
STAT 520, Fall 2015: Exam I

This exam was posted online Tuesday October 13, 2015 at noon. Complete the exam, scan
your solutions, and email to Yawei Liang (yliang@email.sc.edu) by noon Wednesday October
14, as usual. You are to work completely independly on this exam; however you may use
notes, your textbook, Google, etc.

1. Let {Yt} be a stationary process with constant mean E(Yt) = µ and autocorrelation
function ρk. Define Y = 1

n

∑n
t=1 Yt to be the sample mean of Y1, Y2, . . . , Yn. Recall that

var(Y ) =
γ0
n

[
1 + 2

n−1∑
k=1

(
1− k

n

)
ρk

]
,

where γ0 = var(Yt). Find var(Y ) when {Yt} is ARMA(1,1) with parameters φ and
θ. Find one pair of values (φ, θ) that makes var(Ȳ ) smaller than that for white noise
when n = 3. By what fraction is the variance reduced?

The model is
Yt = φYt−1 + et − θet−1.

Page 78 in Cryer and Chan gives

ρk =
(1− θφ)(φ− θ)

1− 2φθ + θ2
φk, for k ≥ 1.

So

var(Ȳ ) =
γ0
n

[
1 + 2

n−1∑
k=1

(1− k
n
)
(1− θφ)(φ− θ)

1− 2φθ + θ2
φk

]
.

For n = 3 this reduces to

var(Ȳ ) =
γ0
n

[
1 + 2

(1− θφ)(φ− θ)
1− 2φθ + θ2

(2
3
φ+ 1

3
φ2)

]
.

We need the part in square brackets [· · · ] to be less than one to do better than white
noise. I just used trial and error to find the pair (φ, θ) = (0.5, 0.9). R code to verify:

> p=0.5; t=0.9

> 1+2*(1-t*p)*(p-t)*(2*p/3+p^2/3)/(1-2*p*t+t^2)

[1] 0.7985348
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2. Let {et} be mean-zero white noise, as usual, and consider the series

Yt = 1.25Yt−1 − 0.125Yt−2 − 0.125Yt−3 + et + 0.25et−1.

(a) Write the series as φ(B)(1− B)dYt = θ(B)et. That is, find φ(B), θ(B), and d so
that the differenced series is stationary and invertible. You may use an online root
finder for help if you want. Hint: as shown in class, root finders will rewrite the
equation 1+c1B+c2B

2 +c3B
3 = 0 as a(B−r1)(B−r2)(B−r3) = 0. You need to

divide both sides of this latter equation by ar1r2r3 and multiply by (−1)3 = −1
to get it in the form (1−B/r1)(1−B/r2)(1−B/r3) = 0.

This was trickier than I intended as a root is shared by the AR and MA charac-
teristic polynomials; I graded this generously! The model is written initially

(1− 1.25B + 0.125B2 + 0.125B3)Yt = (1 + 0.25B)et.

Using an online root finder gives

(1 +B/4)(1−B/2)(1−B)Yt = (1 +B/4)et.

So at first glance {Yt} is ARIMA (2,1,1). However, the root −4 appears on both
sides, so we must cancel this out obtaining the simpler series

(1−B/2)(1−B)Yt = et,

an ARI(1,1).

(b) Obtain the population autocorrelation function (ACF) for the appropriately dif-
ferenced series Wt = ∇dYt. You can use ARMAacf in R and report a plot.

Direct computation using the Yule-Walker equations yields ρk = 2−k for {∇Yt}.
Otherwise we can use R. Treating {Yt} (improperly) as ARIMA(2,1,1), the model
can be rewritten

(1− 0.25B − 0.125B2)(1−B)Yt = (1 + 0.25B)et.

We multiply characteristic polynomials in the R code all by −1 to obtain the ACF
for Wt = ∇Yt:

plot(ARMAacf(ar=c(0.25,0.125),ma=c(0.25),lag.max=10))

Treating {Yt} (properly) as ARI(1,1), the model can be rewritten

(1− 0.5B)(1−B)Yt = et.

The code is simply
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plot(ARMAacf(ar=c(0.5),ma=c(),lag.max=10))

Note that either way, the ACF function is correctly given and simulated from by
R.
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(c) Simulate n = 200 from the series {Yt} assuming et
iid∼ N(0, σ2

e) where σe = 1 and
plot it along with the sample ACF. Do the same for the differenced series {∇Yt}.
R code to simulate from an ARIMA(1,1,1) is in Chapter 5; you could modify this.

library(TSA)

par(mfrow=c(2,2))

y.sim=arima.sim(list(order=c(2,1,1),ar=c(0.25,0.125),ma=c(0.25)),n=200)

y.sim=arima.sim(list(order=c(1,1,0),ar=c(0.5),ma=c()),n=200) # also works
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plot(y.sim,ylab=expression(Y[t]),xlab="Time",type="o")

acf(y.sim,main="Sample ACF: ARIMA(1,1,0)")

plot(diff(y.sim),ylab="First differences",xlab="Time",type="o")

acf(diff(y.sim),main="Sample ACF: 1st differences")
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Sample ACF: ARIMA(1,1,0)
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3. Let {Yt} be an AR(1) process with |φ| < 1. Find the autocorrelation function for
Wt = ∇Yt = Yt − Yt−1 in terms of φ and σ2

e . What does this simplify to at lag k = 0,
i.e. what is var(Wt)?

This is problem 4.6 in Cryer and Chan.

For AR(1) with |φ| < 1 we know

γk =
σ2
e

1− φ2
φk, for k ≥ 0.

Then

cov(Wt,Wt−k) = cov(Yt − Yt−1, Yt−k − Yt−k−1)

= cov(Yt, Yt−k) + cov(Yt,−Yt−k−1) + cov(−Yt−1, Yt−k) + cov(−Yt−1,−Yt−k−1)

= γk − γk+1 − γk−1 + γk

= 2γk − γk+1 − γk−1

=
σ2
e

1− φ2
(2φk − φk+1 − φk−1)

=
σ2
eφ

k−1

1− φ2
(2φ− φ2 − 1)

=
−σ2

eφ
k−1

(1− φ)(1 + φ)
(1− φ)2

=
−(1− φ)σ2

eφ
k−1

(1 + φ)

At lag k = 0, this reduces to
−(1− φ)σ2

e

(1 + φ)φ
,

which can be negative! Since variances cannot be negative, there is something wrong.
The problem is that when we plug in k = 0 above, we actually end up with

cov(Wt,Wt−0) = 2γ0 − γ1 − γ−1

= 2γ0 − γ1 − γ1
= 2γ0 − 2γ1

= 2
σ2
e

1− φ2
− 2

σ2
e

1− φ2
φ

= 2σ2
e

[
1

1− φ2
− φ

1− φ2

]
=

2σ2
e

1 + φ
.
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4. An underground temperature probe was placed about a half kilometer away from
geothermal borehole in Iceland. Degrees Celsius Yt were recorded daily for 200 days in
2014. This will read the data into R:

library(TSA)

y=ts(read.table("http://people.stat.sc.edu/hansont/stat520/thermal.txt"),start=1)

Here is code to complete parts (a), (c), and (d):

library(TSA)

par(mfrow=c(3,2))

y=ts(read.table("http://people.stat.sc.edu/hansont/stat520/thermal.txt"),start=1)

plot(y,xlab="day",ylab="temp (C)")

acf(y)

t=time(y); tsq=time(y)^2

f=lm(y~t+tsq)

res=resid(f)

plot(t,res,xlab="day",ylab="resid",type="l")

acf(res)

diff1=diff(res,1)

plot(diff1,xlab="day",ylab="1st diff temp",type="l")

acf(diff1)
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(a) Plot the temperature Yt versus time t and accompanying sample ACF. Does the
data appear to be stationary? Are there any pronounced trends? Describe.

Temperate slowly increases and then levels off. The variance appears constant,
but not the mean, so the series does not appear to be stationary.

(b) Fit a straight-line regression model to the data for detrending purposes and plot
the residuals rt = Yt − β̂0 − β̂1t versus time t. Does a line appear to fit okay?

par(mfrow=c(1,1))
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t=time(y);

f1=lm(y~t)

res1=resid(f1)

plot(t,res1,xlab="day",ylab="resid",type="l")
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The residual plots shows a great deal of curvature; no a line does not provide
adequate fit.

(c) Fit a quadratic regression model to the data for detrending purposes and plot the
residuals rt = Yt − β̂0 − β̂1t − β̂2t2 versus time t, along with the sample ACF of
the residuals. Do the residuals appear to be stationary?

This is the 2nd row in the first figure with six plots. There is still some overall
structure to the residuals, even after removing a quadratic trend; the residuals do
not appear to be stationary.
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(d) Now plot the first difference of the residuals ∇rt = rt − rt−1 from part (c) versus
time t along with the sample ACF. Comment on whether stationarity is finally
achieved.

Yes, the mean and variance seem roughly constant over time; stationarity is much
more likely for the differenced residuals. Also note that the sample ACF dies down
very slowly for {Yt}, a sure indication of non-stationarity. The sample ACF for
the residuals from a quadratic fit {rt} also shows significant lags out past k = 10,
also a sign of non-stationarity. The differenced residuals {∇rt}, however, have a
sample ACF with only one significant lag at k = 1.

(e) Based on the ACF from part (d), what might a plausible model for wt = ∇rt be?
Why?

An MA(1) model has ρk = 0 for k ≥ 2, which is what the sample ACF appears
to indicate.
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