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ANalysis of COVAriance

Add a continuous predictor to an ANOVA model = ANCOVA.

Mix continuous and discrete predictors.

Useful for testing treatment effects in presence of continuous
predictor(s) that may explain much variability.

Continuous predictor may be concomitant (supplemental,
uncontrolled) or controlled (e.g. drug dose in mg).

Concomitant variable should be unaffected by treatments; i.e.
they should be “independent.” They are often measured
before study takes place.

Examples: prestudy attitude, age, SES, aptitude, baseline
outcomes (e.g. seizure rate).

Often the same types of variables one might block on in a
RCBD.
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Simplest ANCOVA model

One treatment and one covariate that enters model linearly. Have
i = 1, . . . , r treatment levels and j = 1, . . . , ni observations within
level i . Model is

yij = µ+ τi + γxij + εij .

This gives r parallel regression lines, one for each treatment level
(a picture helps). Fixing x , the mean difference between group i
and group j is

µ+ τi + γx − (µ+ τj + γx) = τi − τj .

Can get from lsmeans, pairwise, etc.
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ANOVA table

For the simple ANCOVA model, the ANOVA table will have a row
for the concomitant variable and another row for the treatment
effects.

The p-values test H0 : γ = 0 (concomitant variable not important)
and H0 : τ1 = · · · = τr = 0 (no treatment differences).
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Cracker sales

CRD where N = 15 stores were randomly assigned one of
three “promotion” treatment levels:

1 i = 1 sampling of product by customers in store and regular
shelf space,

2 i = 2 additional shelf space,
3 i = 3 special display shelves at ends of aisle in addition to

regular shelf space.

yij is number of cases sold during the promotional period.

xij is number of cases sold during the previous
(non-promotional) period.

Model fit in R is yij = µ+ τi + γxij + εij .
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Cracker sales in SAS

library(cfcdae); library(lsmeans); library(car)

treatment=factor(c(1,1,1,1,1,2,2,2,2,2,3,3,3,3,3))

cases =c(38,39,36,45,33,43,38,38,27,34,24,32,31,21,28)

preceding=c(21,26,22,28,19,34,26,29,18,25,23,29,30,16,29)

d=data.frame(cases,preceding,treatment)

plot(cases~preceding,pch=19,col=c("green","blue","red")[treatment])

legend(17,45,legend=c("1","2","3"),col=c("green","blue","red"),pch=19)

f=lm(cases~preceding+treatment)

Anova(f,type=3)

lsmeans(f,"treatment")

pairs(lsmeans(f,"treatment"))

pairwise(f,treatment)

library(HH) # has a nice function

ancova(cases~preceding+treatment,data=d)

6 / 11



Checking for non-constant slopes

The assumption of parallel slopes should be checked, via plots
and/or Type III tests. A model that allows for slopes to change
with treatment is

yij = [µ+ τj ] + [γ + γj ]xij + εij .

f2=lm(cases~preceding*treatment)

Anova(f2,type=3) # p=0.4 so additive model okay

Diagnostics?
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Generalizations

Basic model is yij = µ+ τi + γxij + εij .

Response mean is linear function of x for each treatment
group: parallel lines.
i = 1, . . . , r levels of one treatment modeled.
τi − τj gives mean treatment differences for a given level of x .
Similar, but simpler than a RCBD with x chopped up into
categories like age group. Just treat age as continuous.
Increased efficiency if age really is linear.

Nonlinear mean, e.g. yij = µ+ τi + γ1xij + γ2x2
ij + εij .

Mean response is parallel curves in x , one for each treatment
level.
Might be necessary if eij vs ŷij shows a parabolic (or otherwise
nonlinear) shape.
τi − τj again gives mean treatment differences for a given level
of x .
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Generalizations

More factors, e.g. yijk = µ+ αi + βj + (αβ)ij + γxijk + εijk .

Here i = 1, . . . , a levels of A, j = 1, . . . , b levels of B, and
k = 1, . . . , nij replicates in A = i and B = j .
If this fits, should see approximately parallel curves in
scatterplot stratified by (i , j).
If H0 : (αβ)ij = 0 then analysis simplifies; can look at
differences in main effects. Pairwise difference, e.g. β3 − β1 do
not change with either i or x .

More concomitant variables, e.g.
yijk = µ+ τi + γ1xi1k + γ2xi2k + εijk where xijk is variable j on
kth subject with treatment i .

Mean response is parallel surfaces in (x1, x2).
Here we are assuming parallel planes, one for each level of i .
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Salable flowers

Factor A is flower variety: i = 1 LP, i = 2 WB.

Factor B is moisture level: j = 1 low, j = 2 high.

N = 24 plots total; nij = 6 replications of each pairing (i , j).

yijk is number of flowers horticulturist can sell.

xijk is plot size; expect γ > 0.

Model is yijk = µ+ αi + βj + (αβ)ij + γxijk + εijk .

CRD with factorial treatment structure.
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Salable flowers in SAS

variety= factor(c(1,1,1,1,1,1,2,2,2,2,2,2,1,1,1,1,1,1,2,2,2,2,2,2))

moisture=factor(c(1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2))

yield= c(98,60,77,80,95,64,55,60,75,65,87,78,71,80,86,82,46,55,76,68,43,47,62,70)

plotsize=c(15, 4, 7, 9,14, 5, 4, 5, 8, 7,13,11,10,12,14,13, 2, 3,11,10, 2, 3, 7, 9)

d=data.frame(yield,plotsize,variety,moisture)

plot(yield~plotsize,col=rep(1:4,each=6),main="yield by plotsize & variety:moisture",pch=19)

legend(3,90,legend=c("1:1","2:1","1:2","2:2"),col=1:4,pch=19)

f1=lm(yield~plotsize+variety*moisture,data=d)

Anova(f,type=3)

f2=lm(yield~plotsize+variety+moisture,data=d)

pairs(lsmeans(f2,"variety"))

pairs(lsmeans(f2,"moisture"))

Let’s look at diagnostics...
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