Note that

• if α = 1, then ϕ∗(B) = ϕ(B)(1 − B), that is, ϕ∗(x), a polynomial of degree k + 1,

has a unit root and {Yt} is not stationary.

• if −1 < α < 1, then ϕ∗(x) does not have a unit root, and {Yt} is a stationary

AR(k + 1) process.

The augmented Dickey-Fuller (ADF) unit root test therefore tests

H0 : α = 1 (nonstationarity)

versus

H1 : α < 1 (stationarity).
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IMPLEMENTATION : Dickey and Fuller advocated that this test could be carried out

using least squares regression. To see how, note that when H0 : α = 1 is true (i.e., the

process is nonstationary), the model for Yt can be written as

Yt − Yt−1 = ϕ1(Yt−1 − Yt−2) + ϕ2(Yt−2 − Yt−3) + · · ·+ ϕk(Yt−k − Yt−k−1) + et

= aYt−1 + ϕ1(Yt−1 − Yt−2) + ϕ2(Yt−2 − Yt−3) + · · ·+ ϕk(Yt−k − Yt−k−1) + et,

where a = α− 1. Note that a = 0 when α = 1. That is,

H0 : α = 1 is true ⇐⇒ H0 : a = 0 is true.

Using difference notation, the model under H0 : α = 1 is

∇Yt = aYt−1 + ϕ1∇Yt−1 + ϕ2∇Yt−2 + · · ·+ ϕk∇Yt−k + et.

Therefore, we carry out the test by regressing ∇Yt on Yt−1, ∇Yt−1, ∇Yt−2, ..., ∇Yt−k. We

can then decide between H0 and H1 by examining the size of the least-squares estimate

of a. In particular,

• if the least squares regression estimate of a is significantly different from 0, we reject

H0 and conclude that the process is stationary.

• if the least squares regression estimate of a is not significantly different from 0, we

do not reject H0. This decision would suggest the process {Yt} is nonstationary.

REMARK : The test statistic needed to test H0 versus H1, and its large-sample distri-

bution, are complicated (the test statistic is similar to the t test statistic from ordinary

least squares regression; however, the large-sample distribution is not t). Fortunately,

there is an R function to implement the test automatically. The only thing we need to

do is choose a value of k in the model

∇Yt = aYt−1 + ϕ1∇Yt−1 + ϕ2∇Yt−2 + · · ·+ ϕk∇Yt−k + et,

that is, the value k is the order of the AR process for ∇Yt. Of course, the true value

of k is unknown. However, we can have R determine the “best value” of k using model

selection criteria that we will discuss in the next subsection.
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Figure 6.7: Left: Global temperature data. Right: Los Angeles annual rainfall data.

Example 6.8. We illustrate the ADF test using two data sets from Chapter 1, the global

temperature data set (Example 1.1, pp 2, notes) and the Los Angeles annual rainfall

data set (Example 1.13, pp 14, notes). For the global temperature data, the command

ar(diff(globtemp)) is used to determine the “best” value of k for the differences. Here,

it is k = 3. The ADF test output is

Null hypothesis: Unit root.

Alternative hypothesis: Stationarity.

ADF statistic:

Estimate Std. Error t value Pr(>|t|)

adf.reg -0.031 0.049 -0.636 0.1

Lag orders: 1 2 3

Number of available observations: 138

In particular, the output automatically produces the p-value for the test

H0 : α = 1 (nonstationarity)

versus

H1 : α < 1 (stationarity).
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The large p-value here (> 0.10) does not refute H0 : α = 1. There is insufficient evidence

to conclude that the global temperature process is stationary. For the LA rainfall data,

the command ar(diff(larain)) is used to determine the best value of k, which is k = 4.

Null hypothesis: Unit root.

Alternative hypothesis: Stationarity.

ADF statistic:

Estimate Std. Error t value Pr(>|t|)

adf.reg -0.702 0.207 -3.385 0.015

Lag orders: 1 2 3 4

Number of available observations: 110

The small p-value here (p = 0.015) indicates strong evidence against H0 : α = 1. There

is sufficient evidence to conclude that the LA rainfall process is stationary.

DISCUSSION : When performing the ADF test, some words of caution are in order.

• When H0 : α = 1 is true, the AR characteristic polynomial ϕ∗(B) = ϕ(B)(1 −

αB) contains a unit root. In other words, {Yt} is nonstationary, but {∇Yt} is

stationary. This is called difference nonstationarity. The ADF procedure we

have described, more precisely, tests for difference nonstationarity.

• Because of this, the ADF test outlined here may not have sufficient power to reject

H0 when the process is truly stationary. In addition, the test may reject H0 incor-

rectly because a different form of nonstationarity is present (one that can not be

overcome merely by taking first differences).

• The ADF test outcome must be interpreted with these points in mind, especially

when the sample size n is small. In other words, do not blindly interpret the ADF

test outcome as a yes/no indicator of nonstationarity.

IMPORTANT : To implement the ADF test in R, we need to install the uroot package.

Installing this package has to be done manually.
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6.6 Other model selection methods

TERMINOLOGY : The Akaike’s Information Criterion (AIC) says to select the

ARMA(p, q) model which minimizes

AIC = −2 lnL+ 2k,

where lnL is the natural logarithm of the maximized likelihood function (computed under

a distributional assumption for Y1, Y2, ..., Yn) and k is the number of parameters in the

model (excluding the white noise variance). In a stationary no-intercept ARMA(p, q)

model, there are k = p+ q parameters.

• The likelihood function gives (loosely speaking) the “probability of the data,” so

we would like for it to be as large as possible. This is equivalent to wanting −2 lnL

to be as small as possible.

• The 2k term serves as a penalty, namely, we do not want models with too many

parameters (adhering to the Principle of Parsimony).

• The AIC is an estimator of the expected Kullback-Leibler divergence, which

measures the closeness of a candidate model to the truth. The smaller this diver-

gence, the better the model. See pp 130 (CC).

• The AIC is used more generally for model selection in statistics (not just in the

analysis of time series data). Herein, we restrict attention to its use in selecting

candidate stationary ARMA(p, q) models.

TERMINOLOGY : The Bayesian Information Criterion (BIC) says to select the

ARMA(p, q) model which minimizes

BIC = −2 lnL+ k lnn,

where lnL is the natural logarithm of the maximized likelihood function and k is the

number of parameters in the model (excluding the white noise variance). In a stationary

no-intercept ARMA(p, q) model, there are k = p+ q parameters.
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Figure 6.8: Ventilation measurements at 15 second intervals. Left: Ventilation data.

Right: First differences.

• Both AIC and BIC require the maximization of a log likelihood function (we assume

normality). When compared to AIC, BIC offers a stiffer penalty for overparame-

terized models since lnn will often exceed 2.

Example 6.9. We use the BIC as a means for model selection with the ventilation data

in Example 1.10 (pp 11, notes); see also Example 5.2 (pp 117, notes). Figure 6.8 shows

the original series (left) and the first difference process (right). The BIC output (next

page) is provided by R. Remember that the smaller the BIC, the better the model.

• The original ventilation series displays a clear linear trend. The ADF test (results

not shown) provides a p-value of p > 0.10, indicating that the series is difference

nonstationary.

• We therefore find the “best” ARMA(p, q) model for the first differences; that is, we

are taking d = 1, so we are essentially finding the “best” ARIMA(p, 1, q) model.

• The BIC output in Figure 6.8 shows that the best model (smallest BIC) for the

differences contains a lag 1 error component; i.e., q = 1.
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Figure 6.9: Ventilation data. ARMA best subsets output for the first difference process

{∇Yt} using the BIC.

• Therefore, the model that provides the smallest BIC for {∇Yt} is an MA(1).

• In other words, the “best” model for the original ventilation series, as judged by

the BIC, is an ARIMA(0,1,1); i.e., an IMA(1,1).

DISCLAIMER: Model selection according to BIC (or AIC) does not always provide

“selected” models that are easily interpretable. Therefore, while AIC and BIC are model

selection tools, they are not the only tools available to us. The ACF, PACF, and EACF

may direct us to models that are different than those deemed “best” by the AIC/BIC.
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6.7 Summary

SUMMARY : Here is a summary of the techniques that we have reviewed this chapter.

This summary is presented in an “algorithm” format to help guide the data analyst

through the ARIMA model selection phase. Advice is interspersed throughout.

1. Plot the data and identify an appropriate transformation if needed.

• Examining the time series plot, we can get an idea about whether the series

contains a trend, seasonality, outliers, nonconstant variance, etc. This under-

standing often provides a basis for postulating a possible data transformation.

• Examine the time series plot for nonconstant variance and perform a suitable

transformation (from the Box-Cox family); see Chapter 5. Alternatively, the

data analyst can try several transformations and choose the one that does the

best at stabilizing the variance.

• Always implement a transformation before taking any data differences.

2. Compute the sample ACF and the sample PACF of the original series (or trans-

formed series) and further confirm the need for differencing.

• If the sample ACF decays very, very slowly, this usually indicates that it is a

good idea to take first differences.

• Tests for stationarity (ADF test) can also be implemented at this point on the

original or transformed series. In a borderline case, differencing is generally

recommended.

• Higher order differencing may be needed (however, I have found that it gen-

erally is not). One can perform an ADF test for stationarity of the first

differences to see if taking second differences is warranted. In nearly all cases,

d is not larger than 2 (i.e., taking second differences).

• Some authors argue that the consequences of overdifferencing are much less

serious than those of underdifferencing. However, overdifferencing can create

model identifiability problems.
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3. Compute the sample ACF, the sample PACF, and the sample EACF of the original,

properly transformed, properly differenced, or properly transformed/differenced se-

ries to identify the orders of p and q.

• Usually, p and q are not larger than 4 (excluding seasonal models, which we

have yet to discuss).

• Use knowledge of the patterns for theoretical versions of these functions; i.e.,

– the ACF for an MA(q) drops off after lag q

– the PACF for an AR(p) drops off after lag p

– the “tip” in the EACF identifies the proper ARMA(p, q) model.

• We identify the orders p and q by matching the patterns in the sample

ACF/PACF/EACF with the theoretical patterns of known models.

• To build a reasonable model, ideally, we need a minimum of about n = 50

observations, and the number of sample ACF and PACF to be calculated

should be about n/4 (a rough guideline). It might be hard to identify an

adequate model with smaller data sets.

• “The art of model selection is very much like the method of an FBI’s agent

criminal search. Most criminals disguise themselves to avoid being recog-

nized.” This is also true of the ACF, PACF, and EACF. Sampling variation

can disguise the theoretical ACF/PACF/EACF patterns.

• BIC and AIC can also be used to identify models consistent with the data.

REMARK : It is rare, after going through all of this, that the analyst will be able to

identify a single model that is a “clear-cut” choice. It is more likely that a small number

of candidate models have been identified from the steps above.

NEXT STEP : With our (hopefully small) set of candidate models, we then move forward

to parameter estimation and model diagnostics (model checking). These topics are the

subjects of Chapter 7 and Chapter 8, respectively. Once a final model has been chosen,

fit, and diagnosed, forecasting then becomes the central focus (Chapter 9).
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7 Estimation

Complementary reading: Chapter 7 (CC).

7.1 Introduction

RECALL: Suppose that {et} is a zero mean white noise process with var(et) = σ2
e . In

general, an ARIMA(p, d, q) process can be written as

ϕ(B)(1−B)dYt = θ(B)et,

where the AR and MA characteristic operators are

ϕ(B) = (1− ϕ1B − ϕ2B
2 − · · · − ϕpB

p)

θ(B) = (1− θ1B − θ2B
2 − · · · − θqB

q)

and

(1−B)dYt = ∇dYt

is the series of dth differences. In the last chapter, we were primarily concerned with

selecting values of p, d, and q which were consistent with the observed (or suitably

transformed) data, that is, we were concerned with model selection.

PREVIEW : In this chapter, our efforts are directed towards estimating parameters in

this class of models. In doing so, it suffices to restrict attention to stationary ARMA(p, q)

models. If d > 0 (which corresponds to a nonstationary process), the methodology de-

scribed herein can be applied to the suitably differenced process (1 − B)dYt = ∇dYt.

Therefore, when we write Y1, Y2, ..., Yn to represent our “data” in this chapter, it is

understood that Y1, Y2, ..., Yn may denote the original data, the differenced data, trans-

formed data (e.g., log-transformed, etc.), or possibly data that have been transformed

and differenced.

PREVIEW : We will discuss three estimation techniques: method of moments, least

squares, and maximum likelihood.
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7.2 Method of moments

TERMINOLOGY : The method of moments (MOM) approach to estimation consists

of equating sample moments to the corresponding population (theoretical) moments and

solving the resulting system of equations for the model parameters.

7.2.1 Autoregressive models

AR(1): Consider the stationary AR(1) model

Yt = ϕYt−1 + et,

where {et} is zero mean white noise with var(et) = σ2
e . In this model, there are two

parameters: ϕ and σ2
e . The MOM estimator of ϕ is obtained by setting the population

lag one autocorrelation ρ1 equal to the sample lag one autocorrelation r1 and solving for

ϕ, that is,

ρ1
set
= r1.

For this model, we know ρ1 = ϕ (see Chapter 4). Therefore, the MOM estimator of ϕ is

ϕ̂ = r1.

AR(2): For the AR(2) model,

Yt = ϕ1Yt−1 + ϕ2Yt−2 + et,

there are three parameters: ϕ1, ϕ2, and σ2
e . To find the MOM estimators of ϕ1 and ϕ2,

recall the Yule-Walker equations (derived in Chapter 4) for the AR(2):

ρ1 = ϕ1 + ρ1ϕ2

ρ2 = ρ1ϕ1 + ϕ2.

Setting ρ1 = r1 and ρ2 = r2, we have

r1 = ϕ1 + r1ϕ2

r2 = r1ϕ1 + ϕ2.
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Solving this system for ϕ1 and ϕ2 produces the MOM estimators

ϕ̂1 =
r1(1− r2)

1− r21

ϕ̂2 =
r2 − r21
1− r21

.

AR(p): For the general AR(p) process,

Yt = ϕ1Yt−1 + ϕ2Yt−2 + · · ·+ ϕpYt−p + et,

there are p + 1 parameters: ϕ1, ϕ2, ..., ϕp and σ2
e . We again recall the Yule-Walker

equations from Chapter 4:

ρ1 = ϕ1 + ϕ2ρ1 + ϕ3ρ2 + · · ·+ ϕpρp−1

ρ2 = ϕ1ρ1 + ϕ2 + ϕ3ρ1 + · · ·+ ϕpρp−2

...

ρp = ϕ1ρp−1 + ϕ2ρp−2 + ϕ3ρp−3 + · · ·+ ϕp.

Just as in the AR(2) case, we set ρ1 = r1, ρ2 = r2, ..., ρp = rp to obtain

r1 = ϕ1 + ϕ2r1 + ϕ3r2 + · · ·+ ϕprp−1

r2 = ϕ1r1 + ϕ2 + ϕ3r1 + · · ·+ ϕprp−2

...

rp = ϕ1rp−1 + ϕ2rp−2 + ϕ3rp−3 + · · ·+ ϕp.

The MOM estimators ϕ̂1, ϕ̂2, ..., ϕ̂p solve this system of equations.

REMARK : Calculating MOM estimates (or any estimates) in practice should be done

using software. The MOM approach may produce estimates ϕ̂1, ϕ̂2, ..., ϕ̂p that fall

“outside” the stationarity region, even if the process is truly stationary! That is, the

estimated AR(p) polynomial, say,

ϕ̂MOM(x) = 1− ϕ̂1x− ϕ̂2x
2 − · · · − ϕ̂px

p

may possess roots which do not exceed 1 in absolute value (or modulus).
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7.2.2 Moving average models

MA(1): Consider the invertible MA(1) process

Yt = et − θet−1,

where {et} is zero mean white noise with var(et) = σ2
e . In this model, there are two

parameters: θ and σ2
e . To find the MOM estimator of θ, we solve

ρ1 =
−θ

1 + θ2
set
= r1 ⇐⇒ r1θ

2 + θ + r1 = 0

for θ. Using the quadratic formula, we find that the solutions to this equation are

θ =
−1±

√
1− 4r21

2r1
.

• If |r1| > 0.5, then no real solutions for θ exist.

• If |r1| = 0.5, then the solutions for θ are ±1, which corresponds to an MA(1) model

that is not invertible.

• If |r1| < 0.5, the invertible solution for θ is the MOM estimator

θ̂ =
−1 +

√
1− 4r21

2r1
.

NOTE : For higher order MA models, the difficulties become more pronounced. For the

general MA(q) case, we are left to solve the highly nonlinear system

ρk =
−θk + θ1θk+1 + θ2θk+2 + · · ·+ θq−kθq

1 + θ21 + θ22 + · · ·+ θ2q

set
= rk, k = 1, 2, ..., q − 1

ρq =
−θq

1 + θ21 + θ22 + · · ·+ θ2q

set
= rq,

for θ1, θ2, ..., θq. Just as in the MA(1) case, there will likely be multiple solutions, only

of which at most one will correspond to a fitted invertible model.

IMPORTANT : MOM estimates are not recommended for use with MA models. They

are hard to obtain and (as we will see) they are not necessarily “good” estimates.

PAGE 178



CHAPTER 7 STAT 520, J. TEBBS

7.2.3 Mixed ARMA models

ARMA(1,1): Consider the ARMA(1,1) process

Yt = ϕYt−1 + et − θet−1,

where {et} is zero mean white noise with var(et) = σ2
e . In this model, there are three

parameters: ϕ, θ, and σ2
e . Recall from Chapter 4 that

ρk =

[
(1− θϕ)(ϕ− θ)

1− 2θϕ+ θ2

]
ϕk−1.

It follows directly that
ρ2
ρ1

= ϕ.

Setting ρ1 = r1 and ρ2 = r2, the MOM estimator of ϕ is given by

ϕ̂ =
r2
r1
.

The MOM estimator of θ then solves

r1 =
(1− θϕ̂)(ϕ̂− θ)

1− 2θϕ̂+ θ2
.

This is a quadratic equation in θ, so there are two solutions. The invertible solution θ̂ (if

any) is kept; i.e., θ̂MOM = 1− θ̂x has root x larger than 1 in absolute value.

7.2.4 White noise variance

GOAL: We now wish to estimate the white noise variance σ2
e . To do this, we first note

that for any stationary ARMA model, the process variance γ0 = var(Yt) can be estimated

by the sample variance

S2 =
1

n− 1

n∑
t=1

(Yt − Y )2.

• For a general AR(p) process, we recall from Chapter 4 that

γ0 =
σ2
e

1− ϕ1ρ1 − ϕ2ρ2 − · · · − ϕpρp
=⇒ σ2

e = (1− ϕ1ρ1 − ϕ2ρ2 − · · · − ϕpρp)γ0.
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Therefore, the MOM estimator of σ2
e is obtained by substituting in ϕ̂k for ϕk, rk

for ρk, and S2 for γ0. We obtain

σ̂2
e = (1− ϕ̂1r1 − ϕ̂2r2 − · · · − ϕ̂prp)S

2.

• For a general MA(q) process, we recall from Chapter 4 that

γ0 = (1 + θ21 + θ22 + · · ·+ θ2q)σ
2
e =⇒ σ2

e =
γ0

1 + θ21 + θ22 + · · ·+ θ2q
.

Therefore, the MOM estimator of σ2
e is obtained by substituting in θ̂k for θk and

S2 for γ0. We obtain

σ̂2
e =

S2

1 + θ̂21 + θ̂22 + · · ·+ θ̂2q
.

• For an ARMA(1,1) process,

γ0 =

(
1− 2ϕθ + θ2

1− ϕ2

)
σ2
e =⇒ σ2

e =

(
1− ϕ2

1− 2ϕθ + θ2

)
γ0.

Therefore, the MOM estimator of σ2
e is obtained by substituting in θ̂ for θ, ϕ̂ for ϕ,

and S2 for γ0. We obtain

σ̂2
e =

(
1− ϕ̂2

1− 2ϕ̂θ̂ + θ̂2

)
S2.

7.2.5 Examples

Example 7.1. Suppose {et} is zero mean white noise with var(et) = σ2
e . In this example,

we use Monte Carlo simulation to approximate the sampling distributions of the MOM

estimators of θ and σ2
e in the MA(1) model

Yt = et − θet−1.

We take θ = 0.7, σ2
e = 1, and n = 100. Recall that the MOM approach is generally not

recommended for use with MA models. We will now see why this is true.

• We simulate M = 2000 MA(1) time series, each of length n = 100, with θ = 0.7

and σ2
e = 1.
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Figure 7.1: Monte Carlo simulation. Left: Histogram of MOM estimates of θ in the

MA(1) model. Right: Histogram of MOM estimates of σ2
e . The true values are θ = 0.7

and σ2
e = 1. The sample size is n = 100.

• For each simulated series, we compute the MA(1) MOM estimates

θ̂ =
−1 +

√
1− 4r21

2r1

σ̂2
e =

S2

1 + θ̂2
,

if they exist. Recall the formula for θ̂ only makes sense when |r1| < 0.5.

• Of the M = 2000 simulated series, only 1388 produced a value of |r1| < 0.5. For

the other 612 simulated series, the MOM estimates do not exist (therefore, the

histograms in Figure 7.1 contain only 1388 estimates).

• The Monte Carlo distribution of θ̂ illustrates why MOM estimation is not recom-

mended for MA models. The sampling distribution is not even centered at the true

value of θ = 0.7. The MOM estimator θ̂ is negatively biased.

• The Monte Carlo distribution of σ̂2
e is slightly skewed to the right with mean larger

than σ2
e = 1. The MOM estimator σ̂2

e looks to be slightly positively biased.
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Figure 7.2: Lake Huron data. Average July water surface elevation (measured in feet)

during 1880-2006.

Example 7.2. Data file: huron. Figure 7.2 displays the average July water surface

elevation (measured in feet) from 1880-2006 at Harbor Beach, Michigan, on Lake Huron.

The sample ACF and PACF for the series, both given in Figure 7.3, suggest that an

AR(1) model or possibly an AR(2) model may be appropriate.

AR(1): First, we consider the AR(1) model

Yt − µ = ϕ(Yt−1 − µ) + et.

Note that this model includes a parameter µ for the overall mean. By inspection, it is

clear that {Yt} is not a zero mean process. I used R to compute the sample statistics

r1 = 0.831 r2 = 0.643 y = 579.309 s2 = 1.783978.

For these data, the AR(1) MOM estimate of ϕ is

ϕ̂ = r1 = 0.831
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Figure 7.3: Lake Huron data. Left: Sample ACF. Right: Sample PACF.

Using y as an (unbiased) estimate of µ, the fitted AR(1) model is

Yt − 579.309 = 0.831(Yt−1 − 579.309) + et,

or, equivalently (after simplifying),

Yt = 97.903 + 0.831Yt−1 + et.

The AR(1) MOM estimate of the white noise variance is

σ̂2
e = (1− ϕ̂r1)s

2

= [1− (0.831)(0.831)](1.783978) ≈ 0.552.

We can have R automate the estimation process. Here is the output:

> ar(huron,order.max=1,AIC=F,method=’yw’) # method of moments

Coefficients:

1

0.8315

Order selected 1 sigma^2 estimated as 0.5551
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AR(2): Consider the AR(2) model

Yt − µ = ϕ1(Yt−1 − µ) + ϕ2(Yt−2 − µ) + et.

For these data, the AR(2) MOM estimates of ϕ1 and ϕ2 are

ϕ̂1 =
r1(1− r2)

1− r21
=

0.831(1− 0.643)

1− (0.831)2
≈ 0.959

ϕ̂2 =
r2 − r21
1− r21

=
0.643− (0.831)2

1− (0.831)2
≈ −0.154

so the fitted AR(2) model is

Yt − 579.309 = 0.959(Yt−1 − 579.309)− 0.154(Yt−2 − 579.309) + et,

or, equivalently (after simplifying),

Yt = 112.965 + 0.959Yt−1 − 0.154Yt−2 + et.

The AR(2) MOM estimate of the white noise variance is

σ̂2
e = (1− ϕ̂1r1 − ϕ̂2r2)s

2

= [1− (0.959)(0.831)− (−0.154)(0.643)](1.783978) ≈ 0.539.

In R, fitting the AR(2) model gives

> ar(huron,order.max=2,AIC=F,method=’yw’) # method of moments

Coefficients:

1 2

0.9617 -0.1567

Order selected 2 sigma^2 estimated as 0.5458

REMARK : Note that there are minor differences in the estimates obtained “by hand”

and those from using R’s automated procedure. These are likely due to rounding error

and/or computational errors (e.g., in solving the Yule Walker equations, etc.). It should

also be noted that the R command ar(huron,order.max=1,AIC=F,method=’yw’) fits

the model (via MOM) by centering all observations first about an estimate of the overall

mean. This is why no “intercept” output is given.
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7.3 Least squares estimation

REMARK : The MOM approach to estimation in stationary ARMA models is not always

satisfactory. In fact, your authors recommend to avoid MOM estimation in any model

with moving average components. We therefore consider other estimation approaches,

starting with conditional least squares (CLS).

7.3.1 Autoregressive models

AR(1): Consider the stationary AR(1) model

Yt − µ = ϕ(Yt−1 − µ) + et,

where note that a nonzero mean µ = E(Yt) has been added for flexibility. For this model,

the conditional sum of squares function is

SC(ϕ, µ) =
n∑

t=2

[(Yt − µ)− ϕ(Yt−1 − µ)]2.

• With a sample of time series data Y1, Y2, ..., Yn, note that the t = 1 term does not

make sense because there is no Y0 observation.

• The principle of least squares says to choose the values of ϕ and µ that will minimize

SC(ϕ, µ).

For the AR(1) model, this amounts to solving

∂SC(ϕ, µ)

∂ϕ
set
= 0

∂SC(ϕ, µ)

∂µ
set
= 0

for ϕ and µ. This is a multivariate calculus problem and the details of its solution are

shown on pp 154-155 (CC).
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• In the AR(1) model, the CLS estimators are

ϕ̂ =

∑n
t=2(Yt − Y )(Yt−1 − Y )∑n

t=2(Yt − Y )2

µ̂ ≈ Y .

• For this AR(1) model, the CLS estimator ϕ̂ is approximately equal to r1, the lag

one sample autocorrelation (the only difference is that the denominator does not

include the t = 1 term). We would therefore expect the difference between ϕ̂ and

r1 (the MOM estimator) to be negligible when the sample size n is large.

• The CLS estimator µ̂ is only approximately equal to the sample mean Y , but the

approximation should be adequate when the sample size n is large.

AR(p): In the general AR(p) model, the conditional sum of squares function is

SC(ϕ1, ϕ2, ..., ϕp, µ) =
n∑

t=p+1

[(Yt − µ)− ϕ1(Yt−1 − µ)− ϕ2(Yt−2 − µ)− · · · − ϕp(Yt−p − µ)]2,

a function of p+ 1 parameters. The sum starts at t = p+ 1 because estimates are based

on the sample Y1, Y2, ..., Yn. Despite being more complex, the CLS estimators are found

in the same way, that is, ϕ1, ϕ2, ..., ϕp and µ are chosen to minimize SC(ϕ1, ϕ2, ..., ϕp, µ).

The CLS estimator of µ is

µ̂ ≈ Y ,

an approximation when n is large (i.e., much larger than p). The CLS estimators for ϕ1,

ϕ2, ..., ϕp are well approximated by the solutions to the sampleYule-Walker equations:

r1 = ϕ1 + ϕ2r1 + ϕ3r2 + · · ·+ ϕprp−1

r2 = ϕ1r1 + ϕ2 + ϕ3r1 + · · ·+ ϕprp−2

...

rp = ϕ1rp−1 + ϕ2rp−2 + ϕ3rp−3 + · · ·+ ϕp.

Therefore, in stationary AR models, the MOM and CLS estimates should be approxi-

mately equal.
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7.3.2 Moving average models

MA(1): We first consider the zero mean invertible MA(1) model

Yt = et − θet−1,

where {et} is a zero mean white noise process. Recall from Chapter 4 that we can rewrite

an invertible MA(1) model as an infinite-order AR model; i.e.,

Yt = −θYt−1 − θ2Yt−2 − θ3Yt−3 − · · ·+ et︸ ︷︷ ︸
“AR(∞)”

.

Therefore, the CLS estimator of θ is the value of θ which minimizes

SC(θ) =
∑

e2t =
∑

(Yt + θYt−1 + θ2Yt−2 + θ3Yt−3 + · · · )2.

Unfortunately, minimizing SC(θ) as stated is not a practical exercise, because we have

only the observed sample Y1, Y2, ..., Yn. We therefore rewrite the MA(1) model as

et = Yt + θet−1,

and take e0 ≡ 0. Then, conditional on e0 = 0, we can write

e1 = Y1

e2 = Y2 + θe1

e3 = Y3 + θe2
...

en = Yn + θen−1.

Using these expressions for e1, e2, ..., en, we can now find the value of θ that minimizes

SC(θ) =
n∑

t=1

e2t .

This minimization problem can be carried out numerically, searching over a grid of θ

values in (−1, 1) and selecting the value of θ that produces the smallest possible SC(θ).

This minimizer is the CLS estimator of θ in the MA(1) model.
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MA(q): The technique just described for MA(1) estimation via CLS can be carried

out for any higher-order MA(q) model in the same fashion. When q > 1, the problem

becomes finding the values of θ1, θ2, ..., θq such that

SC(θ1, θ2, ..., θq) =
n∑

t=1

e2t

=
n∑

t=1

(Yt + θ1et−1 + θ2et−2 + · · ·+ θqet−q)
2,

is minimized, subject to the initial conditions that e0 = e−1 = · · · = e−q = 0. This can

be done numerically, searching over all possible values of θ1, θ2, ..., θq which yield an

invertible solution.

7.3.3 Mixed ARMA models

ARMA(1,1): We again consider only the zero mean ARMA(1,1) process

Yt = ϕYt−1 + et − θet−1,

where {et} is zero mean white noise. We first rewrite the model as

et = Yt − ϕYt−1 + θet−1,

with the goal of minimizing

SC(ϕ, θ) =
n∑

t=1

e2t .

There are now two “startup” problems, namely, specifying values for e0 and Y0. The

authors of your text recommend avoiding specifying Y0, taking e1 = 0, and minimizing

S∗
C(ϕ, θ) =

n∑
t=2

e2t

with respect to ϕ and θ instead. Similar modification is recommended for ARMA models

when p > 1 and/or when q > 1. See pp 157-158 (CC).
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7.3.4 White noise variance

NOTE : Nothing changes with our formulae for the white noise variance estimates that

we saw previously when discussing the MOM approach. The only difference is that now

CLS estimates for the ϕ’s and θ’s are used in place of MOM estimates.

• AR(p):

σ̂2
e = (1− ϕ̂1r1 − ϕ̂2r2 − · · · − ϕ̂prp)S

2.

• MA(q):

σ̂2
e =

S2

1 + θ̂21 + θ̂22 + · · ·+ θ̂2q
.

• ARMA(1,1):

σ̂2
e =

(
1− ϕ̂2

1− 2ϕ̂θ̂ + θ̂2

)
S2.

7.3.5 Examples

Example 7.3. Data file: gota. The Göta River is located in western Sweden near

Göteburg. The annual discharge rates (volume, measured in m3/s) from 1807-1956 are

depicted in Figure 7.4. The sample ACF and PACF are given in Figure 7.5.

• The sample ACF suggests that an MA(1) model

Yt = µ+ et − θet−1

is worth considering. Note that this model includes an intercept term µ for the

overall mean. Clearly, {Yt} is not a zero mean process.

• The sample PACF suggests that an AR(2) model

Yt − µ = ϕ1(Yt−1 − µ) + ϕ2(Yt−2 − µ) + et

is also worth considering.
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Figure 7.4: Göta River data. Water flow discharge rates (volume, measured in m3/s)

from 1807-1956.

• We will fit an MA(1) model in this example using both MOM and CLS.

MOM: I used R to compute the following: r1 = 0.458, y = 535.4641, and s2 = 9457.164.

For the Göta River discharge data, the MOM estimate of θ is

θ̂ =
−1 +

√
1− 4r21

2r1
=
−1 +

√
1− 4(0.458)2

2(0.458)
≈ −0.654.

Therefore, the fitted MA(1) model for the discharge rate process is

Yt = 535.4641 + et + 0.654et−1.

The white noise variance is estimated to be

σ̂2
e =

s2

1 + θ̂2
=

9457.164

1 + (−0.654)2
≈ 6624.
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Figure 7.5: Göta River data. Left: Sample ACF. Right: Sample PACF.

CLS: Here is the R output summarizing the CLS fit:

> arima(gota,order=c(0,0,1),method=’CSS’) # conditional least squares

Coefficients:

ma1 intercept

0.5353 534.7199

s.e. 0.0593 10.4303

sigma^2 estimated as 6973: part log likelihood = -876.57

The CLS estimates are θ̂ = −0.5353 (remember, R negates MA parameters/estimates)

and µ̂ = 534.7199, which gives the fitted MA(1) model

Yt = 534.7199 + et + 0.5353et−1.

The white noise variance estimate is σ̂2
e ≈ 6973.

• The R output gives estimated standard errors of the CLS estimates, so we can

assess their significance.

• We will learn later that CLS estimates are approximately normal in large samples.
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• Therefore, an approximate 95 percent confidence interval for θ is

−0.5353± 1.96(0.0593) =⇒ (−0.652,−0.419).

We are 95 percent confident that θ is between −0.652 and −0.419. Note that this

confidence interval does not include 0.

COMPARISON : It is instructive to compare the MOM and CLS estimates for the Göta

River discharge data. This comparison (to 3 decimal places) is summarized below.

Method µ̂ θ̂ σ̂2
e

MOM 535.464 −0.654 6624

CLS 534.720 −0.535 6973

• The estimates for µ are very close. The MA(1) estimate is equal to y whereas the

CLS estimate is only approximately equal to y. See pp 155 (CC).

• The estimates for θ are not close. As previously mentioned, the MOM approach

for MA models is generally not recommended.

• The estimates for σ2
e are notably different as well.

Example 7.4. We now revisit the Lake Huron water surface elevation data in Example

7.2 and use R to fit AR(1) and AR(2) models

Yt − µ = ϕ(Yt−1 − µ) + et

and

Yt − µ = ϕ1(Yt−1 − µ) + ϕ2(Yt−2 − µ) + et,

respectively, using conditional least squares (CLS). Recall that in Example 7.2 we fit

both the AR(1) and AR(2) models using MOM.

AR(1): Here is the R output summarizing the CLS fit:
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> arima(huron,order=c(1,0,0),method=’CSS’) # conditional least squares

Coefficients:

ar1 intercept

0.8459 579.2788

s.e. 0.0469 0.4027

sigma^2 estimated as 0.489: part log likelihood = -134.77

The fitted AR(1) model, using CLS, is

Yt − 579.2788 = 0.8459(Yt−1 − 579.2788) + et,

or, equivalently (to 3 significant digits),

Yt = 89.267 + 0.846Yt−1 + et.

The white noise variance estimate, using CLS, is σ̂2
e ≈ 0.489.

AR(2): Here is the R output summarizing the CLS fit:

> arima(huron,order=c(2,0,0),method=’CSS’) # conditional least squares

Coefficients:

ar1 ar2 intercept

0.9874 -0.1702 579.2691

s.e. 0.0878 0.0871 0.3355

sigma^2 estimated as 0.4776: part log likelihood = -133.27

The fitted AR(2) model, using CLS, is

Yt − 579.2691 = 0.9874(Yt−1 − 579.2691)− 0.1702(Yt−2 − 579.2691) + et,

or, equivalently (to 3 significant digits),

Yt = 105.890 + 0.987Yt−1 − 0.170Yt−2 + et.

The white noise variance estimate, using CLS, is σ̂2
e ≈ 0.4776.
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COMPARISON : It is instructive to compare the MOM and CLS estimates for the Lake

Huron data. This comparison (to 3 decimal places) is summarized below.

AR(1) AR(2)

Method µ̂ ϕ̂ σ̂2
e µ̂ ϕ̂1 ϕ̂2 σ̂2

e

MOM 579.309 0.831 0.552 579.309 0.959 −0.154 0.539

CLS 579.279 0.846 0.489 579.269 0.987 −0.170 0.478

• Note that the MOM and CLS estimates for µ and the ϕ’s are in large agreement.

This is common in purely AR models (not in models with MA components).

QUESTION : For the Lake Huron data, which model is preferred: AR(1) or AR(2)?

• The σ̂2
e estimate is slightly smaller in the AR(2) fit, but only marginally.

• Using the CLS estimates, note that an approximate 95 percent confidence interval

for ϕ2 in the AR(2) model is

−0.1702± 1.96(0.0871) =⇒ (−0.341, 0.001).

This interval does (barely) include 0, indicating that ϕ̂2 is not statistically different

from 0.

• Note also that the estimated standard error of ϕ̂1 (in the CLS output) is almost

twice as large in the AR(2) model as in the AR(1) model. Reason: When we fit

a higher-order model, we lose precision in the other model estimates (especially if

the higher-order terms are not needed).

• It is worth noting that the AR(1) model is the ARMA model identified as having

the smallest BIC (using armasubsets in R; see Chapter 6).

• For the last three reasons, and with an interest in being parsimonious, I would pick

the AR(1) if I had to choose between the two.
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Figure 7.6: Bovine blood sugar data. Blood sugar levels (mg/100ml blood) for a single

cow measured for n = 176 consecutive days.

Example 7.5. Data file: cows. The data in Figure 7.6 represent daily blood sugar con-

centrations (measured in mg/100ml of blood) on a single cow being dosed intermuscularly

with 10 mg of dexamethasone (commonly given to increase milk production).

• The sample ACF in Figure 7.7 shows an AR-type decay, while the PACF in Figure

7.7 also shows an MA-type (oscillating) decay with “spikes” at the first three lags.

• ARMA(1,1) and AR(3) models are consistent with the sample ACF/PACF.

Consider using an ARMA(1,1) model

Yt − µ = ϕ(Yt−1 − µ) + et − θet−1

to represent this process. Note that we have added an overall mean µ parameter in the

model. Clearly, {Yt} is not a zero mean process. Therefore, there are three parameters

to estimate and we do so using conditional least squares (CLS).
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Figure 7.7: Bovine blood sugar data. Left: Sample ACF. Right: Sample PACF.

ARMA(1,1): Here is the R output summarizing the CLS fit:

> arima(cows,order=c(1,0,1),method=’CSS’) # conditional least squares

Coefficients:

ar1 ma1 intercept

0.6625 0.6111 58.7013

s.e. 0.0616 0.0670 1.6192

sigma^2 estimated as 20.38: part log likelihood = -515.01

Therefore, the fitted ARMA(1,1) model is

Yt − 58.7013 = 0.6625(Yt−1 − 58.7013) + et + 0.6111et−1

or, equivalently,

Yt = 19.8117 + 0.6625Yt−1 + et + 0.6111et−1.

The white noise variance estimate, using CLS, is σ̂2
e ≈ 20.38. From examining the

(estimated) standard errors in the output, it is easy to see that both CLS estimates

ϕ̂ = 0.6625 and θ̂ = −0.6111 are significantly different from 0.
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7.4 Maximum likelihood estimation

TERMINOLOGY : The method of maximum likelihood is the most commonly-used

technique to estimate unknown parameters (not just in time series models, but in nearly

all statistical models).

• An advantage of maximum likelihood in fitting time series models is that parameter

estimates are based on the entire observed sample Y1, Y2, ..., Yn. There is no need

to worry about “start up” values.

• Another advantage is that maximum likelihood estimators have very nice large-

sample distributional properties. This makes statistical inference proceed in a

straightforward manner.

• The main disadvantage is that we have to specify a joint probability distribution for

the random variables in the sample. This makes the method more mathematical.

TERMINOLOGY : The likelihood function L is a function that describes the joint

distribution of the data Y1, Y2, ..., Yn. However, it is viewed as a function of the model

parameters with the observed data being fixed.

• Therefore, when we maximize the likelihood function with respect to the model

parameters, we are finding the values of the parameters (i.e., the estimates) that

are most consistent with the observed data.

AR(1): To illustrate how maximum likelihood estimates are obtained, consider the

AR(1) model

Yt − µ = ϕ(Yt−1 − µ) + et,

where {et} is a normal zero mean white noise process with var(et) = σ2
e and where

µ = E(Yt) is the overall (process) mean. There are three parameters in this model: ϕ, µ,

and σ2
e . The probability density function (pdf) of et ∼ N (0, σ2

e) is

f(et) =
1√
2πσe

exp(−e2t/2σ2
e),
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for all−∞ < et <∞, where exp(·) denotes the exponential function. Because e1, e2, ..., en
are independent, the joint pdf of e2, e3, ..., en is given by

f(e2, e3, ..., en) =
n∏

t=2

f(et) =
n∏

t=2

1√
2πσe

exp(−e2t/2σ2
e)

= (2πσ2
e)

−(n−1)/2 exp

(
− 1

2σ2
e

n∑
t=2

e2t

)
.

To write out the joint pdf of Y = (Y1, Y2, ..., Yn), we can first perform a multivariate

transformation using

Y2 = µ+ ϕ(Y1 − µ) + e2

Y3 = µ+ ϕ(Y2 − µ) + e3
... =

...

Yn = µ+ ϕ(Yn−1 − µ) + en,

with Y1 = y1 (fixed). This will give us the (conditional) joint distribution of Y2, Y3, ..., Yn,

given Y1 = y1. Applying the laws of conditioning, the joint pdf of Y; i.e., the likelihood

function L ≡ L(ϕ, µ, σ2
e |y), is given by

L = L(ϕ, µ, σ2
e |y) = f(y2, y3, ..., yn|y1)f(y1).

The details on pp 159 (CC) show that

f(y2, y3, ..., yn|y1) = (2πσ2
e)

−(n−1)/2 exp

{
− 1

2σ2
e

n∑
t=2

[(yt − µ)− ϕ(yt−1 − µ)]2

}

f(y1) =

[
1

2πσ2
e/(1− ϕ2)

]1/2
exp

[
− (y1 − µ)2

2σ2
e/(1− ϕ2)

]
.

Multiplying these pdfs and simplifying, we get

L = L(ϕ, µ, σ2
e |y) = (2πσ2

e)
−n/2(1− ϕ2)1/2 exp

[
−S(ϕ, µ)

2σ2
e

]
,

where

S(ϕ, µ) = (1− ϕ2)(y1 − µ) +
n∑

t=2

[(yt − µ)− ϕ(yt−1 − µ)]2.

For this AR(1) model, the maximum likelihood estimators (MLEs) of ϕ, µ, and σ2
e are

the values which maximize L(ϕ, µ, σ2
e |y).
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REMARK : In this AR(1) model, the function S(ϕ, µ) is called the unconditional sum-

of-squares function. Note that when S(ϕ, µ) is viewed as random,

S(ϕ, µ) = (1− ϕ2)(Y1 − µ) + SC(ϕ, µ),

where SC(ϕ, µ) is the conditional sum of squares function defined in Section 7.3.1 (notes)

for the same AR(1) model.

• We have already seen in Section 7.3.1 (notes) that the conditional least squares

(CLS) estimates of ϕ and µ are found by minimizing SC(ϕ, µ).

• The unconditional least squares (ULS) estimates of ϕ and µ are found by

minimizing S(ϕ, µ). ULS is regarded as a “compromise” between CLS and the

method of maximum likelihood.

• We will not pursue the ULS approach.

NOTE : The approach to finding MLEs in any stationary ARMA(p, q) model is the same

as what we have just outlined in the special AR(1) case. The likelihood function L

becomes more complex in larger models. However, this turns out not to be a big deal

for us because we will use software to do the estimation. R can compute MLEs in any

stationary ARMA(p, q) model using the arima function. This function also provides

(estimated) standard errors of the MLEs.

DISCUSSION : We have talked about three methods of estimation: method of moments,

least squares (conditional and unconditional), and maximum likelihood. Going forward,

which procedure should we use? To answer this, Box, Jenkins, and Reinsel (1994) write

“Generally, the conditional and unconditional least squares estimators serve

as satisfactory approximations to the maximum likelihood estimator for large

sample sizes. However, simulation evidence suggests a preference for the max-

imum likelihood estimator for small or moderate sample sizes, especially if the

moving average operator has a root close to the boundary of the invertibility

region.”
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7.4.1 Large-sample properties of MLEs

THEORY : Suppose that {et} is a normal zero mean white noise process with var(et) = σ2
e .

Consider a stationary ARMA(p, q) process

ϕ(B)Yt = θ(B)et,

where the AR and MA characteristic operators are

ϕ(B) = (1− ϕ1B − ϕ2B
2 − · · · − ϕpB

p)

θ(B) = (1− θ1B − θ2B
2 − · · · − θqB

q).

The maximum likelihood estimators ϕ̂j and θ̂k satisfy

√
n(ϕ̂j − ϕj)

d−→ N (0, σ2
ϕ̂j
), for j = 1, 2, ..., p,

and
√
n(θ̂k − θk)

d−→ N (0, σ2
θ̂k
), for k = 1, 2, ..., q,

respectively, as n→∞. In other words, for large n,

ϕ̂j ∼ AN (ϕj, σ
2
ϕ̂j
/n)

θ̂k ∼ AN (θk, σ
2
θ̂k
/n),

for all j = 1, 2, ..., p and k = 1, 2, ..., q. Implication: Maximum likelihood estimators

are consistent and asymptotically normal.

SPECIFIC CASES :

• AR(1).

ϕ̂ ∼ AN
(
ϕ,

1− ϕ2

n

)
• AR(2).

ϕ̂1 ∼ AN
(
ϕ1,

1− ϕ2
2

n

)
ϕ̂2 ∼ AN

(
ϕ2,

1− ϕ2
2

n

)
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• MA(1).

θ̂ ∼ AN
(
θ,

1− θ2

n

)
• MA(2).

θ̂1 ∼ AN
(
θ1,

1− θ22
n

)
θ̂2 ∼ AN

(
θ2,

1− θ22
n

)
• ARMA(1,1).

ϕ̂ ∼ AN
[
ϕ,

c(ϕ, θ)(1− ϕ2)

n

]
θ̂ ∼ AN

[
θ,

c(ϕ, θ)(1− θ2)

n

]
,

where c(ϕ, θ) = [(1− ϕθ)/(ϕ− θ)]2.

REMARK : In multi-parameter models; e.g., AR(2), MA(2), ARMA(1,1), etc., the MLEs

are (asymptotically) correlated. This correlation can also be large; see pp 161 (CC) for

further description.

IMPORTANT : The large-sample distributional results above make getting large-sample

confidence intervals for ARMA model parameters easy. For example, an approximate

100(1− α) percent confidence interval for ϕ in an AR(1) model is

ϕ̂± zα/2

√
1− ϕ̂2

n
.

An approximate 100(1− α) percent confidence interval for θ in an MA(1) model is

θ̂ ± zα/2

√
1− θ̂2

n
.

Note the form of these intervals. In words, the form is

“ML point estimate ± zα/2 (estimated standard error).”

• Approximate confidence intervals for the other ARMA model parameters are com-

puted in the same way.
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• The nice thing about R is that ML estimates and their (estimated) standard errors

are given in the output (as they were for CLS estimates), so we have to do almost

no calculation by hand.

• Furthermore, examining these confidence intervals can give us information about

which estimates are statistically different from zero. This is a key part of assessing

model adequacy.

NOTE : Maximum likelihood estimators (MLEs) and least-squares estimators (both CLS

and ULS) have the same large-sample distributions. Large sample distributions of MOM

estimators can be quite different for purely MA models (although they are the same for

purely AR models). See pp 162 (CC).

7.4.2 Examples

Example 7.6. We revisit the Göta River discharge data in Example 7.3 (notes) and use

R to fit an MA(1) model

Yt = µ+ et − θet−1,

using the method of maximum likelihood. Here is the output from R:

> arima(gota,order=c(0,0,1),method=’ML’) # maximum likelihood

Coefficients:

ma1 intercept

0.5350 535.0311

s.e. 0.0594 10.4300

sigma^2 estimated as 6957: log likelihood = -876.58, aic = 1757.15

ESTIMATES : The ML estimates are θ̂ = −0.5350 (remember, R negates the MA pa-

rameters/estimates) and µ̂ = 535.0311, which gives the fitted model

Yt = 535.0311 + et + 0.5350et−1.
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The white noise variance estimate is σ̂2
e ≈ 6957. An approximate 95 percent confidence

interval for θ is

−0.5350± 1.96(0.0594) =⇒ (−0.651,−0.419).

We are 95 percent confident that θ is between −0.651 and −0.419. This interval is almost

identical to the one based on the CLS estimate; see Example 7.3.

COMPARISON : We compare the estimates from all three methods (MOM, CLS, and

MLE) with the Göta River discharge data. This comparison (to 3 decimal places) is

summarized below.

Method µ̂ θ̂ σ̂2
e

MOM 535.464 −0.654 6624

CLS 534.720 −0.535 6973

MLE 535.031 −0.535 6957

Note that the CLS and ML estimates of θ are identical (to three decimal places). The

MOM estimate of θ is noticeably different. Recall that MOM estimation is not advised

for models with MA components.

Example 7.7. The data in Figure 7.8 (left) are the number of global earthquakes

annually (with intensities of 7.0 or greater) during 1900-1998. Source: Craig Whitlow

(Spring, 2010). We examined these data in Chapter 1 (Example 1.5, pp 6).

• Because the data (number of earthquakes) are “counts,” this suggests that a trans-

formation is needed. The Box-Cox transformation output in Figure 7.8 (right)

shows that λ = 0.5 resides in an approximate 95 percent confidence interval for λ.

Recall that λ = 0.5 corresponds to the square-root transformation.

• R output for the square-root transformed series is given in Figure 7.9. The

armasubsets output, which ranks competing ARMA models according to their

BIC, selects an ARMA(1,1) model. This model is also consistent with the sample

ACF and PACF.
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Figure 7.8: Earthquake data. Left: Number of “large” earthquakes per year from 1900-

1998. Right: Box-Cox transformation output (profile log-likelihood function of λ).

• We therefore fit an ARMA(1,1) model to the {
√
Yt} process, that is,√

Yt − µ = ϕ(
√
Yt−1 − µ) + et − θet−1.

• We will use maximum likelihood. The R output is given below:

> arima(sqrt(earthquake),order=c(1,0,1),method=’ML’) # maximum likelihood

Coefficients:

ar1 ma1 intercept

0.8352 -0.4295 4.3591

s.e. 0.0811 0.1277 0.2196

sigma^2 estimated as 0.4294: log likelihood = -98.88, aic = 203.76

For this model, the maximum likelihood estimates based on these data are ϕ̂ = 0.8352,

θ̂ = 0.4295, and µ̂ = 4.3591. The fitted model is

√
Yt − 4.3591 = 0.8352(

√
Yt−1 − 4.3591) + et − 0.4295et−1
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Figure 7.9: Earthquake data. Upper left: Time series plot of {
√
Yt} process. Upper

right: armasubsets output (on square-root scale). Lower left: Sample ACF of {
√
Yt}.

Lower right: Sample PACF of {
√
Yt}.

or, equivalently,

√
Yt = 0.7184 + 0.8352

√
Yt−1 + et − 0.4295et−1.

The white noise variance estimate, using maximum likelihood, is σ̂2
e ≈ 0.4294. From

examining the (estimated) standard errors in the output, it is easy to see that both ML

estimates ϕ̂ = 0.8352 and θ̂ = 0.4295 are significantly different from 0. Approximate

95 percent confidence intervals for ϕ and θ, computed separately, are (0.676,0.994) and

(0.179,0.680), respectively.
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Figure 7.10: U.S. Supreme Court data. Upper left: Percent of cases granted review during

1926-2004. Upper right: Box-Cox transformation output. Lower left: Log-transformed

data {log Yt}. Lower right: First differences of log-transformed data {∇ log Yt}.

Example 7.8. The data in Figure 7.10 (upper left) represent the acceptance rate of

cases appealed to the Supreme Court during 1926-2004. Source: Jim Manning (Spring,

2010). We examined these data in Chapter 1 (Example 1.15, pp 16).

• The time series plot suggests that this process {Yt} is not stationary. There is a

clear linear downward trend. There is also a notable nonconstant variance problem.

• The BoxCox.ar transformation output in Figure 7.10 (upper right) suggests a log-

transformation is appropriate; note that λ ≈ 0.
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• The log-transformed series {log Yt} in Figure 7.10 (lower left) still displays the linear

trend, as expected. However, the variance in the {log Yt} process is more constant

than in the original series. It looks like the log-transformation has “worked.”

• The lower right plot in Figure 7.10 gives the first differences of the log-transformed

process {∇ log Yt}. This process appears to be stationary.

• The sample ACF, PACF, EACF, and armasubsets results (not shown) suggest

that an MA(1) model for {∇ log Yt} ⇐⇒ an IMA(1,1) model for {log Yt}, that is,

∇ log Yt = et − θet−1,

may be appropriate. Here is the R output from fitting this model:

> arima(log(supremecourt),order=c(0,1,1),method=’ML’) # ML

Coefficients:

ma1

-0.3556

s.e. 0.0941

sigma^2 estimated as 0.03408: log likelihood = 21.04, aic = -40.08

Therefore, the fitted model is

∇ log Yt = et − 0.3556et−1,

or, equivalently,

log Yt = log Yt−1 + et − 0.3556et−1.

The white noise variance estimate, using maximum likelihood, is σ̂2
e ≈ 0.03408. From

examining the (estimated) standard error in the output, it is easy to see that the ML

estimate θ̂ = 0.3556 is significantly different from 0.

COMMENT : Note that there is no estimated intercept term in the output above. Recall

that in ARIMA(p, d, q) models with d > 0, intercept terms are generally not used.
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8 Model Diagnostics

Complementary reading: Chapter 8 (CC).

8.1 Introduction

RECALL: Suppose that {et} is a zero mean white noise process with var(et) = σ2
e . In

general, an ARIMA(p, d, q) process can be written as

ϕ(B)(1−B)dYt = θ(B)et,

where the AR and MA characteristic operators are

ϕ(B) = (1− ϕ1B − ϕ2B
2 − · · · − ϕpB

p)

θ(B) = (1− θ1B − θ2B
2 − · · · − θqB

q)

and

(1−B)dYt = ∇dYt

is the series of dth differences. Until now, we have discussed the following topics:

• Model specification (model selection). This deals with specifying the values of

p, d, and q that are most consistent with the observed (or possibly transformed)

data. This was the topic of Chapter 6.

• Model fitting (parameter estimation). This deals with estimating model param-

eters in the ARIMA(p, d, q) class. This was the topic of Chapter 7.

PREVIEW : In this chapter, we are now concerned with model diagnostics, which

generally means that we are “checking the fit of the model.” We were exposed to this

topic in Chapter 3, where we encountered deterministic trend models of the form

Yt = µt +Xt,

where E(Xt) = 0. We apply many of the same techniques we used then to our situation

now, that is, to diagnose the fit of ARIMA(p, d, q) models.
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8.2 Residual analysis

TERMINOLOGY : Residuals are random quantities which describe the part of the

variation in {Yt} that is not explained by the fitted model. In general, we have the

general relationship (not just in time series models, but in nearly all statistical models):

Residualt = Observed Yt − Predicted Yt.

Calculating residuals from an ARIMA(p, d, q) model fit based on an observed sample

Y1, Y2, ..., Yn can be difficult. It is most straightforward with purely AR models, so we

start there first.

AR(p): Consider the stationary AR(p) model

Yt − µ = ϕ1(Yt−1 − µ) + ϕ2(Yt−2 − µ) + · · ·+ ϕp(Yt−p − µ) + et,

where µ = E(Yt) is the overall (process) mean and where {et} is a zero mean white noise

process. This model can be reparameterized as

Yt = θ0 + ϕ1Yt−1 + ϕ2Yt−2 + · · ·+ ϕpYt−p + et,

where θ0 = µ(1−ϕ1−ϕ2−· · ·−ϕp) is the intercept term. For this model, the residual

at time t is

êt = Yt − Ŷt

= Yt − (θ̂0 + ϕ̂1Yt−1 + ϕ̂2Yt−2 + · · ·+ ϕ̂pYt−p)

= Yt − θ̂0 − ϕ̂1Yt−1 − ϕ̂2Yt−2 − · · · − ϕ̂pYt−p,

where ϕ̂j is an estimator of ϕj (e.g., ML, CLS, etc.), for j = 1, 2, ..., p, and where

θ̂0 = µ̂(1− ϕ̂1 − ϕ̂2 − · · · − ϕ̂p)

is the estimated intercept. Therefore, once we observe the values of Y1, Y2, ..., Yn in our

sample, we can compute the n residuals.

SUBTLETY : The first p residuals must be computed using backcasting, which is a

mathematical technique used to “reverse predict” the unseen values of Y0, Y−1, ..., Y1−p,
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that is, the p values of the process {Yt} before time t = 1. We will not discuss backcasting

in detail, but be aware that it is needed to compute early residuals in the process.

ARMA(p, q): To define residuals for an invertible ARMA model containing moving

average terms, we exploit the fact that the model can be written as an inverted autore-

gressive process. To be specific, recall that any zero-mean invertible ARMA(p, q) model

can be written as

Yt = π1Yt−1 + π2Yt−2 + π3Yt−3 + · · ·+ et,

where the π coefficients are functions of the ϕ and θ parameters in the specific ARMA(p, q)

model. Residuals are of the form

êt = Yt − π̂1Yt−1 − π̂2Yt−2 − π̂3Yt−3 − · · · ,

where π̂j is an estimator for πj, for j = 1, 2, ...,.

IMPORTANT : The observed residuals êt serve as “proxies” for the white noise terms et.

We can therefore learn about the quality of the model fit by examining the residuals.

• If the model is correctly specified and our estimates are “reasonably close” to the

true parameters, then the residuals should behave roughly like an iid normal white

noise process, that is, a sequence of independent, normal random variables with zero

mean and constant variance.

• If the model is not correctly specified, then the residuals will not behave roughly like

an iid normal white noise process. Furthermore, examining the residuals carefully

may help us identify a better model.

TERMINOLOGY : It is very common to instead work with residuals which have been

standardized, that is,

ê∗t =
êt
σ̂e

,

where σ̂2
e is an estimate of the white noise error variance σ2

e . We call these standardized

residuals.
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• If the model is correctly specified, then the standardized residuals {ê∗t}, like their

unstandardized counterparts, should behave roughly like an iid normal white noise

process.

• From the standard normal distribution, we know then that most of the standardized

residuals {ê∗t} should fall between −3 and 3.

• Standardized residuals that fall outside this range could correspond to observations

which are “outlying” in some sense; we’ll make this more concrete later. If many

standardized residuals fall outside (−3, 3), this suggests that the error process {et}

has a heavy-tailed distribution (common in financial time series applications).

8.2.1 Normality and independence

DIAGNOSTICS : Histograms and qq plots of the residuals can be used to assess the

normality assumption visually. Time series plots of the residuals can be helpful to detect

“patterns” which violate the independence assumption.

• We can also apply the hypothesis tests for normality (Shapiro-Wilk) and indepen-

dence (runs test) with the standardized residuals, just as we did in Chapter 3 with

the deterministic trend models.

• The Shapiro-Wilk test formally tests

H0 : the (standardized) residuals are normally distributed

versus

H1 : the (standardized) residuals are not normally distributed.

• The runs test formally tests

H0 : the (standardized) residuals are independent

versus

H1 : the (standardized) residuals are not independent.

• For either test, small p-values lead to the rejection of H0 in favor of H1.
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Figure 8.1: Göta River discharge data. Upper left: Discharge rate time series. Up-

per right: Standardized residuals from an MA(1) fit with zero line added. Lower left:

Histogram of the standardized residuals from MA(1) fit. Lower right: QQ plot of the

standardized residuals from MA(1) fit.

Example 8.1. In Example 7.3 (pp 189, notes), we examined the Göta River discharge

rate data and used an MA(1) process to model them. The fit using maximum likelihood

in Example 7.6 (pp 202, notes) was

Yt = 535.0311 + et + 0.5350et−1.

Figure 8.1 displays the time series plot (upper right), the histogram (lower left), and the

qq plot (lower right) of the standardized residuals. The histogram and the qq plot show

no gross departures from normality. This observation is supported by the Shapiro-Wilk

test for normality, which we perform in R. Here is the output:
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> shapiro.test(rstandard(gota.ma1.fit))

Shapiro-Wilk normality test

W = 0.9951, p-value = 0.8975

The large p-value is not evidence against normality (i.e., we do not rejectH0). To examine

the independence assumption, note that the time series of the residuals in Figure 8.1

(upper right) displays no discernible patterns and looks to be random in appearance.

This observation is supported by the runs test for independence, which we also perform

in R. Here is the output:

> runs(rstandard(gota.ma1.fit))

$pvalue

[1] 0.29

$observed.runs

[1] 69

$expected.runs

[1] 75.94667

Therefore, we do not have evidence against independence (i.e., we do not reject H0).

CONCLUSION : For the Göta River discharge data, (standardized) residuals from a

MA(1) fit look to reasonably satisfy the normality and independence assumptions.

Example 8.2. In Example 7.2 (pp 182, notes), we examined the Lake Huron elevation

data and considered using an AR(1) process to model them. Here is the R output from

fitting an AR(1) model via maximum likelihood:

> huron.ar1.fit = arima(huron,order=c(1,0,0),method=’ML’)

> huron.ar1.fit

Coefficients:

ar1 intercept

0.8586 579.4921

s.e. 0.0465 0.4268

sigma^2 estimated as 0.4951: log likelihood = -136.24, aic = 276.48
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Figure 8.2: Lake Huron elevation data. Upper left: Elevation time series. Upper right:

Standardized residuals from an AR(1) fit with zero line added. Lower left: Histogram

of the standardized residuals from AR(1) fit. Lower right: QQ plot of the standardized

residuals from AR(1) fit.

Therefore, the fitted AR(1) model is

Yt − 579.4921 = 0.8586(Yt−1 − 579.4921) + et

or, equivalently,

Yt = 81.9402 + 0.8586Yt−1 + et.

Figure 8.2 displays the time series plot (upper right), the histogram (lower left), and the

qq plot (lower right) of the standardized residuals. The histogram and the qq plot show

no gross departures from normality. The time series plot of the standardized residuals

displays no noticeable patterns and looks like a stationary random process.
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The R output for the Shapiro-Wilk and runs tests is given below:

> shapiro.test(rstandard(huron.ar1.fit))

Shapiro-Wilk normality test

W = 0.9946, p-value = 0.9156

> runs(rstandard(huron.ar1.fit))

$pvalue

[1] 0.373

$observed.runs

[1] 59

$expected.runs

[1] 64.49606

CONCLUSION : For the Lake Huron elevation data, (standardized) residuals from a

AR(1) fit look to reasonably satisfy the normality and independence assumptions.

8.2.2 Residual ACF

RECALL: In Chapter 6, we discovered that for a white noise process, the sample

autocorrelation satisfies

rk ∼ AN
(
0,

1

n

)
,

for large n. Furthermore, the sample autocorrelations rj and rk, for j ̸= k, are approx-

imately uncorrelated.

• Therefore, to further check the adequacy of a fitted ARIMA(p, d, q) model, it is a

good idea to examine the sample autocorrelation function (ACF) of the residuals.

• To separate our discussion in Chapter 6 from now, we will denote

r̂k = kth sample autocorrelation of the residuals êt,

for k = 1, 2, ...,. That is, the “hat” symbol in r̂k will remind us that we are now

dealing with residuals.
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• We remarked earlier in this chapter that

“If the model is correctly specified and our estimates are “reasonably

close” to the true parameters, then the residuals should behave roughly

like an iid normal white noise process.”

• We say “roughly,” because even if the correct model is fit, the sample autocorre-

lations of the residuals, r̂k, have sampling distributions that are a little different

than that of white noise (most prominently at early lags).

• In addition, r̂j and r̂k, for j ̸= k, are correlated, notably so at early lags and more

weakly at later lags.

RESULTS : Suppose that {et} is a zero mean white noise process with var(et) = σ2
e . In

addition, suppose that we have identified and fit the correct ARIMA(p, d, q) model

ϕ(B)(1−B)dYt = θ(B)et

using maximum likelihood. All of the following are large-sample results (i.e., they are

approximate for large n).

• MA(1).

var(r̂1) ≈
θ2

n

var(r̂k) ≈
1− (1− θ2)θ2k−2

n
, for k > 1

corr(r̂1, r̂k) ≈ −sign(θ)
[

(1− θ2)θk−2

1− (1− θ2)θ2k−2

]
, for k > 1,

where sign(θ) = 1, if θ > 0 and sign(θ) = −1, if θ < 0.

• MA(2).

var(r̂1) ≈
θ22
n

var(r̂2) ≈
θ22 + θ21(1 + θ2)

2

n

var(r̂k) ≈
1

n
, for k > 2.
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• AR(1).

var(r̂1) ≈
ϕ2

n

var(r̂k) ≈
1− (1− ϕ2)ϕ2k−2

n
, for k > 1

corr(r̂1, r̂k) ≈ −sign(ϕ)
[

(1− ϕ2)ϕk−2

1− (1− ϕ2)ϕ2k−2

]
, for k > 1.

• AR(2).

var(r̂1) ≈
ϕ2
2

n

var(r̂2) ≈
ϕ2
2 + ϕ2

1(1 + ϕ2)
2

n

var(r̂k) ≈
1

n
, for k > 2.

NOTE : The MA(2) result that var(r̂k) ≈ 1/n, for k > 2, may not hold if (θ1, θ2) is

“close” to the boundary of the invertibility region for the MA(2) model. The same is

true for the AR(2) if (ϕ1, ϕ2) is “close” to the boundary of the stationarity region.

MAIN POINT : Even if we fit the correct ARIMA(p, d, q) model, the residuals from the

fit will not follow a white noise process exactly. At very early lags, there are noticeable

differences from a white noise process. For larger lags, the differences become negligible.

Example 8.3. In Example 8.1, we examined the residuals from an MA(1) fit to the

Göta River discharge data (via ML).

• The sample ACF of the MA(1) residuals is depicted in Figure 8.3 with margin of

error bounds at
2√
n
=

2√
150
≈ 0.163.

That is, the margin of error bounds in Figure 8.3 are computed under the white

noise assumption.

• In this example, we calculate estimates of var(r̂k), for k = 1, 2, ..., 10.
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Figure 8.3: Göta River discharge data. Sample ACF of the residuals from an MA(1)

model fit.

• For an MA(1) model fit,

v̂ar(r̂1) ≈
θ̂2

n

v̂ar(r̂k) ≈
1− (1− θ̂2)θ̂2k−2

n
, for k > 1.

Note that in these formulae, θ̂ replaces θ making these estimates of the true

variances stated earlier.

Recall that the MA(1) model fit to these data (via ML) was

Yt = 535.0311 + et + 0.5350et−1.

so that θ̂ = −0.5350. Therefore,

v̂ar(r̂1) ≈
(−0.5350)2

150
≈ 0.001908

v̂ar(r̂k) ≈
1− [1− (−0.5350)2](−0.5350)2k−2

150
, for k > 1.
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Here are first 10 sample autocorrelations for the residuals from the MA(1) fit:

> acf(residuals(gota.ma1.fit),plot=F,lag.max=10)

1 2 3 4 5 6 7 8 9 10

0.059 0.020 -0.115 0.021 -0.074 0.041 -0.009 0.019 -0.076 0.042

We now construct a table which displays these sample autocorrelations, along with their

±2 estimated standard errors

±2ŝe(r̂k) = ±2
√

v̂ar(r̂k),

for k = 1, 2, ..., 10. Values of r̂k more than 2 (estimated) standard errors away from 0

would be considered inconsistent with the fitted model.

k 1 2 3 4 5 6 7 8 9 10

r̂k 0.059 0.020 −0.115 0.021 −0.074 0.041 −0.009 0.019 −0.076 0.042

2ŝe(r̂k) 0.087 0.146 0.158 0.162 0.163 0.163 0.163 0.163 0.163 0.163

• Note that as k gets larger, 2ŝe(r̂k) approaches

2√
n
=

2√
150
≈ 0.163

the white noise margin of error bounds.

• None of the sample autocorrelations fall outside the ±2ŝe(r̂k) bounds.

• This finding further supports the MA(1) model choice for these data.

REMARK : In addition to examining the sample autocorrelations of the residuals indi-

vidually, it is useful to consider them as a group.

• Although sample autocorrelations may be moderate individually; e.g., each within

the ±2ŝe(r̂k) bounds, it could be that as a group the sample autocorrelations are

“excessive,” and therefore inconsistent with the fitted model.
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• To address this potential occurrence, Ljung and Box (1978) developed a procedure,

based on the sample autocorrelations of the residuals, to test formally whether or

not a certain model in the ARMA(p, q) family was appropriate.

LJUNG-BOX TEST : In particular, the modified Ljung-Box test statistic

Q∗ = n(n+ 2)
K∑
k=1

r̂2k
n− k

can be used to test

H0 : the ARMA(p, q) model is appropriate

versus

H1 : the ARMA(p, q) model is not appropriate.

• The sample autocorrelations r̂k, for k = 1, 2, ..., K, are computed under the

ARMA(p, q) model assumption in H0. If a nonstationary model is fit (d > 0),

then the ARMA(p, q) model refers to the suitably differenced process.

• The value K is called the maximum lag; it’s choice is somewhat arbitrary.

• Somewhat diaphanously, the authors of your text recommend that K be cho-

sen so that the Ψj weights of the general linear process representation of the

ARMA(p, q) model (under H0) are negligible for all j > K. Recall that any sta-

tionary ARMA(p, q) process can be written as

Yt = et +Ψ1et−1 +Ψ2et−2 + · · · ,

where {et} is a zero mean white noise process.

• Typically one can simply compute Q∗ for various choices of K and determine if the

same decision is reached for all values of K.

• For a fixed K, a level α decision rule is to reject H0 if the value of Q∗ exceeds the

upper α quantile of the χ2 distribution with K − p− q degrees of freedom, that is,

Reject H0 if Q∗ > χ2
K−p−q,α.
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• Fitting an erroneous model tends to inflate Q∗, so this is a one sided test. R

produces p-values for this test automatically.

• The tsdiag function in R will compute Q∗ at all lags specified by the user.

Example 8.4. In Example 8.1, we examined the residuals from an MA(1) fit to the Göta

River discharge data (via ML). Here we illustrate the use of the modified Ljung-Box test

for the MA(1) model. Recall that we computed the first 10 sample autocorrelations:

> acf(residuals(gota.ma1.fit),plot=F,lag.max=10)

1 2 3 4 5 6 7 8 9 10

0.059 0.020 -0.115 0.021 -0.074 0.041 -0.009 0.019 -0.076 0.042

Taking K = 10 and n = 150, the modified Ljung-Box statistic is

Q∗ = 150(150 + 2)

[
(0.059)2

150− 1
+

(0.020)2

150− 2
+ · · ·+ (0.042)2

150− 10

]
≈ 5.13.

To test MA(1) model adequacy, we compare Q∗ to the upper α quantile of a χ2 distri-

bution with K − p− q = 10− 0− 1 = 9 degrees of freedom and reject the MA(1) model

if Q∗ exceeds this quantile. With α = 0.05,

χ2
9,0.05 = 16.91898,

which I found using the qchisq(0.95,9) command in R. Because the test statistic Q∗

does not exceed this upper quantile, we do not reject H0.

REMARK : Note that R can perform the modified Ljung-Box test automatically. Here

is the output:

> Box.test(residuals(gota.ma1.fit),lag=10,type="Ljung-Box",fitdf=1)

Box-Ljung test

X-squared = 5.1305, df = 9, p-value = 0.8228

We do not have evidence against MA(1) model adequacy for these data when K = 10.
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Figure 8.4: Göta River discharge data. Residual graphics and modified Ljung-Box p-

values for MA(1) fit. This figure was created using the tsdiag function in R.

GRAPHICS : The R function tsdiag produces the plot in Figure 8.4.

• The top plot displays the residuals plotted through time (without connecting lines).

• The middle plot displays the sample ACF of the residuals.

• The bottom plot displays the p-values of the modified Ljung-Box test for various

values of K. A horizontal line at α = 0.05 is added.

For the Göta River discharge data, we see in Figure 8.4 that all of the modified Ljung-Box

test p-values are larger than 0.05, lending further support of the MA(1) model.
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Figure 8.5: Earthquake data. Residual graphics and modified Ljung-Box p-values for

ARMA(1,1) fit to the square-root transformed data.

Example 8.5. In Example 7.7 (pp 203, notes), we fit an ARMA(1,1) model to the

(square-root transformed) earthquake data using maximum likelihood. Figure 8.5 dis-

plays the tsdiag output for the ARMA(1,1) model fit.

• The Shapiro-Wilk test does not reject normality (p-value = 0.7202). The runs test

does not reject independence (p-value = 0.679). Both the Shapiro-Wilk and runs

tests were applied to the standardized residuals.

• The residual output in Figure 8.5 fully supports the ARMA(1,1) model.
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Figure 8.6: U.S. Supreme Court data. Residual graphics and modified Ljung-Box p-

values for IMA(1,1) fit to the log transformed data.

Example 8.6. In Example 7.8 (pp 206, notes), we fit an IMA(1,1) model to the (log

transformed) Supreme Court data using maximum likelihood. Figure 8.6 displays the

tsdiag output for the IMA(1,1) model fit.

• The Shapiro-Wilk test does not reject normality (p-value = 0.5638). The runs test

does not reject independence (p-value = 0.864). Both the Shapiro-Wilk and runs

tests were applied to the standardized residuals.

• The modified Ljung-Box test p-values in Figure 8.6 raise serious concerns over the

adequacy of the IMA(1,1) model fit.

PAGE 224



CHAPTER 8 STAT 520, J. TEBBS

Year

Oi
l p

ric
es

1990 1995 2000 2005

10
20

30
40

50
60

Figure 8.7: Crude oil price data. Monthly spot prices in dollars from Cushing, OK, from

1/1986 to 1/2006.

Example 8.7. The data in Figure 8.7 are monthly spot prices for crude oil (measured

in U.S. dollars per barrel). We examined these data in Chapter 1 (Example 1.12, pp 13).

In this example, we assess the fit of an IMA(1,1) model for {log Yt}; i.e.,

∇ log Yt = et − θet−1.

I have arrived at this candidate model using our established techniques from Chapter 6;

these details are omitted for brevity. I used maximum likelihood to fit the model.

• In Figure 8.8, we display the {∇ log Yt} process (upper left), along with plots of

the standardized residuals from the IMA(1,1) fit.

• It is difficult to notice a pattern in the time series plot of the residuals, although

there are notable outliers on the low and high sides.
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Figure 8.8: Oil price data with IMA(1,1) fit to {log Yt}. Upper left: {∇ log Yt} process.

Upper right: Standardized residuals with zero line added. Lower left: Histogram of the

standardized residuals. Lower right: QQ plot of the standardized residuals.

• The Shapiro-Wilk test strongly rejects normality of the residuals (p-value< 0.0001).

This is likely due to the extreme outliers on each side, which are not “expected”

under the assumption of normality. The runs test does not reject independence

(p-value = 0.341).

• The tsdiag output for the IMA(1,1) residuals is given in Figure 8.9. The top plot

displays the residuals from the IMA(1,1) fit with “outlier limits” at

z0.025/241 ≈ 3.709744,

which is the upper 1− 0.05/2(241) quantile of the N (0, 1) distribution.

• R is implementing a “Bonferroni” correction to test each residual as an outlier.
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Figure 8.9: Oil price data. Residual graphics and modified Ljung-Box p-values for

IMA(1,1) fit to the log transformed data.

• According to the Bonferroni criterion, residuals which exceed this value (3.709744)

in absolute value would be classified as outliers. The one around 1991 likely corre-

sponds to the U.S. invasion of Iraq (the first one).

• The sample ACF for the residuals raises concern, but the modified Ljung-Box p-

values do not suggest lack of fit (although it becomes interesting for large K).

• The IMA(1,1) model for the log-transformed data appears to do a fairly good job.

I am a little concerned about the outliers and the residual ACF. Intervention

analysis (Chapter 11) may help to adjust for the outlying observations.
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8.3 Overfitting

REMARK : In addition to performing a thorough residual analysis, overfitting can be a

useful diagnostic technique to further assess the validity of an assumed model. Basically,

“overfitting” refers to the process of a fitting a model more complicated than the one

under investigation and then

(a) examining the significance of the additional parameter estimates

(b) examining the change in the estimates from the assumed model.

EXAMPLE : Suppose that, after the model specification phase and residual diagnostics,

we are strongly considering an AR(2) model for our data, that is,

Yt = θ0 + ϕ1Yt−1 + ϕ2Yt−2 + et.

To perform an overfit, we would fit the following two models:

• AR(3):

Yt = θ0 + ϕ1Yt−1 + ϕ2Yt−2 + ϕ3Yt−3 + et

• ARMA(2,1):

Yt = θ0 + ϕ1Yt−1 + ϕ2Yt−2 + et − θet−1.

• If the additional AR parameter estimate ϕ̂3 is significantly different than zero, then

this would be evidence that an AR(3) model is worthy of investigation. If ϕ̂3 is

not significantly different than zero and the estimates of ϕ1 and ϕ2 do not change

much from their values in the AR(2) model fit, this would be evidence that the

more complicated AR(3) model is not needed.

• If the additional MA parameter estimate θ̂ is significantly different than zero, then

this would be evidence that an ARMA(2,1) model is worthy of investigation. If θ̂ is

not significantly different than zero and the estimates of ϕ1 and ϕ2 do not change

much from their values in the AR(2) model fit, this would be evidence that the

more complicated ARMA(2,1) model is not needed.
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IMPORTANT : When overfitting an ARIMA(p, d, q) model, we consider the following

two models:

(a) ARIMA(p+ 1, d, q)

(b) ARIMA(p, d, q + 1).

That is, one overfit model increases p by 1. The other increases q by 1.

Example 8.8. Our residual analysis this chapter suggests that an MA(1) model for the

Göta River discharge data is very reasonable. We now overfit using an MA(2) model and

an ARMA(1,1) model. Here is the R output from all three model fits:

> gota.ma1.fit

Call: arima(x = gota, order = c(0, 0, 1), method = "ML")

Coefficients:

ma1 intercept

0.5350 535.0311

s.e. 0.0594 10.4300

sigma^2 estimated as 6957: log likelihood = -876.58, aic = 1757.15

> gota.ma2.overfit

Call: arima(x = gota, order = c(0, 0, 2), method = "ML")

Coefficients:

ma1 ma2 intercept

0.6153 0.1198 534.8117

s.e. 0.0861 0.0843 11.7000

sigma^2 estimated as 6864: log likelihood = -875.59, aic = 1757.18

> gota.arma11.overfit

Call: arima(x = gota, order = c(1, 0, 1), method = "ML")

Coefficients:

ar1 ma1 intercept

0.1574 0.4367 534.8004

s.e. 0.1292 0.1100 11.5217

sigma^2 estimated as 6891: log likelihood = -875.87, aic = 1757.74
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ANALYSIS : In the MA(2) overfit, we see that a 95 percent confidence interval for θ2,

the additional MA model parameter, is

−0.1198± 1.96(0.0843) =⇒ (−0.285, 0.045),

which does include 0. Therefore, θ̂2 is not statistically different than zero, which suggests

that the MA(2) model is not necessary. In the ARMA(1,1) overfit, we see that a 95

percent confidence interval for ϕ, the additional AR model parameter, is

0.1574± 1.96(0.1292) =⇒ (−0.096, 0.411),

which also includes 0. Therefore, ϕ̂ is not statistically different than zero, which suggests

that the ARMA(1,1) model is not necessary. The following table summarizes the output

on the last page:

Model θ̂ (ŝe) Additional estimate Significant? σ̂2
e AIC

MA(1) 0.5350(0.0594) −− −− 6957 1757.15

MA(2) 0.6153(0.0861) θ̂2 no 6864 1757.18

ARMA(1,1) 0.4367(0.1100) ϕ̂ no 6891 1757.74

Because the additional estimates in the overfit models are not statistically different from

zero, there is no reason to further consider either model. Note also how the estimate of

θ becomes less precise in the two larger models.

DISCUSSION : We have finished our discussions on model specification, model fitting,

and model diagnostics. Having done so, you are now well-versed in modeling time se-

ries data in the ARIMA(p, d, q) family. Hopefully, you have realized that the process

of building a model is not always clear cut and that some “give and take” is necessary.

Remember, no model is perfect! Furthermore, model building takes creativity and pa-

tience; it is not a black box exercise. Overall, our goal as data analysts is to find the best

possible model which explains the variation in the data in a clear and concise manner.

Having done this, our task now moves to using the fitted model for forecasting.
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9 Forecasting

Complementary reading: Chapter 9 (CC).

9.1 Introduction

RECALL: We have discussed two types of statistical models for time series data, namely,

deterministic trend models (Chapter 3) of the form

Yt = µt +Xt,

where {Xt} is a zero mean stochastic process, and ARIMA(p, d, q) models of the form

ϕ(B)(1−B)dYt = θ(B)et,

where {et} is zero mean white noise. For both types of models, we have studied model

specification, model fitting, and diagnostic procedures to assess model fit.

PREVIEW : We now switch our attention to forecasting.

• We start with a sample of process values up until time t, say, Y1, Y2, ..., Yt. These

are our observed data.

• Forecasting refers to the technique of predicting future values of the process, i.e.,

Yt+1, Yt+2, Yt+3, ..., .

In general, Yt+l is the value of the process at time t+ l, where l ≥ 1.

• We call t the forecast origin and l the lead time. The value Yt+l is “l steps

ahead” of the most recently observed value Yt.

IMPORTANT : By “forecasting,” we mean that we are trying to predict the value of

a future random variable Yt+l. In general, prediction is a more challenging problem
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than, say, estimating a population (model) parameter. Model parameters are fixed (but

unknown) values. Random variables are not fixed; they are random.

APPROACH : We need to adopt a formal mathematical criterion to calculate model

forecasts. The criterion that we will use is based on the mean squared error of

prediction

MSEP = E{[Yt+l − h(Y1, Y2, ..., Yt)]
2}.

• Suppose that we have a sample of observed data Y1, Y2, ..., Yt and that we would

like to predict Yt+l.

• The approach we take is to choose the function h(Y1, Y2, ..., Yt) that minimizes

MSEP. This function will be our forecasted value of Yt+l.

• The general solution to this minimization problem is

h(Y1, Y2, ..., Yt) = E(Yt+l|Y1, Y2, ..., Yt),

the conditional expectation of Yt+l, given the observed data Y1, Y2, ..., Yt (see

Appendices E and F, CC).

• Adopting conventional notation, we write

Ŷt(l) = E(Yt+l|Y1, Y2, ..., Yt).

This is called the minimum mean squared error (MMSE) forecast. That is,

Ŷt(l) is the MMSE forecast of Yt+l.

Conditional Expectation rules:

• The conditional expectation E(Z|Y1, Y2, ..., Yt) is a function of Y1, Y2, ..., Yt.

• If c is a constant, then E(c|Y1, Y2, ..., Yt) = c.

• If Z1 and Z2 are random variables, then

E(Z1 + Z2|Y1, Y2, ..., Yt) = E(Z1|Y1, Y2, ..., Yt) + E(Z2|Y1, Y2, ..., Yt);

i.e., conditional expectation is additive (just like unconditional expectation).

PAGE 232



CHAPTER 9 STAT 520, J. TEBBS

• If Z is a function of Y1, Y2, ..., Yt, say, Z = f(Y1, Y2, ..., Yt), then

E(Z|Y1, Y2, ..., Yt) = E[f(Y1, Y2, ..., Yt)|Y1, Y2, ..., Yt] = f(Y1, Y2, ..., Yt).

In other words, once you condition on Y1, Y2, ..., Yt, any function of Y1, Y2, ..., Yt acts

as a constant.

• If Z is independent of Y1, Y2, ..., Yt, then

E(Z|Y1, Y2, ..., Yt) = E(Z).

9.2 Deterministic trend models

RECALL: Consider the model

Yt = µt +Xt,

where µt is a deterministic (non-random) trend function and where {Xt} is assumed to be

a white noise process with E(Xt) = 0 and var(Xt) = γ0 (constant). By direct calculation,

the l-step ahead forecast is

Ŷt(l) = E(Yt+l|Y1, Y2, ..., Yt)

= E(µt+l +Xt+l|Y1, Y2, ..., Yt)

= E(µt+l|Y1, Y2, ..., Yt)︸ ︷︷ ︸
= µt+l

+E(Xt+l|Y1, Y2, ..., Yt)︸ ︷︷ ︸
= E(Xt+l)=0

= µt+l,

because µt+l is constant and because Xt+l is a zero mean random variable independent

of Y1, Y2, ..., Yt. Therefore,

Ŷt(l) = µt+l

is the MMSE forecast.

• For example, if µt = β0 + β1t, a linear trend model, then

Ŷt(l) = µt+l = β0 + β1(t+ l).
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• If µt = β0 + β1 cos(2πft) + β2 sin(2πft), a cosine trend model, then

Ŷt(l) = µt+l = β0 + β1 cos[2πf(t+ l)] + β2 sin[2πf(t+ l)].

ESTIMATION : Of course, MMSE forecasts must be estimated! For example, in the

linear trend model, Ŷt(l) is estimated by

µ̂t+l = β̂0 + β̂1(t+ l).

where β̂0 and β̂1 are the least squares estimates of β0 and β1, respectively. In the cosine

trend model, Ŷt(l) is estimated by

µ̂t+l = β̂0 + β̂1 cos[2πf(t+ l)] + β̂2 sin[2πf(t+ l)],

where β̂0, β̂1, and β̂2 are the least squares estimates.

Example 9.1. In Example 3.4 (pp 53, notes), we fit a straight line trend model to the

global temperature deviation data. The fitted model is

Ŷt = −12.19 + 0.0062t,

where t = 1900, 1991, ..., 1997, depicted visually in Figure 9.1. Here are examples of

forecasting with this estimated trend model:

• In 1997, we could have used the model to predict for 1998,

µ̂1998 = µ̂1997+1 = −12.19 + 0.0062(1997 + 1) ≈ 0.198.

• For 2005 (8 steps ahead of 1997),

µ̂2005 = µ̂1997+8 = −12.19 + 0.0062(1997 + 8) ≈ 0.241.

• For 2020 (23 steps ahead of 1997),

µ̂2020 = µ̂1997+23 = −12.19 + 0.0062(1997 + 23) ≈ 0.334.
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Figure 9.1: Global temperature data. The least squares straight line fit is superimposed.

Example 9.2. In Example 3.6 (pp 66, notes), we fit a cosine trend model to the monthly

US beer sales data (in millions of barrels), which produced the fitted model

Ŷt = 14.8− 2.04 cos(2πt) + 0.93 sin(2πt),

where t = 1980, 1980.083, 1980.166, ..., 1990.916. Note that

• t = 1980 refers to January, 1980,

• t = 1980.083 refers to February, 1980,

• t = 1980.166 refers to March, 1980, and so on.

• These values for t are used because data arrive monthly and “year” is used as a

predictor in the regression.

• This fitted model is depicted in Figure 9.2.
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Figure 9.2: Beer sales data. The least squares cosine trend fit is superimposed.

• In December, 1990, we could have used the model to predict for January, 1991,

µ̂1991 = 14.8− 2.04 cos[2π(1991)] + 0.93 sin[2π(1991)] ≈ 12.76.

• For June, 1992,

µ̂1992.416 = 14.8− 2.04 cos[2π(1992.416)] + 0.93 sin[2π(1992.416)] ≈ 17.03.

Note that the beginning of June, 1992 corresponds to t = 1992.416.

REMARK : One major drawback with predictions made from deterministic trend models

is that they are based only on the least squares model fit, that is, the forecast for Yt+l

ignores the correlation between Yt+l and Y1, Y2, ..., Yt. Therefore, the analyst who makes

these predictions is ignoring this correlation and, in addition, is assuming that the fitted

trend is applicable indefinitely into the future; i.e., “the trend lasts forever.”
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TERMINOLOGY : For deterministic trend models of the form

Yt = µt +Xt,

where E(Xt) = 0 and var(Xt) = γ0 (constant), the forecast error at lead time l, denoted

by et(l), is the difference between the value of the process at time t + l and the MMSE

forecast at this time. Mathematically,

et(l) = Yt+l − Ŷt(l)

= µt+l +Xt+l − µt+l = Xt+l.

For all l ≥ 1,

E[et(l)] = E(Xt+l) = 0

var[et(l)] = var(Xt+l) = γ0.

• The first equation implies that forecasts are unbiased because the forecast error

is an unbiased estimator of 0.

• The second equation implies that the forecast error variance is constant for all

lead times l.

• These facts will be useful in deriving prediction intervals for future values.

9.3 ARIMA models

GOAL: We now discuss forecasting methods with ARIMA models. Recall that an

ARIMA(p, d, q) process can be written generally as

ϕ(B)(1−B)dYt = θ0 + θ(B)et,

where θ0 is an intercept term. We first focus on stationary ARMA(p, q) models, that

is, ARIMA(p, d, q) models with d = 0. Special cases are treated in detail.
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9.3.1 AR(1)

AR(1): Suppose that {et} is zero mean white noise with var(et) = σ2
e . Consider the

AR(1) model

Yt − µ = ϕ(Yt−1 − µ) + et,

where the overall (process) mean µ = E(Yt).

1-step ahead forecast: The MMSE forecast of Yt+1, the 1-step ahead forecast, is

Ŷt(1) = E(Yt+1|Y1, Y2, ..., Yt)

= E[µ+ ϕ(Yt − µ) + et+1︸ ︷︷ ︸
= Yt+1

|Y1, Y2, ..., Yt]

= E(µ|Y1, Y2, ..., Yt) + E[ϕ(Yt − µ)|Y1, Y2, ..., Yt] + E(et+1|Y1, Y2, ..., Yt).

From the properties of conditional expectation, we note the following:

• E(µ|Y1, Y2, ..., Yt) = µ, because µ is a constant.

• E[ϕ(Yt−µ)|Y1, Y2, ..., Yt] = ϕ(Yt−µ), because ϕ(Yt−µ) is a function of Y1, Y2, ..., Yt.

• E(et+1|Y1, Y2, ..., Yt) = E(et+1) = 0, because et+1 is independent of Y1, Y2, ..., Yt.

Therefore, the MMSE forecast of Yt+1 is

Ŷt(1) = µ+ ϕ(Yt − µ).

2-step ahead forecast: The MMSE forecast of Yt+2, the 2-step ahead forecast, is

Ŷt(2) = E(Yt+2|Y1, Y2, ..., Yt)

= E[µ+ ϕ(Yt+1 − µ) + et+2︸ ︷︷ ︸
= Yt+2

|Y1, Y2, ..., Yt]

= E(µ|Y1, Y2, ..., Yt)︸ ︷︷ ︸
= µ

+E[ϕ(Yt+1 − µ)|Y1, Y2, ..., Yt]︸ ︷︷ ︸
= (∗∗)

+E(et+2|Y1, Y2, ..., Yt)︸ ︷︷ ︸
= E(et+2)=0

.
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Now, the expression in (∗∗) is equal to

E[ϕ(Yt+1 − µ)|Y1, Y2, ..., Yt] = E{ϕ[µ+ ϕ(Yt − µ) + et+1︸ ︷︷ ︸
= Yt+1

−µ]|Y1, Y2, ..., Yt}

= E{ϕ[ϕ(Yt − µ) + et+1]|Y1, Y2, ..., Yt}

= E[ϕ2(Yt − µ)|Y1, Y2, ..., Yt] + E(ϕet+1|Y1, Y2, ..., Yt).

From the properties of conditional expectation, we again note the following:

• E[ϕ2(Yt − µ)|Y1, Y2, ..., Yt] = ϕ2(Yt − µ), because ϕ2(Yt − µ) is a function of

Y1, Y2, ..., Yt.

• E(ϕet+1|Y1, Y2, ..., Yt) = ϕE(et+1|Y1, Y2, ..., Yt) = ϕE(et+1) = 0, because et+1 is

independent of Y1, Y2, ..., Yt.

Therefore, the MMSE forecast of Yt+2 is

Ŷt(2) = µ+ ϕ2(Yt − µ).

l-step ahead forecast: For larger lead times, this pattern continues. In general, the

MMSE forecast of Yt+l, for all l ≥ 1, is

Ŷt(l) = µ+ ϕl(Yt − µ).

• When −1 < ϕ < 1 (stationarity condition), note that ϕl ≈ 0 when l is large.

• Therefore, as l increases without bound, the l-step ahead MMSE forecast

Ŷt(l)→ µ.

In other words, MMSE forecasts will “converge” to the overall process mean µ as

the lead time l increases.

IMPORTANT: That the MMSE forecast Ŷt(l)→ µ as l →∞ is a characteristic of all

stationary ARMA(p, q) models.
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FORECAST ERROR: In the AR(1) model, the 1-step ahead forecast error is

et(1) = Yt+1 − Ŷt(1)

= µ+ ϕ(Yt − µ) + et+1︸ ︷︷ ︸
= Yt+1

−[µ+ ϕ(Yt − µ)︸ ︷︷ ︸
= Ŷt(1)

]

= et+1.

Therefore,

E[et(1)] = E(et+1) = 0

var[et(1)] = var(et+1) = σ2
e .

Because the 1-step ahead forecast error et(1) is an unbiased estimator of 0, we say that

the 1-step ahead forecast Ŷt(1) is unbiased. The second equation says that the 1-step

ahead forecast error et(1) has constant variance. To find the l-step ahead forecast

error, et(l), we first remind ourselves (pp 94, notes) that a zero mean AR(1) process can

be written as an infinite order MA model, that is,

Yt − µ = et + ϕet−1 + ϕ2et−2 + ϕ3et−3 + · · · .

Therefore,

Yt+l − µ = et+l + ϕet+l−1 + ϕ2et+l−2 + · · ·+ ϕl−1et+1 + ϕlet + · · · .

The l-step ahead forecast error is

et(l) = Yt+l − Ŷt(l)

= Yt+l − µ+ µ− Ŷt(l)

= et+l + ϕet+l−1 + ϕ2et+l−2 + · · ·+ ϕl−1et+1 + ϕlet + · · ·︸ ︷︷ ︸
= Yt+l−µ

−ϕl(Yt − µ)︸ ︷︷ ︸
= µ−Ŷt(l)

= et+l + ϕet+l−1 + ϕ2et+l−2 + · · ·+ ϕl−1et+1 + ϕlet + · · ·

−ϕl(et + ϕet−1 + ϕ2et−2 + ϕ3et−3 + · · ·︸ ︷︷ ︸
= Yt−µ

)

= et+l + ϕet+l−1 + ϕ2et+l−2 + · · ·+ ϕl−1et+1.

Therefore, the l-step ahead forecast error has mean

E[et(l)] = E(et+l + ϕet+l−1 + ϕ2et+l−2 + · · ·+ ϕl−1et+1) = 0,
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i.e., forecasts are unbiased. The variance of the l-step ahead forecast error is

var[et(l)] = var(et+l + ϕet+l−1 + ϕ2et+l−2 + · · ·+ ϕl−1et+1)

= var(et+l) + ϕ2var(et+l−1) + ϕ4var(et+l−2) + · · ·+ ϕ2(l−1)var(et+1)

= σ2
e + ϕ2σ2

e + ϕ4σ2
e + · · ·+ ϕ2(l−1)σ2

e

= σ2
e

l−1∑
k=0

ϕ2k = σ2
e

(
1− ϕ2l

1− ϕ2

)
.

Assuming stationarity, note that ϕ2l → 0 as l →∞ (because −1 < ϕ < 1) and

var[et(l)]→
σ2
e

1− ϕ2
= γ0 = var(Yt).

IMPORTANT: That var[et(l)] → γ0 = var(Yt) as l → ∞ is a characteristic of all

stationary ARMA(p, q) models.

Example 9.3. In Example 8.2 (pp 213, notes), we examined the Lake Huron elevation

data (from 1880-2006) and we used an AR(1) process to model them.

• The fit using maximum likelihood is

Yt − 579.4921 = 0.8586(Yt−1 − 579.4921) + et,

so that µ̂ = 579.4921, ϕ̂ = 0.8586, and the white noise error variance estimate

σ̂2
e = 0.4951. The last value observed was Yt = 581.27 (the elevation for 2006).

• With l = 1, the (estimated) MMSE forecast for Yt+1 (for 2007) is

Ŷt(1) = 579.4921 + 0.8586(581.27− 579.4921) ≈ 581.02.

• With l = 2, the (estimated) MMSE forecast for Yt+2 (for 2008) is

Ŷt(2) = 579.4921 + (0.8586)2(581.27− 579.4921) ≈ 580.80.

• With l = 10, the (estimated) MMSE forecast for Yt+10 (for 2016) is

Ŷt(10) = 579.4921 + (0.8586)10(581.27− 579.4921) ≈ 579.88.
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NOTE : The R function predict provides (estimated) MMSE forecasts and (estimated)

standard errors of the forecast error for any ARIMA(p, d, q) model fit. For example,

consider the Lake Huron data with lead times l = 1, 2, ..., 20 (which corresponds to years

2007, 2008, ..., 2026). R produces the following output:

huron.ar1.predict <- predict(huron.ar1.fit,n.ahead=20)

> round(huron.ar1.predict$pred,3)

Start = 2007

End = 2026

[1] 581.019 580.803 580.618 580.458 580.322 580.205 580.104 580.017 579.943 579.879

[11] 579.825 579.778 579.737 579.703 579.673 579.647 579.625 579.607 579.590 579.576

> round(huron.ar1.predict$se,3)

Start = 2007

End = 2026

[1] 0.704 0.927 1.063 1.152 1.214 1.258 1.289 1.311 1.328 1.340 1.349 1.355 1.360

[14] 1.363 1.366 1.367 1.369 1.370 1.371 1.371

• In Figure 9.3, we display the Lake Huron data. The full data set is from 1880-2006

(one elevation reading per year).

• However, for aesthetic reasons (to emphasize the MMSE forecasts), we start the

series in the plot at year 1940.

• The estimated MMSE forecasts in the R predict output are computed using

Ŷt(l) = µ̂+ ϕ̂l(Yt − µ̂),

for l = 1, 2, ..., 20, starting with Yt = 581.27, the observed elevation in 2006. There-

fore, the forecasts in Figure 9.3 start at 2007 and end in 2026.

• In the output above, note how MMSE forecasts Ŷt(l) approach the estimated mean

µ̂ = 579.492, as l increases. This can also be clearly seen in Figure 9.3.

• The (estimated) standard errors of the forecast error (in the predict output above)

are used to construct prediction intervals. We will discuss their construction in

due course.
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Figure 9.3: Lake Huron elevation data. The full data set is from 1880-2006. This figure

starts the series at 1940. AR(1) estimated MMSE forecasts and 95 percent prediction

limits are given for lead times l = 1, 2, ..., 20. These lead times correspond to years

2007-2026.

• Specifically, the (estimated) standard errors of the forecast error (in the predict

output above) are given by

ŝe[et(l)] =
√
v̂ar[et(l)] =

√√√√σ̂2
e

(
1− ϕ̂2l

1− ϕ̂2

)
,

where σ̂2
e = 0.4951 and ϕ̂ = 0.8586.

• Note how these (estimated) standard errors approach

lim
l→∞

ŝe[et(l)] =

√
σ̂2
e

1− ϕ̂2
=

√
0.4951

1− (0.8586)2
≈ 1.373.

This value (1.373) is the square root of the estimated AR(1) process variance γ̂0.
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9.3.2 MA(1)

MA(1): Suppose that {et} is zero mean white noise with var(et) = σ2
e . Consider the

invertible MA(1) process

Yt = µ+ et − θet−1,

where the overall (process) mean µ = E(Yt).

1-step ahead forecast: The MMSE forecast of Yt+1, the 1-step ahead forecast, is

Ŷt(1) = E(Yt+1|Y1, Y2, ..., Yt)

= E(µ+ et+1 − θet|Y1, Y2, ..., Yt)

= E(µ|Y1, Y2, ..., Yt)︸ ︷︷ ︸
= µ

+E(et+1|Y1, Y2, ..., Yt)︸ ︷︷ ︸
= E(et+1)=0

−E(θet|Y1, Y2, ..., Yt)︸ ︷︷ ︸
= (∗∗)

.

To compute (∗∗), recall (pp 105, notes) that a zero mean invertible MA(1) process can

be written in its “AR(∞)” expansion

et = (Yt − µ) + θ(Yt−1 − µ) + θ2(Yt−2 − µ) + θ3(Yt−3 − µ) + · · · ,

a weighted (theoretically infinite) linear combination of Yt−j−µ, for j = 0, 1, 2, ...,. That

is, et can be expressed as a function of Y1, Y2, ..., Yt, and hence

E(θet|Y1, Y2, ..., Yt) = θet.

Therefore, the 1-step ahead forecast

Ŷt(1) = µ− θet.

From the representation above, note that the white noise term et can be “computed” in

the 1-step ahead forecast as a byproduct of estimating θ and µ in the MA(1) fit.

l-step ahead forecast: The MMSE prediction for Yt+l, l > 1, is given by

Ŷt(l) = E(Yt+l|Y1, Y2, ..., Yt)

= E(µ+ et+l − θet+l−1|Y1, Y2, ..., Yt)

= E(µ|Y1, Y2, ..., Yt)︸ ︷︷ ︸
= µ

+E(et+l|Y1, Y2, ..., Yt)︸ ︷︷ ︸
= E(et+l)=0

−E(θet+l−1|Y1, Y2, ..., Yt)︸ ︷︷ ︸
= θE(et+l−1)=0

,
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because et+l and et+l−1 are both independent of Y1, Y2, ..., Yt, when l > 1. Therefore, we

have shown that for the MA(1) model, MMSE forecasts are

Ŷt(l) =

 µ− θet, l = 1

µ, l > 1.

The key feature of an MA(1) process is that observations one unit apart in time are

correlated, whereas observations l > 1 units apart in time are not. For l > 1, there is no

autocorrelation to exploit in making a prediction; this is why a constant mean prediction

is made. Note: More generally, for any purely MA(q) process, the MMSE forecast is

Ŷt(l) = µ at all lead times l > q.

REMARK : Just as we saw in the AR(1) model case, note that Ŷt(l)→ µ as l→∞. This

is a characteristic of Ŷt(l) in all stationary ARMA(p, q) models.

FORECAST ERROR: In the MA(1) model, the 1-step ahead forecast error is

et(1) = Yt+1 − Ŷt(1)

= µ+ et+1 − θet︸ ︷︷ ︸
= Yt+1

−(µ− θet︸ ︷︷ ︸
= Ŷt(1)

)

= et+1.

Therefore,
E[et(1)] = E(et+1) = 0

var[et(1)] = var(et+1) = σ2
e .

As in the AR(1) model, 1-step ahead forecasts are unbiased and the variance of the 1-step

ahead forecast error is constant. The variance of the l-step ahead prediction error

et(l), for l > 1, is given by

var[et(l)] = var[Yt+l − Ŷt(l)]

= var(µ+ et+l − θet+l−1︸ ︷︷ ︸
= Yt+l

−µ)

= var(et+l − θet+l−1)

= var(et+l) + θ2var(et+l−1)− 2θ cov(et+l, et+l−1)︸ ︷︷ ︸
= 0

= σ2
e + θ2σ2

e = σ2
e(1 + θ2).
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Summarizing,

var[et(l)] =

 σ2
e , l = 1

σ2
e(1 + θ2), l > 1.

REMARK : In the MA(1) model, note that as l→∞,

var[et(l)]→ γ0 = var(Yt).

This is a characteristic of var[et(l)] in all stationary ARMA(p, q) models.

Example 9.4. In Example 7.6 (pp 202, notes), we examined the Göta River discharge

rate data (1807-1956) and used an MA(1) process to model them. The fitted model

(using ML) is

Yt = 535.0311 + et + 0.5350et−1.

so that µ̂ = 535.0311, θ̂ = −0.5350 and σ̂2
e = 6957. Here are the MA(1) forecasts for lead

times l = 1, 2, ..., 10, computed using the predict function in R:

> gota.ma1.predict <- predict(gota.ma1.fit,n.ahead=10)

> round(gota.ma1.predict$pred,3)

Start = 1957

End = 1966

[1] 510.960 535.031 535.031 535.031 535.031 535.031 535.031 535.031 535.031 535.031

> round(gota.ma1.predict$se,3)

Start = 1957

End = 1966

[1] 83.411 94.599 94.599 94.599 94.599 94.599 94.599 94.599 94.599 94.599

• In Figure 9.4, we display the Göta River data. The full data set is from 1807-1956

(one discharge reading per year). However, to emphasize the MMSE forecasts in

the plot, we start the series at year 1890.

• With l = 1, 2, ..., 10, the MMSE forecasts in the predict output and in Figure 9.4

start at 1957 and end in 1966.

• From the predict output, note that Ŷt(1) = 510.960, the 1-step ahead forecast,

is the only “informative” one. Forecasts for l > 1 are Ŷt(l) = µ̂ ≈ 535.0311.
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Figure 9.4: Göta River discharge data. The full data set is from 1807-1956. This figure

starts the series at 1890. MA(1) estimated MMSE forecasts and 95 percent prediction

limits are given for lead times l = 1, 2, ..., 10. These lead times correspond to years

1957-1966.

• Recall that MA(1) forecasts only exploit the autocorrelation at the l = 1 lead time!

In the MA(1) process, there is no autocorrelation after the first lag. All future

forecasts (after the first) will revert to the process mean estimate.

• For lead time l = 1,

ŝe[et(1)] =
√

v̂ar[et(1)] =
√

σ̂2
e =
√
6957 ≈ 83.411

• For any lead time l > 1,

ŝe[et(l)] =
√
v̂ar[et(l)] =

√
σ̂2
e(1 + θ̂2) ≈

√
6957[1 + (−0.5350)2] ≈ 94.599.

This value (94.599) is the square root of the estimated MA(1) process variance γ̂0.
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9.3.3 ARMA(p, q)

ARMA(p, q): Suppose that {et} is zero mean white noise with var(et) = σ2
e and consider

the ARMA(p, q) process

Yt = θ0 + ϕ1Yt−1 + ϕ2Yt−2 + · · ·+ ϕpYt−p + et − θ1et−1 − θ2et−2 − · · · − θqet−q.

To calculate the l-step ahead MMSE forecast, replace the time index t with t+ l and take

conditional expectations of both sides (given the process history Y1, Y2, ..., Yt). Doing this

leads directly to the following difference equation:

Ŷt(l) = θ0 + ϕ1Ŷt(l − 1) + ϕ2Ŷt(l − 2) + · · ·+ ϕpŶt(l − p)

− θ1E(et+l−1|Y1, Y2, ..., Yt)− θ2E(et+l−2|Y1, Y2, ..., Yt)− · · ·

− θqE(et+l−q|Y1, Y2, ..., Yt).

For a general ARMA(p, q) process, MMSE forecasts are calculated using this equation.

• In the expression above,

Ŷt(l − j) = E(Yt+l−j|Y1, Y2, ..., Yt),

for j = 1, 2, ..., p. General recursive formulas can be derived to compute this con-

ditional expectation, as we saw in the AR(1) case.

• In the expression above,

E(et+l−k|Y1, Y2, ..., Yt) =

 0, l − k > 0

et+l−k, l − k ≤ 0,

for k = 1, 2, ..., q. When l − k ≤ 0, the conditional expectation

E(et+l−k|Y1, Y2, ..., Yt) = et+l−k,

which can be approximated using infinite AR representations for invertible models

(see pp 80, CC). This is only necessary for MMSE forecasts at early lags l ≤ q

when q is larger than or equal to 1.
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SPECIAL CASE : Consider the ARMA(1,1) process

Yt = θ0 + ϕYt−1 + et − θet−1.

For l = 1, we have

Ŷt(1) = E(Yt+1|Y1, Y2, ..., Yt)

= E(θ0 + ϕYt + et+1 − θet|Y1, Y2, ..., Yt)

= E(θ0|Y1, Y2, ..., Yt)︸ ︷︷ ︸
= θ0

+E(ϕYt|Y1, Y2, ..., Yt)︸ ︷︷ ︸
= ϕYt

+E(et+1|Y1, Y2, ..., Yt)︸ ︷︷ ︸
= E(et+1)=0

−E(θet|Y1, Y2, ..., Yt)︸ ︷︷ ︸
= θet

= θ0 + ϕYt − θet.

For l = 2, we have

Ŷt(2) = E(Yt+2|Y1, Y2, ..., Yt)

= E(θ0 + ϕYt+1 + et+2 − θet+1|Y1, Y2, ..., Yt)

= E(θ0|Y1, Y2, ..., Yt)︸ ︷︷ ︸
= θ0

+E(ϕYt+1|Y1, Y2, ..., Yt)︸ ︷︷ ︸
= ϕŶt(1)

+E(et+2|Y1, Y2, ..., Yt)︸ ︷︷ ︸
= E(et+2)=0

−E(θet+1|Y1, Y2, ..., Yt)︸ ︷︷ ︸
= θE(et+1)=0

= θ0 + ϕŶt(1).

It is easy to see that this pattern continues for larger lead times l; in general,

Ŷt(l) = θ0 + ϕŶt(l − 1),

for all lead times l > 1. It is important to make the following observations in this special

ARMA(p = 1, q = 1) case:

• The MMSE forecast Ŷt(l) depends on the MA components only when l ≤ q = 1.

• When l > q = 1, the MMSE forecast Ŷt(l) depends only on the AR components.

• This is also true of MMSE forecasts in higher order ARMA(p, q) models.
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SUMMARY : The following notes summarize MMSE forecast calculations in general

ARMA(p, q) models:

• When l ≤ q, MMSE forecasts depend on both the AR and MA parts of the model.

• When l > q, the MA contributions vanish and forecasts will depend solely on the

recursion identified in the AR part. That is, when l > q,

Ŷt(l) = θ0 + ϕ1Ŷt(l − 1) + ϕ2Ŷt(l − 2) + · · ·+ ϕpŶt(l − p).

• It is insightful to note that the last expression, for l > q, can be written as

Ŷt(l)− µ = ϕ1[Ŷt(l − 1)− µ] + ϕ2[Ŷt(l − 2)− µ] + · · ·+ ϕp[Ŷt(l − p)− µ].

Therefore,

– as a function of l, Ŷt(l) − µ follows the same Yule-Walker recursion as the

autocorrelation function ρk.

– the roots of ϕ(x) = 1 − ϕ1x − ϕ2x
2 − · · · − ϕpx

p determine the behavior of

Ŷt(l)− µ, when l > q; e.g., exponential decay, damped sine waves, etc.

• For any stationary ARMA(p, q) process,

lim
l→∞

Ŷt(l) = µ,

where µ = E(Yt). Therefore, for large lead times l, MMSE forecasts will be ap-

proximately equal to the process mean.

• For any stationary ARMA(p, q) process, the variance of the l-step ahead fore-

cast error satisfies

lim
l→∞

var[et(l)] = γ0,

where γ0 = var(Yt). That is, for large lead times l, the variance of the forecast error

will be close to the process variance.

• The predict function in R automates the entire forecasting process, providing

(estimated) MMSE forecasts and standard errors of the forecast error.
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Example 9.5. In Example 7.5 (pp 195, notes), we examined the bovine blood sugar

data (176 observations) and we used an ARMA(1,1) process to model them. The fitted

ARMA(1,1) model (using ML) is

Yt − 59.0071 = 0.6623(Yt−1 − 59.0071) + et + 0.6107et−1,

so that µ̂ = 59.0071, ϕ̂ = 0.6623, θ̂ = −0.6107, and the white noise variance estimate

σ̂2
e = 20.43. Here are the ARMA(1,1) forecasts for lead times l = 1, 2, ..., 10, computed

using the predict function in R:

> cows.arma11.predict <- predict(cows.arma11.fit,n.ahead=10)

> round(cows.arma11.predict$pred,3)

Start = 177

End = 186

[1] 58.643 58.766 58.847 58.901 58.937 58.961 58.976 58.987 58.994 58.998

> round(cows.arma11.predict$se,3)

Start = 177

End = 186

[1] 4.520 7.316 8.249 8.627 8.787 8.856 8.887 8.900 8.906 8.908

• In Figure 9.5, we display the bovine data. The full data set is from day 1-176 (one

blood sugar reading per day). However, to emphasize the MMSE forecasts in the

plot, we start the series at day 81.

• With l = 1, 2, ..., 10, the MMSE forecasts in the predict output and in Figure 9.5

start at day 177 and end at day 186.

• From the predict output and Figure 9.5, note that the predictions are all close to

µ̂ = 59.0071, the estimated process mean. This happens because the last observed

data value was Y176 = 55.91133, which is already somewhat close to µ̂ = 59.0071.

• Close inspection reveals that the forecasts decay (quickly) towards µ̂ = 59.0071 as

expected.
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Figure 9.5: Bovine blood sugar data. The full data set is from day 1-176. This figure

starts the series at day 81. ARMA(1,1) estimated MMSE forecasts and 95 percent

prediction limits are given for lead times l = 1, 2, ..., 10. These lead times correspond to

days 177-186.

• The variance of the l-step ahead prediction error et(l) should satisfy

lim
l→∞

var[et(l)] = γ0 =

(
1− 2ϕθ + θ2

1− ϕ2

)
σ2
e ,

which, with ϕ̂ = 0.6623, θ̂ = −0.6107, and σ̂2
e = 20.43, is estimated to be

γ̂0 =

(
1− 2ϕ̂θ̂ + θ̂2

1− ϕ̂2

)
σ̂2
e

=

[
1− 2(0.6623)(−0.6107) + (−0.6107)2

1− (0.6623)2

]
(20.43) ≈ 79.407.

• As l increases, note that the estimated standard errors ŝe[et(l)] from the predict

output, as expected, get very close to
√

γ̂0 ≈
√
79.407 ≈ 8.911.
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9.3.4 Nonstationary models

NOTE : For invertible ARIMA(p, d, q) models with d ≥ 1, MMSE forecasts are computed

using the same approach as in the stationary case. To see why, suppose that d = 1, so

that the model is

ϕ(B)(1−B)Yt = θ(B)et,

where (1−B)Yt = ∇Yt is the series of first differences. Note that

ϕ(B)(1−B) = (1− ϕ1B − ϕ2B
2 − · · · − ϕpB

p)(1−B)

= (1− ϕ1B − ϕ2B
2 − · · · − ϕpB

p)− (B − ϕ1B
2 − ϕ2B

3 − · · · − ϕpB
p+1)

= 1− (1 + ϕ1)B − (ϕ2 − ϕ1)B
2 − · · · − (ϕp − ϕp−1)B

p + ϕpB
p+1︸ ︷︷ ︸

= ϕ∗(B), say

.

We can therefore rewrite the ARIMA(p, 1, q) model as

ϕ∗(B)Yt = θ(B)et,

a nonstationary ARMA(p + 1, q) model. We then calculate MMSE forecasts the same

way as in the stationary case.

EXAMPLE : Suppose p = d = q = 1 so that we have an ARIMA(1,1,1) process

(1− ϕB)(1−B)Yt = (1− θB)et.

This can be written as

Yt = (1 + ϕ)Yt−1 − ϕYt−2 + et − θet−1,

a nonstationary ARMA(2,1) model. If l = 1, then

Ŷt(1) = E(Yt+1|Y1, Y2, ..., Yt)

= E[(1 + ϕ)Yt − ϕYt−1 + et+1 − θet|Y1, Y2, ..., Yt]

= E[(1 + ϕ)Yt|Y1, Y2, ..., Yt]︸ ︷︷ ︸
= (1+ϕ)Yt

−E(ϕYt−1|Y1, Y2, ..., Yt)︸ ︷︷ ︸
= ϕYt−1

+E(et+1|Y1, Y2, ..., Yt)︸ ︷︷ ︸
= E(et+1)=0

−E(θet|Y1, Y2, ..., Yt)︸ ︷︷ ︸
= θet

= (1 + ϕ)Yt − ϕYt−1 − θet.
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If l = 2, then

Ŷt(2) = E(Yt+2|Y1, Y2, ..., Yt)

= E[(1 + ϕ)Yt+1 − ϕYt + et+2 − θet+1|Y1, Y2, ..., Yt]

= E[(1 + ϕ)Yt+1|Y1, Y2, ..., Yt]︸ ︷︷ ︸
= (1+ϕ)Ŷt(1)

−E(ϕYt|Y1, Y2, ..., Yt)︸ ︷︷ ︸
= ϕYt

+E(et+2|Y1, Y2, ..., Yt)︸ ︷︷ ︸
= E(et+2)=0

−E(θet+1|Y1, Y2, ..., Yt)︸ ︷︷ ︸
= θE(et+1)=0

= (1 + ϕ)Ŷt(1)− ϕYt.

For l > 2, it follows similarly that

Ŷt(l) = E(Yt+l|Y1, Y2, ..., Yt)

= E[(1 + ϕ)Yt+l−1 − ϕYt+l−2 + et+l − θet+l−1|Y1, Y2, ..., Yt]

= (1 + ϕ)Ŷt(l − 1)− ϕŶt(l − 2).

Writing recursive expressions for MMSE forecasts in any invertible ARIMA(p, d, q) model

can be done similarly.

RESULT : The l-step ahead forecast error et(l) = Yt+l − Ŷt(l) for any invertible

ARIMA(p, d, q) model has the following characteristics:

E[et(l)] = 0

var[et(l)] = σ2
e

l−1∑
j=0

Ψ2
j ,

where the Ψ weights correspond to those in the truncated linear process representation

of the ARIMA(p, d, q) model; see pp 200 (CC).

• The first equation implies that MMSE ARIMA forecasts are unbiased.

• The salient feature in the second equation is that for nonstationary models, the

Ψ weights do not “die out” as they do with stationary models.

• Therefore, for nonstationary models, the variance of the forecast error var[et(l)]

continues to increase as l does. This is not surprising given that the process is not

stationary.
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Example 9.6. In Example 8.7 (pp 225, notes), we examined monthly spot prices for

crude oil (measured in U.S. dollars per barrel) from 1/86 to 1/06, and we used a log-

transformed IMA(1,1) process to model them. The model fit (using ML) is

log Yt = log Yt−1 + et + 0.2956et−1,

so that θ̂ = −0.2956 and the white noise variance estimate is σ̂2
e = 0.006689. The

estimated forecasts and standard errors (on the log scale) are given for lead times

l = 1, 2, ..., 12 in the predict output below:

> ima11.log.oil.predict <- predict(ima11.log.oil.fit,n.ahead=12)

> round(ima11.log.oil.predict$pred,3)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2006 4.208 4.208 4.208 4.208 4.208 4.208 4.208 4.208 4.208 4.208 4.208

2007 4.208

> round(ima11.log.oil.predict$se,3)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2006 0.082 0.134 0.171 0.201 0.227 0.251 0.272 0.292 0.311 0.328 0.345

2007 0.361

• In Figure 9.6, we display the oil price data. The full data set is from 1/86 to 1/06

(one observation per month). However, to emphasize the MMSE forecasts in the

plot, we start the series at month 1/98.

• With l = 1, 2, ..., 12, the estimated MMSE forecasts in the predict output and in

Figure 9.6 start at 2/06 and end in 1/07.

• From the predict output, note that Ŷt(1) = Ŷt(2) = · · · = Ŷt(12) = 4.208. It is

important to remember that these forecasts are on the log scale.

• On the original scale (in dollars), we will see later that MMSE forecasts are not

constant.

• As expected from a nonstationary process, the estimated standard errors (also on

the log scale) increase as l increases.
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Figure 9.6: Oil price data (log-transformed). The full data set is from 1/86 to 1/06. This

figure starts the series at 1/98. IMA(1,1) estimated MMSE forecasts and 95 percent

prediction limits (on the log scale) are given for lead times l = 1, 2, ..., 12. These lead

times correspond to months 2/06-1/07.

Example 9.7. In Example 1.6 (pp 7, notes), we examined the USC fall enrollment data

(Columbia campus) from 1954-2010. An ARI(1,1) process provides a good fit to these

data; fitting this model in R (using ML) gives the following output:

> enrollment.ari11.fit = arima(enrollment,order=c(1,1,0),method=’ML’)

> enrollment.ari11.fit

Coefficients:

ar1

0.3637

s.e. 0.1236

sigma^2 estimated as 1119849: log likelihood = -469.54, aic = 941.07
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The fitted ARI(1,1) model is therefore

Yt − Yt−1 = 0.3637(Yt−1 − Yt−2) + et,

so that ϕ̂ = 0.3637 and the white noise variance estimate σ̂2
e = 1119849. The predict

output from R is given below:

> enrollment.ari11.predict <- predict(enrollment.ari11.fit,n.ahead=10)

> round(enrollment.ari11.predict$pred,3)

Start = 2011

End = 2020

[1] 28842.12 28973.44 29021.20 29038.56 29044.88 29047.18 29048.01 29048.32 29048.43

[10] 29048.47

> round(enrollment.ari11.predict$se,3)

Start = 2011

End = 2020

[1] 1058.229 1789.494 2389.190 2894.460 3332.925 3723.059 4077.018 4402.947 4706.473

[10] 4991.615

• In Figure 9.7, we display the USC enrollment data. The full data set is from 1954-

2010 (one enrollment count per year). However, to emphasize the MMSE forecasts

in the plot, we start the series at year 1974.

• With l = 1, 2, ..., 10, the estimated MMSE forecasts in the predict output and in

Figure 9.7 start at 2011 and end at 2020.

• From the predict output, note that the estimated MMSE forecasts for the next

10 years, based on the ARI(1,1) fit, fluctuate slightly.

• As expected from a nonstationary process, the estimated standard errors increase

as l increases.

REMARK : As we have seen in the forecasting examples up to now, prediction limits

are used to assess uncertainty in the calculated MMSE forecasts. We now discuss how

these limits are obtained.
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Figure 9.7: University of South Carolina fall enrollment data. The full data set is from

1954-2010. This figure starts the series at 1974. ARI(1,1) estimated MMSE forecasts

and 95 percent prediction limits are given for lead times l = 1, 2, ..., 10. These lead times

correspond to years 2011-2020.

9.4 Prediction intervals

TERMINOLOGY : A 100(1−α) percent prediction interval for the Yt+l is an interval

(Ŷ
(L)
t+l , Ŷ

(U)
t+l ) which satisfies

pr(Ŷ
(L)
t+l < Yt+l < Ŷ

(U)
t+l ) = 1− α.

We now derive prediction intervals for future responses with deterministic trend and

ARIMA models.

NOTE : Prediction intervals and confidence intervals, while similar in spirit, have very

different interpretations. A confidence interval is for a population (model) parameter,

which is fixed. A prediction interval is constructed for a random variable.
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9.4.1 Deterministic trend models

RECALL: Recall our deterministic trend model of the form

Yt = µt +Xt,

where µt is a non-random trend function and where we assume (for purposes of the current

discussion) that {Xt} is a normally distributed stochastic process with E(Xt) = 0 and

var(Xt) = γ0 (constant). We have already shown the following:

Ŷt(l) = µt+l

E[et(l)] = 0

var[et(l)] = γ0,

where et(l) = Yt+l − Ŷt(l) is the l-step ahead prediction error. Under the assumption of

normality, the random variable

Z =
et(l)√
var[et(l)]

=
Yt+l − Ŷt(l)√

var[et(l)]
=

Yt+l − Ŷt(l)

se[et(l)]
∼ N (0, 1).

Therefore, Z is a pivotal quantity and

pr

(
−zα/2 <

Yt+l − Ŷt(l)

se[et(l)]
< zα/2

)
= 1− α.

Using algebra to rearrange the event inside the probability symbol, we have

pr
(
Ŷt(l)− zα/2se[et(l)] < Yt+l < Ŷt(l) + zα/2se[et(l)]

)
= 1− α.

This shows that (
Ŷt(l)− zα/2se[et(l)], Ŷt(l) + zα/2se[et(l)]

)
is a 100(1− α) percent prediction interval for Yt+l.

REMARK : The form the prediction interval includes the quantities Ŷt(l) = µt+l and

se[et(l)] =
√
γ0. Of course, these are population parameters that must be estimated

using the data.
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Example 9.8. Consider the global temperature data from Example 3.4 (pp 53, notes).

Fitting a linear deterministic trend model Yt = β0+β1t+Xt, for t = 1900, 1901, ..., 1997,

produces the following output in R:

Coefficients: Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.219e+01 9.032e-01 -13.49 <2e-16 ***

time(globaltemps.1900) 6.209e-03 4.635e-04 13.40 <2e-16 ***

Residual standard error: 0.1298 on 96 degrees of freedom

Multiple R-squared: 0.6515, Adjusted R-squared: 0.6479

F-statistic: 179.5 on 1 and 96 DF, p-value: < 2.2e-16

Suppose that {Xt} is a normal white noise process with (constant) variance γ0. The

analysis in Section 3.5.1 (notes, pp 72-73) does support the normality assumption.

• The fitted model is

Ŷt = −12.19 + 0.0062t,

for t = 1900, 1991, ..., 1997.

• An estimate of the (assumed constant) variance of Xt is

γ̂0 ≈ (0.1298)2 ≈ 0.0168.

• The 1-step ahead MMSE forecast for 1998 is estimated to be

Ŷt(1) = −12.19 + 0.0062(1997 + 1) ≈ 0.198.

• Therefore, with

ŝe[et(1)] ≈
√

γ̂0 ≈ 0.1298,

a 95 percent prediction interval for 1998 is

0.198± 1.96× 0.1298 =⇒ (−0.056, 0.452).

• If we had made this prediction in 1997, we would have been 95 percent confident

that the temperature deviation for 1998, Y1998, falls between −0.056 and 0.452.
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IMPORTANT : The formation of prediction intervals from deterministic trend models

requires that the stochastic component Xt is normally distributed with constant

variance. This may or may not be true in practice, but the validity of the prediction

limits requires it to be true. Note also that since the margin of error

zα/2se[et(l)] = zα/2
√
γ0

is free of l, prediction intervals have the same width indefinitely into the future.

9.4.2 ARIMA models

RECALL: Suppose that {et} is a zero mean white noise process with var(et) = σ2
e . In

general, an ARIMA(p, d, q) process can be written as

ϕ(B)(1−B)dYt = θ0 + θ(B)et.

We have seen that the l-step ahead forecast error et(l) = Yt+l−Ŷt(l) for any invertible

ARIMA(p, d, q) model has the following characteristics:

E[et(l)] = 0

var[et(l)] = σ2
e

l−1∑
j=0

Ψ2
j ,

where the Ψ weights are unique to the specific model under investigation. If we addi-

tionally assume that the white noise process {et} is normally distributed, then

Z =
et(l)√
var[et(l)]

=
Yt+l − Ŷt(l)√

var[et(l)]
=

Yt+l − Ŷt(l)

se[et(l)]
∼ N (0, 1).

This implies that (
Ŷt(l)− zα/2se[et(l)], Ŷt(l) + zα/2se[et(l)]

)
is a 100(1−α) percent prediction interval for Yt+l. As we have seen in the examples

so far, R gives (estimated) MMSE forecasts and standard errors; i.e., estimates of Ŷt(l)

and se[et(l)], so we can compute prediction intervals associated with any ARIMA(p, d, q)

model. It is important to emphasize that normality is assumed.
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Example 9.9. In Example 9.3, we examined the Lake Huron elevation data (from 1880-

2006) and calculated the (estimated) MMSE forecasts based on an AR(1) model fit with

lead times l = 1, 2, ..., 20. These forecasts, along with 95 percent prediction intervals

(limits) were depicted visually in Figure 9.3. Here are the numerical values of these

prediction intervals from R (I display only out to lead time l = 10 for brevity):

> # Create lower and upper prediction interval bounds

> lower.pi<-huron.ar1.predict$pred-qnorm(0.975,0,1)*huron.ar1.predict$se

> upper.pi<-huron.ar1.predict$pred+qnorm(0.975,0,1)*huron.ar1.predict$se

> # Display prediction intervals (2007-2026)

> data.frame(Year=c(2007:2026),lower.pi,upper.pi)

Year lower.pi upper.pi

1 2007 579.6395 582.3978

2 2008 578.9851 582.6206

3 2009 578.5347 582.7004

4 2010 578.2000 582.7168

5 2011 577.9423 582.7014

6 2012 577.7395 582.6696

7 2013 577.5776 582.6301

8 2014 577.4469 582.5878

9 2015 577.3406 582.5456

10 2016 577.2534 582.5053

• In the R code, $pred extracts the estimated MMSE forecasts and $se extracts the

estimated standard error of the forecast error. The expression qnorm(0.975,0,1)

gives the upper 0.025 quantile of the N (0, 1) distribution (approximately 1.96).

• For example, we are 95 percent confident that the Lake Huron elevation level for

2015 will be between 577.3406 and 582.5456 feet.

• Note how the prediction limits (lower and upper) start to stabilize as the lead

time l increases. This is typical of a stationary process. Prediction limits from

nonstationary model fits do not stabilize as l increases.

• Important: The validity of prediction intervals depends on the white noise process

{et} being normally distributed.
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9.5 Forecasting transformed series

9.5.1 Differencing

DISCOVERY : Calculating MMSE forecasts from nonstationary ARIMA models (i.e.,

d ≥ 1) poses no additional methodological challenges beyond those of stationary ARMA

models. It is easy to take this fact for granted, because as we have already seen, R auto-

mates the entire forecasting process for stationary and nonstationary models. However,

it is important to understand why this is true so we investigate by means of an example.

EXAMPLE : Suppose that {et} is a zero mean white noise process with var(et) = σ2
e and

consider the IMA(1,1) model

Yt = Yt−1 + et − θet−1.

The 1-step ahead MMSE forecast is

Ŷt(1) = E(Yt+1|Y1, Y2, ..., Yt)

= E(Yt + et+1 − θet|Y1, Y2, ..., Yt)

= E(Yt|Y1, Y2, ..., Yt)︸ ︷︷ ︸
= Yt

+E(et+1|Y1, Y2, ..., Yt)︸ ︷︷ ︸
= E(et+1)=0

−E(θet|Y1, Y2, ..., Yt)︸ ︷︷ ︸
= θet

= Yt − θet.

The l-step ahead MMSE forecast, for l > 1, is

Ŷt(l) = E(Yt+l|Y1, Y2, ..., Yt)

= E(Yt+l−1 + et+l − θet+l−1|Y1, Y2, ..., Yt)

= E(Yt+l−1|Y1, Y2, ..., Yt)︸ ︷︷ ︸
= Ŷt(l−1)

+E(et+l|Y1, Y2, ..., Yt)︸ ︷︷ ︸
= E(et+l)=0

−E(θet+l−1|Y1, Y2, ..., Yt)︸ ︷︷ ︸
= E(et+l−1)=0

= Ŷt(l − 1).

Therefore, we have shown that for the IMA(1,1) model, MMSE forecasts are

Ŷt(l) =

 Yt − θet, l = 1

Ŷt(l − 1), l > 1.
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Now, let Wt = ∇Yt = Yt − Yt−1, so that Wt follows a zero-mean MA(1) model; i.e.,

Wt = et − θet−1,

We have already shown that for an MA(1) process with µ = 0,

Ŵt(l) =

 −θet, l = 1

0, l > 1.

• When l = 1, note that

Ŵt(1) = −θet = Yt − θet︸ ︷︷ ︸
= Ŷt(1)

−Yt = Ŷt(1)− Yt.

• When l > 1, note that

Ŵt(l) = 0 = Ŷt(l)− Ŷt(l − 1).

Therefore, we have shown that with the IMA(1,1) model,

(a) forecasting the original nonstationary series Yt

(b) forecasting the stationary differenced series Wt = ∇Yt and then summing to

obtain the forecast in original terms

are equivalent procedures. In fact, this equivalence holds when forecasting for any

ARIMA(p, d, q) model!

• That is, the analyst can calculate predictions with the nonstationary model for Yt

or with the stationary model for Wt = ∇dYt (and then convert back to the original

scale by adding).

• The predictions in both cases will be equal (hence, the resulting standard errors

will be the same too).

• The reason this occurs is that differencing is a linear operation (just as conditional

expectation is).
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9.5.2 Log-transformed series

RECALL: In Chapter 5, we discussed the Box-Cox family of transformations

T (Yt) =


Y λ
t − 1

λ
, λ ̸= 0

ln(Yt), λ = 0,

where λ is the transformation parameter. Many time series processes {Yt} exhibit

nonconstant variability that can be stabilized by taking logarithms. However, the func-

tion T (x) = lnx is not a linear function, so transformations on the log scale can not

simply be “undone” as easily as with differenced series (differencing is a linear transfor-

mation). MMSE forecasts are not preserved under exponentiation.

THEORY : For notational purposes, set

Zt = lnYt,

and denote the MMSE forecast for Zt+l by Ẑt(l), that is, Ẑt(l) is the l-step ahead MMSE

forecast on the log scale.

• The MMSE forecast for Yt+l is not Ŷt(l) = eẐt(l)!! This is sometimes called the

naive forecast of Yt+l.

• The theoretical argument on pp 210 (CC) shows that the corresponding MMSE

forecast of Yt+l is

Ŷt(l) = exp

{
Ẑt(l) +

1

2
var[et(l)]

}
,

where var[et(l)] is the variance of the l-step ahead forecast error et(l) = Zt+l−Ẑt(l).

Example 9.10. In Example 9.6, we examined the monthly oil price data (1/86-1/01)

and we computed MMSE forecasts and predictions limits for l = 1, 2, ..., 12 (i.e., for 2/06

to 1/07), based on an IMA(1,1) fit for Zt = lnYt. The estimated MMSE forecasts (on

the log scale) are depicted visually in Figure 9.6. The estimated MMSE forecasts, both

on the log scale and on the original scale (back-transformed), are given below:
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> ima11.log.oil.predict <- predict(ima11.log.oil.fit,n.ahead=12)

> round(ima11.log.oil.predict$pred,3)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2006 4.208 4.208 4.208 4.208 4.208 4.208 4.208 4.208 4.208 4.208 4.208

2007 4.208

> round(ima11.log.oil.predict$se,3)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2006 0.082 0.134 0.171 0.201 0.227 0.251 0.272 0.292 0.311 0.328 0.345

2007 0.361

> # MMSE forecasts back-transformed (to original scale)

> oil.price.predict <-

round(exp(ima11.log.oil.predict$pred + (1/2)*(ima11.log.oil.predict$se)^2),3)

> oil.price.predict

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2006 67.417 67.796 68.178 68.562 68.948 69.336 69.726 70.119 70.513 70.910 71.310

2007 71.711

For example, the MMSE forecast (on the original scale) for June, 2006 is given by

Ŷt(5) = exp

{
4.208 +

1

2
(0.227)2

}
≈ 68.948.

NOTE : A 100(1−α) percent prediction interval for Yt+l can be formed by exponen-

tiating the endpoints of the prediction interval for Zt+l = log Yt+l. This is true because

1− α = pr(Ẑ
(L)
t+l < Zt+l < Ẑ

(U)
t+l ) = pr

(
eẐ

(L)
t+l < Yt+l < eẐ

(U)
t+l

)
;

that is, because the exponential function f(x) = ex is strictly increasing, the two proba-

bilities above are the same.

• For example, a 95 percent prediction interval for June, 2005 (on the log scale) is

4.208± 1.96(0.227) =⇒ (3.763, 4.653).

• A 95 percent prediction interval for June, 2005 on the original scale (in dollars) is

(e3.763, e4.653) =⇒ (43.08, 104.90).

Therefore, we are 95 percent confident that the June, 2006 oil price (had we made

this prediction in January, 2006) would fall between 43.08 and 104.90 dollars.
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10 Seasonal ARIMA Models

Complementary reading: Chapter 10 (CC).

10.1 Introduction

PREVIEW : In this chapter, we introduce new ARIMA models that incorporate seasonal

patterns occurring over time. With seasonal data, dependence with the past occurs most

prominently at multiples of an underlying seasonal lag, denoted by s. Consider the

following examples:

• With monthly data, there can be strong autocorrelation at lags that are multiples

of s = 12. For example, January observations tend to be “alike” across years,

February observations tend to be “alike,” and so on.

• With quarterly data, there can be strong autocorrelation at lags that are multiples

of s = 4. For example, first quarter sales tend to be “alike” across years, second

quarter sales tend to be “alike,” and so on.

UBIQUITY : Many physical, biological, epidemiological, and economic processes tend to

elicit seasonal patterns over time. We therefore wish to study new time series models

which can account explicitly for these types of patterns. We refer to this new class of

models generally as seasonal ARIMA models.

Example 10.1. In Example 1.2 (pp 3, notes), we examined the monthly U.S. milk

production data (in millions of pounds) from January, 1994 to December, 2005.

• In Figure 10.1, we see that there are two types of trend in the milk production

data:

– an upward linear trend (across the years)

– a seasonal trend (within years).
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Figure 10.1: United States milk production data. Monthly production figures, measured

in millions of pounds, from January, 1994 to December, 2005.

• We know the upward linear trend can be “removed” by working with first differences

∇Yt = Yt − Yt−1. This is how we removed linear trends with nonseasonal data.

• Figure 10.2 displays the series of first differences∇Yt. From this plot, it is clear that

the upward linear trend over time has been removed. That is, the first differences

∇Yt look stationary in the mean level.

• However, the first difference process {∇Yt} still displays a pronounced seasonal

pattern that repeats itself every s = 12 months. This is easily seen from the

monthly plotting symbols that I have added. How can we “handle” this type of

pattern? Is it possible to “remove” it as well?

GOAL: We wish to enlarge our class of ARIMA(p, d, q) models to handle seasonal data

such as these.
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Figure 10.2: United States milk production data. First differences ∇Yt = Yt − Yt−1.

Monthly plotting symbols have been added.

10.2 Purely seasonal (stationary) ARMA models

10.2.1 MA(Q)s

TERMINOLOGY : Suppose {et} is a zero mean white noise process with var(et) = σ2
e . A

seasonal moving average (MA) model of order Q with seasonal period s, denoted

by MA(Q)s, is

Yt = et −Θ1et−s −Θ2et−2s − · · · −ΘQet−Qs.

A nonzero mean µ could be added for flexibility (as with nonseasonal models), but we

take µ = 0 for simplicity.

MA(1)12: When Q = 1 and s = 12, we have

Yt = et −Θet−12.
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CALCULATIONS : For an MA(1)12 process, note that

µ = E(Yt) = E(et −Θet−12) = E(et)−ΘE(et−12) = 0.

The process variance is

γ0 = var(Yt) = var(et −Θet−12)

= var(et) + Θ2var(et−12)− 2Θ cov(et, et−12)︸ ︷︷ ︸
= 0

= σ2
e +Θ2σ2

e = σ2
e(1 + Θ2).

The lag 1 autocorrelation is

γ1 = cov(Yt, Yt−1) = cov(et −Θet−12, et−1 −Θet−13) = 0,

because no white noise subscripts match. In fact, it is easy to see that γk = 0 for all k,

except when k = s = 12. Note that

γ12 = cov(Yt, Yt−12) = cov(et −Θet−12, et−12 −Θet−24)

= −Θvar(et−12) = −Θσ2
e .

Therefore, the autocovariance function for an MA(1)12 process is

γk =


σ2
e(1 + Θ2), k = 0

−Θσ2
e , k = 12

0, otherwise.

Because E(Yt) = 0 and γk are both free of t, an MA(1)12 process is stationary. The

autocorrelation function (ACF) for an MA(1)12 process is

ρk =
γk
γ0

=


1, k = 0

− Θ

1 + Θ2
, k = 12

0, otherwise.

NOTE : The form of the MA(1)12 ACF is identical to the form of the nonseasonal MA(1)

ACF from Chapter 4. For the MA(1)12, the only nonzero autocorrelation occurs at the

first seasonal lag k = 12, as opposed to at k = 1 in the nonseasonal MA(1).
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Figure 10.3: MA(1)12 simulation with Θ = −0.9, n = 200, and σ2
e = 1.

NOTE : A seasonal MA(1)12 process is mathematically equivalent to a nonseasonal

MA(12) process with

θ1 = θ2 = · · · = θ11 = 0

and θ12 = Θ. Because of this equivalence (which occurs here and with other seasonal

models), we can use our already-established methods to specify, fit, diagnose, and forecast

seasonal models.

Example 10.2. We use R to simulate one realization of an MA(1)12 process with

Θ = −0.9, that is,

Yt = et + 0.9et−12,

where et ∼ iid N (0, 1) and n = 200. This realization is displayed in Figure 10.3. In

Figure 10.4, we display the population (theoretical) ACF and PACF for this MA(1)12

process and the sample versions that correspond to the simulation in Figure 10.3.
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Figure 10.4: MA(1)12 with Θ = −0.9. Upper left: Population ACF. Upper right: Popu-

lation PACF. Lower left (right): Sample ACF (PACF) using data in Figure 10.3.

• The population ACF and PACF (Figure 10.4; top) display the same patterns as

the nonseasonal MA(1), except that now these patterns occur at seasonal lags.

– The population ACF displays nonzero autocorrelation only at the first (sea-

sonal) lag k = 12. In other words, observations 12 units apart in time are

correlated, whereas all other observations are not.

– The population PACF shows a decay across seasonal lags k = 12, 24, 36, ...,.

• The sample ACF and PACF reveal these same patterns overall. Margin of error

bounds in the sample ACF/PACF are for white noise; not an MA(1)12 process.
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MA(2)12: A seasonal MA model of order Q = 2 with seasonal lag s = 12 is

Yt = et −Θ1et−12 −Θ2et−24.

For an MA(2)12 process, is easy to show that E(Yt) = 0 and

γk =



σ2
e(1 + Θ2

1 +Θ2
2), k = 0

(−Θ1 +Θ1Θ2)σ
2
e , k = 12

−Θ2σ
2
e , k = 24

0, otherwise.

Therefore, an MA(2)12 process is stationary. The autocorrelation function (ACF)

for an MA(2)12 process is

ρk =
γk
γ0

=



1, k = 0
−Θ1 +Θ1Θ2

1 + Θ2
1 +Θ2

2

, k = 12

−Θ2

1 + Θ2
1 +Θ2

2

, k = 24

0, otherwise.

NOTE : The ACF for an MA(2)12 process has the same form as the ACF for a nonseasonal

MA(2). The only difference is that nonzero autocorrelations occur at the first two

seasonal lags k = 12 and k = 24, as opposed to at k = 1 and k = 2 in the nonseasonal

MA(2).

NOTE : A seasonal MA(2)12 process is mathematically equivalent to a nonseasonal

MA(24) process with

θ1 = θ2 = · · · = θ11 = θ13 = θ14 = · · · = θ23 = 0,

θ12 = Θ1, and θ24 = Θ2. This again reveals that we can use our already-established

methods to specify, fit, diagnose, and forecast seasonal models.

BACKSHIFT NOTATION : In general, a seasonal MA(Q)s process

Yt = et −Θ1et−s −Θ2et−2s − · · · −ΘQet−Qs
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can be expressed using backshift notation as

Yt = et −Θ1B
set −Θ2B

2set − · · · −ΘQB
Qset

= (1−Θ1B
s −Θ2B

2s − · · · −ΘQB
Qs)et ≡ ΘQ(B

s)et,

where ΘQ(B
s) = 1 − Θ1B

s − Θ2B
2s − · · · − ΘQB

Qs is called the seasonal MA char-

acteristic operator. The operator ΘQ(B
s) can be viewed as a polynomial (in B) of

degree Qs.

• As with nonseasonal processes, a seasonal MA(Q)s process is invertible if and only

if each of the Qs roots of ΘQ(B
s) exceed 1 in absolute value (or modulus).

• All seasonal MA(Q)s processes are stationary.

10.2.2 AR(P )s

TERMINOLOGY : Suppose {et} is a zero mean white noise process with var(et) = σ2
e . A

seasonal autoregressive (AR) model of order P with seasonal period s, denoted

by AR(P )s, is

Yt = Φ1Yt−s + Φ2Yt−2s + · · ·+ ΦPYt−Ps + et.

A nonzero mean µ could be added for flexibility (as with nonseasonal models), but we

take µ = 0 for simplicity.

AR(1)12: When P = 1 and s = 12, we have

Yt = ΦYt−12 + et.

• Similar to a nonseasonal AR(1) process, a seasonal AR(1)12 process is stationary

if and only if −1 < Φ < 1. An AR(1)12 process is automatically invertible.

• For an AR(1)12 process,

E(Yt) = 0

γ0 = var(Yt) =
σ2
e

1− Φ2
.
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Figure 10.5: AR(1)12 simulation with Φ = 0.9, n = 200, and σ2
e = 1.

• The AR(1)12 autocorrelation function (ACF) is given by

ρk =

 Φk/12, k = 0, 12, 24, 36, ...,

0, otherwise.

• That is, ρ0 = 1, ρ12 = Φ, ρ24 = Φ2, ρ36 = Φ3, and so on, similar to the nonseasonal

AR(1). The ACF ρk = 0 at all lags k that are not multiples of s = 12.

• A seasonal AR(1)12 process is mathematically equivalent to a nonseasonal AR(12)

process with

ϕ1 = ϕ2 = · · · = ϕ11 = 0

and ϕ12 = Φ.

Example 10.3. We use R to simulate one realization of an AR(1)12 process with Φ = 0.9,

that is,

Yt = 0.9Yt−12 + et,
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Figure 10.6: AR(1)12 with Φ = −0.9. Upper left: Population ACF. Upper right: Popu-

lation PACF. Lower left (right): Sample ACF (PACF) using data in Figure 10.5.

where et ∼ iid N (0, 1) and n = 200. This realization is displayed in Figure 10.5. In

Figure 10.6, we display the population (theoretical) ACF and PACF for this AR(1)12

process and the sample versions that correspond to the simulation in Figure 10.5.

• The population ACF and PACF (Figure 10.6; top) display the same patterns as

the nonseasonal AR(1), except that now these patterns occur at seasonal lags.

– The population ACF displays a slow decay across the seasonal lags k =

12, 24, 36, 48, ...,. In other words, observations that are 12, 24, 36, 48, etc.

units apart in time are correlated, whereas all other observations are not.
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– The population PACF is nonzero at the first seasonal lag k = 12. The PACF

is zero at all other lags. This is analogous to the PACF for an AR(1) being

nonzero when k = 1 and zero elsewhere.

• The sample ACF and PACF reveal these same patterns overall. Margin of error

bounds in the sample ACF/PACF are for white noise; not an AR(1)12 process.

AR(2)12: A seasonal AR model of order P = 2 with seasonal lag s = 12; i.e., AR(2)12, is

Yt = ΦYt−12 + Φ2Yt−24 + et.

• A seasonal AR(2)12 behaves like the nonseasonal AR(2) at the seasonal lags.

– In particular, the ACF ρk displays exponential decay or damped sinusoidal

patterns across the seasonal lags k = 12, 24, 36, 48, ...,.

– The PACF ϕkk is nonzero at lags k = 12 and k = 24; it is zero at all other

lags.

• A seasonal AR(2)12 process is mathematically equivalent to a nonseasonal AR(24)

process with

ϕ1 = ϕ2 = · · · = ϕ11 = ϕ13 = ϕ14 = · · · = ϕ23 = 0,

ϕ12 = Φ1, and ϕ24 = Φ2.

BACKSHIFT NOTATION : In general, a seasonal AR(P )s process

Yt = Φ1Yt−s + Φ2Yt−2s + · · ·+ ΦPYt−Ps + et

can be expressed as

Yt − Φ1Yt−s − Φ2Yt−2s − · · · − ΦPYt−Ps = et

⇐⇒ (1− Φ1B
s − Φ2B

2s − · · · − ΦPB
Ps)Yt = et ⇐⇒ ΦP (B

s)Yt = et,

where ΦP (B
s) = 1−Φ1B

s −Φ2B
2s − · · · −ΦPB

Ps is the seasonal AR characteristic

operator. The operator ΦP (B
s) can be viewed as a polynomial (in B) of degree Ps.
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• As with nonseasonal processes, a seasonal AR(P )s process is stationary if and

only if each of the Ps roots of ΦP (B
s) exceed 1 in absolute value (or modulus).

• All seasonal AR(P )s processes are invertible.

10.2.3 ARMA(P,Q)s

TERMINOLOGY : Suppose {et} is a zero mean white noise process with var(et) = σ2
e .

A seasonal autoregressive moving average (ARMA) model of orders P and Q

with seasonal period s, denoted by ARMA(P,Q)s, is

Yt = Φ1Yt−s + Φ2Yt−2s + · · ·+ ΦPYt−Ps + et −Θ1et−s −Θ2et−2s − · · · −ΘQet−Qs.

A nonzero mean µ could be added for flexibility (as with nonseasonal models), but we

take µ = 0 for simplicity.

• An ARMA(P,Q)s process is the seasonal analogue of the nonseasonal ARMA(p, q)

process with nonzero autocorrelations at lags k = s, 2s, 3s, ...,.

• Using backshift notation, this model can be expressed as

ΦP (B
s)Yt = ΘQ(B

s)et,

where the seasonal AR and MA characteristic operators are

ΦP (B
s) = 1− Φ1B

s − Φ2B
2s − · · · − ΦPB

Ps

ΘQ(B
s) = 1−Θ1B

s −Θ2B
2s − · · · −ΘQB

Qs.

• Analogous to a nonseasonal ARMA(p, q) process,

– the ARMA(P,Q)s process is stationary if and only if the roots of ΦP (B
s)

each exceed 1 in absolute value (or modulus)

– the ARMA(P,Q)s process is invertible if and only if the roots of ΘQ(B
s)

each exceed 1 in absolute value (or modulus).
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• A seasonal ARMA(P,Q)s process is mathematically equivalent to a nonseasonal

ARMA(Ps,Qs) process with

ϕs = Φ1, ϕ2s = Φ2, ..., ϕPs = ΦP , θs = Θ1, θ2s = Θ2, ..., θQs = ΘQ,

and all other ϕ and θ parameters set equal to 0.

• The following table succinctly summarizes the behavior of the population ACF and

PACF for seasonal ARMA(P,Q)s processes:

AR(P )s MA(Q)s ARMA(P,Q)s

ACF Tails off at lags ks Cuts off after Tails off at lags ks

k = 1, 2, ..., lag Qs k = 1, 2, ..., s

PACF Cuts off after Tails off at lags ks Tails off at lags ks

lag Ps k = 1, 2, ..., k = 1, 2, ...,

SUMMARY : We have broadened the class of stationary ARMA(p, q) models to incorpo-

rate the same type of ARMA(p, q) behavior at seasonal lags, the so-called the seasonal

ARMA(P,Q)s class of models.

• In many ways, this “extension” is not that much of an extension, because the

seasonal ARMA(P,Q)s model is essentially an ARMA(p, q) model restricted the

seasonal lags k = s, 2s, 3s, ...,.

• That is, an ARMA(P,Q)s model, which incorporates autocorrelation at seasonal

lags and nowhere else, is likely limited in application for stationary processes.

• However, if we combine these new seasonal ARMA(P,Q)s models with our tradi-

tional nonseasonal ARMA(p, q) models, we create a larger class of models applicable

for use with stationary processes that exhibit seasonality.

• We now examine this new class of models, the so-called multiplicative seasonal

ARMA class.
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10.3 Multiplicative seasonal (stationary) ARMA models

MA(1)×MA(1)12: Suppose {et} is a zero mean white noise process with var(et) = σ2
e .

Consider the nonseasonal MA(1) model

Yt = et − θet−1 ⇐⇒ Yt = (1− θB)et

and the seasonal MA(1)12 model

Yt = et −Θet−12 ⇐⇒ Yt = (1−ΘB12)et.

• The defining characteristic of the nonseasonal MA(1) process is that the only

nonzero autocorrelation occurs at lag k = 1.

• The defining characteristic of the seasonal MA(1)12 process is that the only nonzero

autocorrelation occurs at lag k = 12.

COMBINING THE MODELS : Consider taking the nonseasonal MA characteristic op-

erator θ(B) = 1− θB and the nonseasonal one Θ(B) = 1−ΘB12 and multiplying them

together to get the new model

Yt = (1− θB)(1−ΘB12)et

= (1− θB −ΘB12 + θΘB13)et,

or, equivalently,

Yt = et − θet−1 −Θet−12 + θΘet−13.

We call this a multiplicative seasonal MA(1)×MA(1)12 model. The term “multi-

plicative” arises because the MA characteristic operator 1− θB − ΘB12 + θΘB13 is the

product of (1− θB) and (1−ΘB12). An MA(1)×MA(1)12 process has E(Yt) = 0 and

ρ1 = −
θ

1 + θ2
ρ11 =

θΘ

(1 + θ2)(1 + Θ2)

ρ12 = −
Θ

1 + Θ2
ρ13 =

θΘ

(1 + θ2)(1 + Θ2)
.
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• The MA(1)×MA(1)12 process has nonzero autocorrelation at lags k = 1 and k = 12

from the nonseasonal and seasonal MA models individually.

• It has additional nonzero autocorrelation at lags k = 11 and k = 13 which arises

from the multiplicative effect of the two models.

• The MA(1)×MA(1)12 process

Yt = et − θet−1 −Θet−12 + θΘet−13

is mathematically equivalent to a nonseasonal MA(13) process with parameters

θ1 = θ, θ2 = θ3 = · · · = θ11 = 0, θ12 = Θ, and θ13 = −θΘ.

MA(1) ×AR(1)12: Suppose {et} is a zero mean white noise process with var(et) = σ2
e .

Consider the two models

Yt = et − θet−1 ⇐⇒ Yt = (1− θB)et

and

Yt = ΦYt−12 + et ⇐⇒ (1− ΦB12)Yt = et,

a nonseasonal MA(1) and a seasonal AR(1)12, respectively.

• The defining characteristic of the nonseasonal MA(1) is that the only nonzero

autocorrelation occurs at lag k = 1.

• The defining characteristic of the seasonal AR(1)12 is that the autocorrelation de-

cays across seasonal lags k = 12, 24, 36, ...,.

COMBINING THE MODELS : Consider combining these two models to form

(1− ΦB12)Yt = (1− θB)et,

or, equivalently,

Yt = ΦYt−12 + et − θet−1.

We call this a multiplicative seasonal MA(1) ×AR(1)12 process. By combining a

nonseasonal MA(1) with a seasonal AR(1)12, we create a new process which possesses

the following:
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Figure 10.7: Top: Population ACF/PACF for MA(1)×MA(1)12 process with θ = 0.5 and

Θ = 0.9. Bottom: Population ACF/PACF for MA(1) × AR(1)12 process with θ = 0.5

and Φ = 0.9.

• AR-type autocorrelation at seasonal lags k = 12, 24, 36, ...,

• additional MA-type autocorrelation at lag k = 1 and at lags one unit in time from

the seasonal lags, that is, at k = 11 and k = 13, k = 23 and k = 25, and so on.

• The MA(1)× AR(1)12 process

Yt = ΦYt−12 + et − θet−1,

is mathematically equivalent to a nonseasonal ARMA(12,1) process with parame-

ters θ, ϕ1 = ϕ2 = · · · = ϕ11 = 0, and ϕ12 = Φ.
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TERMINOLOGY : Suppose {et} is a zero mean white noise process with var(et) = σ2
e .

In general, we can combine a nonseasonal ARMA(p, q) process

ϕ(B)Yt = θ(B)et

with a seasonal ARMA(P,Q)s process

ΦP (B
s)Yt = ΘQ(B

s)et

to create the model

ϕ(B)ΦP (B
s)Yt = θ(B)ΘQ(B

s)et.

We call this a multiplicative seasonal (stationary) ARMA(p, q) ×ARMA(P,Q)s

model with seasonal period s.

• This is a very flexible family of models for stationary seasonal processes.

– The MA(1)×MA(1)12 and MA(1)×AR(1)12 processes (that we have discussed

explicitly) are special cases.

• An ARMA(p, q)×ARMA(P,Q)s process is mathematically equivalent to a nonsea-

sonal ARMA process with AR characteristic operator ϕ∗(B) = ϕ(B)ΦP (B
s) and

MA characteristic operator θ∗(B) = θ(B)ΘQ(B
s).

– Stationarity and invertibility conditions can be characterized in terms of the

roots of ϕ∗(B) and θ∗(B), respectively.

• Because of this equivalence, we can use our already-established methods to specify,

fit, diagnose, and forecast seasonal stationary models.

Example 10.4. Data file: boardings (TSA). Figure 10.8 displays the number of public

transit boardings (mostly for bus and light rail) in Denver, Colorado from 8/2000 to

3/2006. The data have been log-transformed.

• From the plot, the boarding process appears to be relatively stationary in the mean

level; that is, there are no pronounced shifts in mean level over time.
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Figure 10.8: Denver public transit data. Monthly number of public transit boardings

(log-transformed) in Denver from 8/2000 to 3/2006. Monthly plotting symbols have

been added.

• Therefore, a member of the stationary ARMA(p, q)×ARMA(P,Q)s family of mod-

els may be reasonable for these data. The seasonal lag is s = 12 (the data are

monthly).

• In Figure 10.9, we display the sample ACF and PACF for the boardings data. Note

that the margin of error bounds in the plot are for a white noise process.

– The sample ACF shows a pronounced sample autocorrelation at lag k = 12

and a decay afterward at seasonal lags k = 24 and k = 36.

– The sample PACF shows a pronounced sample partial autocorrelation at lag

k = 12 and none at higher seasonal lags.

– These two observations together suggest a seasonal AR(1)12 component.
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Figure 10.9: Denver public transit data. Left: Sample ACF. Right: Sample PACF.

– Around the seasonal lags k = 12, k = 24, and k = 36 (in the ACF), there are

noticeable autocorrelations 3 time units in both directions. This suggests a

nonseasonal MA(3) component.

• We therefore specify an ARMA(0, 3) × ARMA(1, 0)12 model for these data. Of

course, this model at this point is tentative and is subject to further investigation

and scrutiny.

MODEL FITTING : We use R to fit an ARMA(0, 3)×ARMA(1, 0)12 model using maxi-

mum likelihood. Here is the output:

> boardings.arma03.arma10 = arima(boardings,order=c(0,0,3),method=’ML’,

seasonal=list(order=c(1,0,0),period=12))

> boardings.arma03.arma10

Coefficients:

ma1 ma2 ma3 sar1 intercept

0.7288 0.6115 0.2951 0.8777 12.5455

s.e. 0.1186 0.1172 0.1118 0.0507 0.0354

sigma^2 estimated as 0.0006542: log likelihood = 143.54, aic = -277.09
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Figure 10.10: Denver public transit data. Standardized residuals from ARMA(0, 3) ×

ARMA(1, 0)12 model fit.

Note that each of the parameter estimates is statistically different from zero. The fitted

ARMA(0, 3)× ARMA(1, 0)12 model (on the log scale) is

(1− 0.8777B12)(Yt − 12.5455) = (1 + 0.7288B + 0.6115B2 + 0.2951B3)et,

or equivalently,

Yt = 1.5343 + 0.8777Yt−12 + et + 0.7288et−1 + 0.6115et−2 + 0.2951et−3.

The white noise variance estimate is σ̂2
e ≈ 0.0006542.

MODEL DIAGNOSTICS : The histogram and qq plot of the standardized residuals in

Figure 10.10 generally supports the normality assumption. In addition, when further

examining the standardized residuals,

• the Shapiro-Wilk test does not reject normality (p-value = 0.6187)

• the runs test does not reject independence (p-value = 0.385).

Finally, the tsdiag output in Figure 10.11 shows no notable problems with the ARMA(0, 3)×

ARMA(1, 0)12 model.
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Figure 10.11: Denver public transit data. ARMA(0, 3)× ARMA(1, 0)12 tsdiag output.

OVERFITTING : For an ARMA(0, 3)×ARMA(1, 0)12 model, there are 4 overfitted mod-

els. Here are the models and the results from overfitting the boarding data:

ARMA(1, 3)×ARMA(1, 0)12 =⇒ ϕ̂ significant

ARMA(0, 4)×ARMA(1, 0)12 =⇒ θ̂4 not significant

ARMA(0, 3)×ARMA(2, 0)12 =⇒ Φ̂2 not significant

ARMA(0, 3)×ARMA(1, 1)12 =⇒ Θ̂ not significant

The ARMA(1, 3)×ARMA(1, 0)12 fit declares a nonseasonal AR component at lag k = 1

to be significant, but the MA estimates at lags k = 1, 2, and 3 (which were all highly

significant in the original fit) become insignificant in this overfitted model! Therefore,

the ARMA(1, 3)× ARMA(1, 0)12 overfitted model is not considered further.
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Figure 10.12: Denver public transit data. The full data set is from 8/2000-3/2006. This

figure starts the series at 1/2003. ARMA(0, 3)×ARMA(1, 0)12 estimated MMSE forecasts

and 95 percent prediction limits are given for lead times l = 1, 2, ..., 12. These lead times

correspond to years 4/2006-3/2007.

FORECASTING : The estimated forecasts and standard errors (on the log scale) are

given for lead times l = 1, 2, ..., 12 in the predict output below:

> boardings.arma03.arma10.predict <- predict(boardings.arma03.arma10.fit,n.ahead=12)

> round(boardings.arma03.arma10.predict$pred,3)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2006 12.613 12.588 12.531 12.520 12.575 12.679 12.650 12.628 12.529

2007 12.594 12.619 12.606

> round(boardings.arma03.arma10.predict$se,3)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2006 0.026 0.032 0.035 0.036 0.036 0.036 0.036 0.036 0.036

2007 0.036 0.036 0.036
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• In Figure 10.12, we display the Denver boardings data. The full data set is from

8/00 to 3/06 (one observation per month). However, to emphasize the MMSE

forecasts in the plot, we start the series at month 1/03.

• With l = 1, 2, ..., 12, the estimated MMSE forecasts in the predict output and

in Figure 10.12 start at 4/06 and end in 3/07. It is important to remember that

these forecasts are on the log scale. MMSE forecasts on the original scale and 95

percent prediction intervals are given below.

> # MMSE forecasts back-transformed (to original scale)

> denver.boardings.predict <- round(exp(boardings.arma03.arma10.predict$pred

+ (1/2)*(boardings.arma03.arma10.predict$se)^2),3)

> denver.boardings.predict

Jan Feb Mar Apr May Jun Jul Aug Sep

2006 300411.9 293085.1 276937.5 273911.8 289321.6 321123.3

2007 294962.7 302347.3 298397.8

Oct Nov Dec

2006 312037.2 305125.6 276521.7

2007

> # Compute prediction intervals (on original scale)

> data.frame(Month=year.temp,lower.pi=exp(lower.pi),upper.pi=exp(upper.pi))

Month lower.pi upper.pi

1 2006.250 285630.0 315752.2

2 2006.333 275318.8 311685.4

3 2006.416 258262.2 296593.3

4 2006.500 255034.1 293803.7

5 2006.583 269381.8 310332.5

6 2006.666 298991.8 344443.8

7 2006.750 290531.9 334697.8

8 2006.833 284096.7 327284.3

9 2006.916 257464.1 296603.1

10 2007.000 274634.1 316383.3

11 2007.083 281509.8 324304.2

12 2007.166 277832.5 320067.9

PAGE 289



CHAPTER 10 STAT 520, J. TEBBS

SUMMARY : The multiplicative seasonal (stationary) ARMA(p, q)×ARMA(P,Q)s fam-

ily of models

ϕ(B)ΦP (B
s)Yt = θ(B)ΘQ(B

s)et.

is a flexible class of time series models for stationary seasonal processes. The next step

is to extend this class of models to handle two types of nonstationarity:

• Nonseasonal nonstationary over time (e.g., increasing linear trends, etc.)

• Seasonal nonstationarity, that is, additional changes in the seasonal mean level,

even after possibly adjusting for nonseasonal stationarity over time.

10.4 Nonstationary seasonal ARIMA (SARIMA) models

REVIEW : For a stochastic process {Yt}, the first differences are

∇Yt = Yt − Yt−1 = (1−B)Yt.

This definition can be generalized to any number of differences; in general, the dth

differences are given by

∇dYt = (1−B)dYt.

We know that taking d = 1 or (usually at most) d = 2 can coerce a (nonseasonal)

nonstationary process into stationarity.

EXAMPLE : Suppose that we have a stochastic process defined by

Yt = St + et,

where {et} is zero mean white noise and where

St = St−12 + ut,

where {ut} is zero mean white noise that is uncorrelated with {et}. That is, {St} is a

zero mean random walk with period s = 12. For this process, taking nonseasonal
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differences (as we have done up until now) will not have an effect on the seasonal

nonstationarity. For example, with d = 1, we have

∇Yt = ∇St +∇et

= ∇St−12 +∇ut +∇et

= St−12 − St−13 + ut − ut−1 + et − et−1.

The first difference process {∇Yt} is still nonstationary because {St} is a random walk

across seasons; i.e, across time points t = 12k.

• That is, taking (nonseasonal) differences has only produced a more complicated

model, one which is still nonstationary across seasons.

• We therefore need to define a new differencing operator that can remove nonsta-

tionarity across seasonal lags.

TERMINOLOGY : The seasonal difference operator ∇s is defined by

∇sYt = Yt − Yt−s = (1−Bs)Yt,

for a seasonal period s. For example, with s = 12 and monthly data, the first seasonal

differences are

∇12Yt = Yt − Yt−12 = (1−B12)Yt,

that is, the first differences of the January observations, the first differences of the Febru-

ary observations, and so on.

EXAMPLE : For the stochastic process defined earlier, that is,

Yt = St + et,

where St = St−12 + ut, taking first seasonal differences yields

∇12Yt = ∇12St +∇12et

= St − St−12 + et − et−12 = ut + et − et−12.

It can be shown that this process has the same ACF as a stationary seasonal MA(1)12.

That is, taking first seasonal differences has coerced the {Yt} process into stationarity.
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Figure 10.13: United States milk production data. Upper left: Original series {Yt}.

Upper right: First (nonseasonal) differences ∇Yt = Yt−Yt−1. Lower left: First (seasonal)

differences ∇12Yt = Yt − Yt−12. Lower right: Combined first (seasonal and nonseasonal)

differences ∇∇12Yt.
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Example 10.5. Consider the monthly U.S. milk production data from Example 10.1.

Figure 10.13 (last page) displays the time series plot of the data (upper left), the first

difference process ∇Yt (upper right), the first seasonal difference process ∇12Yt (lower

left), and the combined difference process ∇∇12Yt (lower right). The combined difference

process ∇∇12Yt is given by

∇∇12Yt = (1−B)(1−B12)Yt

= (1−B −B12 +B13)Yt

= Yt − Yt−1 − Yt−12 + Yt−13.

• The milk series (Figure 10.13; upper left) displays two trends: nonstationarity over

time and a within-year seasonal pattern. A Box-Cox analysis (results not shown)

suggests that no transformation is necessary for variance stabilization purposes.

• Taking first (nonseasonal) differences; i.e., computing ∇Yt, (Figure 10.13; upper

right) has removed the upward linear trend (as expected), but the process {∇Yt}

still displays notable seasonality.

• Taking first (seasonal) differences; i.e., computing ∇12Yt, (Figure 10.13; lower left)

has seemingly removed the seasonality (as expected), but the process {∇12Yt} dis-

plays still strong momentum over time.

– The sample ACF of {∇12Yt} (not shown) displays a slow decay, a sign of

nonstationarity over time.

• The combined first differences ∇∇12Yt (Figure 10.13; lower right) look to resemble

a stationary process (at least in the mean level).

REMARK : From this example, it should be clear that we can now extend the multiplica-

tive seasonal (stationary) ARMA(p, q)× ARMA(P,Q)s model

ϕ(B)ΦP (B
s)Yt = θ(B)ΘQ(B

s)et

to incorporate the two types of nonstationarity: nonseasonal and seasonal. This leads to

the definition of our largest class of ARIMA models.
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TERMINOLOGY : Suppose that {et} is zero mean white noise with var(et) = σ2
e . The

multiplicative seasonal autoregressive integrated moving average (SARIMA)

model with seasonal period s, denoted by ARIMA(p, d, q)× ARIMA(P,D,Q)s, is

ϕ(B)ΦP (B
s)∇d∇D

s Yt = θ(B)ΘQ(B
s)et,

where the nonseasonal AR and MA characteristic operators are

ϕ(B) = (1− ϕ1B − ϕ2B
2 − · · · − ϕpB

p)

θ(B) = (1− θ1B − θ2B
2 − · · · − θqB

q),

the seasonal AR and MA characteristic operators are

ΦP (B
s) = 1− Φ1B

s − Φ2B
2s − · · · − ΦPB

Ps

ΘQ(B
s) = 1−Θ1B

s −Θ2B
2s − · · · −ΘQB

Qs,

and

∇d∇D
s Yt = (1−B)d(1−Bs)DYt.

In this model,

• d denotes the number of nonseasonal differences. Usually d = 1 or (at most)

d = 2 will provide nonseasonal stationarity (as we have seen before).

• D denotes the number of seasonal differences. Usually D = 1 will achieve

seasonal stationarity.

• For many nonstationary seasonal time series data sets (at least for the ones I have

seen), the most common choice for (d,D) is (1, 1).

NOTE : We have the following relationship:

Yt ∼ ARIMA(p, d, q)×ARIMA(P,D,Q)s ⇐⇒ ∇d∇D
s Yt ∼ ARMA(p, q)×ARMA(P,Q)s.

The SARIMA class is very flexible. Many times series can be adequately fit by these

models, usually with a small number of parameters, often less than five.
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Figure 10.14: United States milk production data. Left: Sample ACF for {∇∇12Yt}.

Right: Sample PACF for {∇∇12Yt}.

Example 10.5 (continued). For the milk production data in Example 10.1, we have

seen that the combined difference process {∇∇12Yt} looks to be relatively stationary.

In Figure 10.14, we display the sample ACF (left) and sample PACF (right) of the

{∇∇12Yt} process. Examining these two plots will help us identify which ARMA(p, q)×

ARMA(P,Q)12 model is appropriate for {∇∇12Yt}.

• The sample ACF for {∇∇12Yt} has a pronounced spike at seasonal lag k = 12 and

one at k = 48 (but none at k = 24 and k = 36).

• The sample PACF for {∇∇12Yt} displays pronounced spikes at seasonal lags k =

12, 24 and 36.

• The last two observations are consistent with the following choices:

– (P,Q) = (0, 1) if one is willing to ignore the ACF at k = 48. Also, if (P,Q) =

(0, 1), we would expect the the PACF to decay at lags k = 12, 24 and 36.

There is actually not that much of a decay.

– (P,Q) = (3, 0), if one is willing to place strong emphasis on the sample PACF.
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• There does not appear to be “anything happening” around seasonal lags in the

ACF, and the ACF at k = 1 is borderline. We therefore take p = 0 and q = 0.

• Therefore, there are two models which emerge as strong possibilities:

– (P,Q) = (0, 1): MA(1)12 model for {∇∇12Yt}

– (P,Q) = (3, 0): AR(3)12 model for {∇∇12Yt}.

• I have carefully examined both models. The AR(3)12 model provides a much better

fit to the {∇∇12Yt} process than the MA(1)12 model.

– The AR(3)12 model for {∇∇12Yt} provides a smaller AIC, a smaller estimate

of the white noise variance, and superior residual diagnostics; e.g., the Ljung-

Box test strongly discounts the MA(1)12 model for {∇∇12Yt} at all lags.

• For illustrative purposes, we therefore tentatively adopt an ARIMA(0, 1, 0) ×

ARIMA(3, 1, 0)12 model for the milk production data.

MODEL FITTING : We use R to fit this ARIMA(0, 1, 0)×ARIMA(3, 1, 0)12 model using

maximum likelihood. Here is the output:

> milk.arima010.arima310 =

arima(milk,order=c(0,1,0),method=’ML’,seasonal=list(order=c(3,1,0),period=12))

> milk.arima010.arima310

Coefficients:

sar1 sar2 sar3

-0.9133 -0.8146 -0.6002

s.e. 0.0696 0.0776 0.0688

sigma^2 estimated as 121.4: log likelihood = -512.03, aic = 1030.05

The fitted model is

(1 + 0.9133B12 + 0.8146B24 + 0.6002B36) (1−B)(1−B12)Yt︸ ︷︷ ︸
= ∇∇12Yt

= et.

The white noise variance estimate is σ̂2
e ≈ 121.4. Note that all parameter estimates (Θ̂1,

Θ̂2, and Θ̂3) are statistically different from zero (by a very large amount).
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Figure 10.15: United States milk production data. Standardized residuals from

ARIMA(0, 1, 0)× ARIMA(3, 1, 0)12 model fit.

MODEL DIAGNOSTICS : The histogram and qq plot of the standardized residuals in

Figure 10.15 generally supports the normality assumption. In addition, when further

examining the standardized residuals from the model fit,

• the Shapiro-Wilk test does not reject normality (p-value = 0.6619)

• the runs test does not reject independence (p-value = 0.112).

Finally, the tsdiag output in Figure 10.16 supports the ARIMA(0, 1, 0)×ARIMA(3, 1, 0)12

model choice.

OVERFITTING : For an ARIMA(0, 1, 0)×ARIMA(3, 1, 0)12 model, there are 4 overfitted

models. Here are the models and the results from overfitting:

ARIMA(1, 1, 0)× ARIMA(3, 1, 0)12 =⇒ ϕ̂ not significant

ARIMA(0, 1, 1)× ARIMA(3, 1, 0)12 =⇒ θ̂ not significant

ARIMA(0, 1, 0)× ARIMA(4, 1, 0)12 =⇒ Φ̂4 not significant

ARIMA(0, 1, 0)× ARIMA(3, 1, 1)12 =⇒ Θ̂ not significant.
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Figure 10.16: United States milk production data. ARIMA(0, 1, 0) × ARIMA(3, 1, 0)12

tsdiag output.

CONCLUSION : The ARIMA(0, 1, 0) × ARIMA(3, 1, 0)12 model does a good job at de-

scribing the U.S. milk production data. With this model, we move forward with fore-

casting future observations.

FORECASTING : We use R to compute forecasts and prediction limits for the lead times

l = 1, 2, ..., 24 (two years ahead) based on the ARIMA(0, 1, 0)×ARIMA(3, 1, 0)12 model

fit. Here are the estimated MMSE forecasts and 95 percent prediction limits:

# MMSE forecasts

> milk.arima010.arima310.predict <- predict(milk.arima010.arima310.fit,n.ahead=24)
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> round(milk.arima010.arima310.predict$pred,3)

Jan Feb Mar Apr May Jun Jul Aug Sep

2006 1702.409 1584.302 1760.356 1728.246 1783.487 1698.330 1694.116 1680.528 1610.895

2007 1725.769 1608.022 1775.653 1742.424 1792.538 1715.007 1717.981 1695.297 1631.562

Oct Nov Dec

2006 1655.054 1610.777 1689.084

2007 1679.871 1634.033 1712.183

> round(milk.arima010.arima310.predict$se,3)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2006 11.018 15.581 19.083 22.035 24.636 26.988 29.150 31.162 33.053 34.841 36.541 38.166

2007 40.000 41.753 43.436 45.056 46.620 48.132 49.599 51.024 52.410 53.760 55.077 56.363

# Compute prediction intervals

lower.pi<-

milk.arima010.arima310.predict$pred-qnorm(0.975,0,1)*milk.arima010.arima310.predict$se

upper.pi<-

milk.arima010.arima310.predict$pred+qnorm(0.975,0,1)*milk.arima010.arima310.predict$se

## For brevity (in the notes), I display estimated MMSE forecasts only 12 months ahead.

Month lower.pi upper.pi

1 2006.000 1680.815 1724.003

2 2006.083 1553.763 1614.840

3 2006.166 1722.954 1797.758

4 2006.250 1685.058 1771.434

5 2006.333 1735.201 1831.773

6 2006.416 1645.436 1751.225

7 2006.500 1636.983 1751.249

8 2006.583 1619.450 1741.605

9 2006.666 1546.113 1675.678

10 2006.750 1586.767 1723.340

11 2006.833 1539.158 1682.397

12 2006.916 1614.280 1763.888

• In Figure 10.17, we display the U.S. milk production data. The full data set is from

1/94 to 12/05 (one observation per month). However, to emphasize the MMSE

forecasts in the plot, we start the series at month 1/04.
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Figure 10.17: U.S. milk production data. The full data set is from 1/1994-12/2005. This

figure starts the series at 1/2004. ARIMA(0, 1, 0)× ARIMA(3, 1, 0)12 estimated MMSE

forecasts and 95 percent prediction limits are given for lead times l = 1, 2, ..., 24. These

lead times correspond to years 1/2006-12/2007.

• With l = 1, 2, ..., 24, the estimated MMSE forecasts in the predict output and in

Figure 10.17 start at 1/06 and end in 12/07 (24 months).

• Numerical values of the 95 percent prediction intervals are given for 1/06-12/06 in

the prediction interval output. Note how the interval lengths increase as l does.

This is a byproduct of nonstationarity. In Figure 10.17, the impact of nonsta-

tionarity is also easily seen as l increases (prediction limits become wider).

NOTE : Although we did not state so explicitly, determining MMSE forecasts and predic-

tion limits for seasonal models is exactly analogous to the nonseasonal cases we studied

in Chapter 9. Formulae for seasonal MMSE forecasts are given in Section 10.5 (CC) for

special cases.
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Figure 10.18: Australian clay brick production data. Number of bricks (in millions)

produced from 1956-1994.

Example 10.6. In this example, we revisit the Australian brick production data in

Example 1.14 (pp 15, notes). The data in Figure 10.18 represent the number of bricks

produced in Australia (in millions) during 1956-1994. The data are quarterly, so the

underlying seasonal lag of interest is s = 4.

INITIAL ANALYSIS : The first thing we should do is a Box-Cox analysis to see if a

variance-stabilizing transformation is needed (there is evidence of heteroscedasticity from

examining the original series in Figure 10.18).

• Using the BoxCox.ar function in R (output not shown) suggests that the Box-Cox

transformation parameter λ ≈ 0.5.

• This suggests that a square-root transformation is warranted.

• We now examine the transformed data and the relevant differenced series.
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Figure 10.19: Australian clay brick production data (square-root transformed). Upper

left: Original series {Yt}. Upper right: First (nonseasonal) differences ∇Yt = Yt − Yt−1.

Lower left: First (seasonal) differences ∇4Yt = Yt − Yt−4. Lower right: Combined first

(seasonal and nonseasonal) differences ∇∇4Yt.
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Figure 10.20: Australian clay brick production data (square-root transformed). Left:

Sample ACF for {∇∇4Yt}. Right: Sample PACF for {∇∇4Yt}.

NOTE : The combined difference process ∇∇4Yt in Figure 10.19 looks stationary in the

mean level. The sample ACF/PACF for the ∇∇4Yt series is given in Figure 10.20. Recall

that our analysis is now on the square-root transformed scale.

ANALYSIS : Examining the sample ACF/PACF for the ∇∇4Yt data does not lead us to

one single model as a “clear favorite.” In fact, there are ambiguities that emerge; e.g., a

spike in the ACF at lag k = 25 (this is not a seasonal lag), a spike in the PACF at the

seventh seasonal lag k = 28, etc.

• The PACF does display spikes at the first 4 seasonal lags k = 4, k = 8, k = 12,

and k = 16.

• The ACF does not display consistent “action” around these seasonal lags in either

direction.

• These two observations lead us to tentatively consider an AR(4)4 model for the

combined difference process {∇∇4Yt}; i.e., an ARIMA(0, 1, 0) × ARIMA(4, 1, 0)4

for the square-root transformed series.
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Figure 10.21: Australian clay brick production data (square-root transformed). Stan-

dardized residuals from ARIMA(0, 1, 0)× ARIMA(4, 1, 0)4 model fit.

MODEL FITTING : We use R to fit this ARIMA(0, 1, 0)×ARIMA(4, 1, 0)4 model using

maximum likelihood. Here is the output:

> sqrt.brick.arima010.arima410 =

arima(sqrt.brick,order=c(0,1,0),method=’ML’,seasonal=list(order=c(4,1,0),period=4))

> sqrt.brick.arima010.arima410

Coefficients:

sar1 sar2 sar3 sar4

-0.8249 -0.8390 -0.5330 -0.3290

s.e. 0.0780 0.0935 0.0936 0.0772

sigma^2 estimated as 0.2889: log likelihood = -122.47, aic = 252.94

The fitted model is

(1 + 0.8249B4 + 0.8390B8 + 0.5330B12 + 0.3290B16) (1−B)(1−B4)Yt︸ ︷︷ ︸
= ∇∇4Yt

= et.

The white noise variance estimate is σ̂2
e ≈ 0.2889. Note that all parameter estimates (Θ̂1,

Θ̂2, Θ̂3, and Θ̂4) are statistically different from zero (by a very large amount).
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Figure 10.22: Australian clay brick production data (square-root transformed).

ARIMA(0, 1, 0)× ARIMA(4, 1, 0)4 tsdiag output.

DIAGNOSTICS : The tsdiag output in Figure 10.22 does not strongly refute the

ARIMA(0, 1, 0)×ARIMA(4, 1, 0)4 model choice, and overfitting (results not shown) does

not lead us to consider a higher order model. However, the qq plot of the standardized

residuals in Figure 10.21 reveals major problems with the normality assumption, and the

Shapiro-Wilk test strongly rejects normality (p-value < 0.0001).

CONCLUSION : The ARIMA(0, 1, 0) × ARIMA(4, 1, 0)4 model for the Australian brick

production data (square-root transformed) is not completely worthless, but I would hes-

itate to use this model for forecasting purposes (since the normality assumption is so

grossly violated). The search for a better model should continue!
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10.5 Additional topics

DISCUSSION : In this course, we have covered the first 10 chapters of Cryer and Chan

(2008). This material provides you with a powerful arsenal of techniques to analyze many

time series data sets that are seen in practice. These chapters also lay the foundation for

further study in time series analysis.

• Chapter 11. This chapter provides an introduction to intervention analysis,

which deals with incorporating external events in modeling time series data (e.g.,

a change in production methods, natural disasters, terrorist attacks, etc.). Tech-

niques for incorporating external covariate information and analyzing multiple time

series are also presented.

• Chapter 12. This chapter deals explicitly with modeling financial time se-

ries data (e.g., stock prices, portfolio returns, etc.), mainly with the commonly

used ARCH and GARCH models. The key feature of these models is that they

incorporate additional heteroscedasticity that are common in financial data.

• Chapter 13. This chapter deals with frequency domain methods (spectral

analysis) for periodic data which arise in physics, biomedicine, engineering, etc.

The periodogram and spectral density are introduced. These methods use linear

combinations of sine and cosine functions to model underlying (possibly multiple)

frequencies.

• Chapter 14. This chapter is an extension of Chapter 13 which studies the sampling

characteristics of the spectral density estimator.

• Chapter 15. This chapter discusses nonlinear models for time series data.

This class of models assumes that current data are nonlinear functions of past

observations, which can be a result of nonnormality.
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