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ANalysis of COVAriance

Add a continuous predictor to an ANOVA model = ANCOVA.

@ Mix continuous and discrete predictors.

@ Useful for testing treatment effects in presence of continuous
predictor(s) that may explain much variability.

e Continuous predictor may be concomitant (supplemental,
uncontrolled) or controlled (e.g. drug dose in mg).

@ Concomitant variable should be unaffected by treatments; i.e.
they should be “independent.” They are often measured
before study takes place.

o Examples: prestudy attitude, age, SES, aptitude, baseline
outcomes (e.g. seizure rate).

@ Often the same types of variables one might block on in a
RCBD.
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Simplest ANCOVA model

One treatment and one covariate that enters model linearly. Have
i=1,...,r treatment levels and j = 1,..., n; observations within
level i. Model is

Yii = p+ 7 +x + €.

This gives r parallel regression lines, one for each treatment level
(a picture helps). Fixing x, the mean difference between group i
and group j is

pA T Fyx = (p+ T+ yx) =T — 7

Can get from lsmeans, pairwise, etc.



ANOVA table

For the simple ANCOVA model, the ANOVA table will have a row
for the concomitant variable and another row for the treatment
effects.

The p-values test Hp : v = 0 (concomitant variable not important)
and Hp : 71 = --- = 7, = 0 (no treatment differences).



Cracker sales

@ CRD where N = 15 stores were randomly assigned one of
three “promotion” treatment levels:

© / =1 sampling of product by customers in store and regular
shelf space,

@ / = 2 additional shelf space,

© i = 3 special display shelves at ends of aisle in addition to
regular shelf space.

@ y;i is number of cases sold during the promotional period.

@ Xx;i is number of cases sold during the previous
(non-promotional) period.

@ Model fit in Riis y;; = p + 77 + vx;; + €.



Cracker sales in SAS

library(cfcdae); library(lsmeans); library(car)
treatment=factor(c(1,1,1,1,1,2,2,2,2,2,3,3,3,3,3))

cases  =c(38,39,36,45,33,43,38,38,27,34,24,32,31,21,28)
preceding=c(21,26,22,28,19,34,26,29,18,25,23,29,30,16,29)
d=data.frame(cases,preceding,treatment)

plot(cases”preceding,pch=19,col=c("green","blue","red") [treatment])
legend(17,45,legend=c("1","2","3"),col=c("green","blue","red") ,pch=19)

f=1m(cases”preceding+treatment)
Anova(f,type=3)

1lsmeans (f,"treatment")
pairs(lsmeans(f,"treatment"))
pairwise(f,treatment)

library(HH) # has a nice function
ancova(cases”preceding+treatment,data=d)
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Checking for non-constant slopes

The assumption of parallel slopes should be checked, via plots
and/or Type Il tests. A model that allows for slopes to change
with treatment is

i = [w+ 7]+ [y +vlx; + €.

f2=1m(cases”preceding*treatment)
Anova(f2,type=3) # p=0.4 so additive model okay

Diagnostics?



Generalizations

@ Basic model is yjj = p + 7 + vxjj + €.
@ Response mean is linear function of x for each treatment
group: parallel lines.
e i=1,...,r levels of one treatment modeled.
e T; — 7; gives mean treatment differences for a given level of x.
e Similar, but simpler than a RCBD with x chopped up into
categories like age group. Just treat age as continuous.
o Increased efficiency if age really is linear.
@ Nonlinear mean, e.g. y; = p+ 7; + y1xj + fygxg + €.
e Mean response is parallel curves in x, one for each treatment
level.
o Might be necessary if ej vs J; shows a parabolic (or otherwise
nonlinear) shape.
e T; — T; again gives mean treatment differences for a given level
of x.



Generalizations

@ More factors, e.g. yjx = 1+ aj + 5 + ()i + vxijk + €ijk-
o Herei=1,...,alevelsof A, j=1,...,b levels of B, and
k=1,...,nj replicates in A=/ and B = j.
e If this fits, should see approximately parallel curves in
scatterplot stratified by (i, ).
o If Hp : (af)jj = 0 then analysis simplifies; can look at
differences in main effects. Pairwise difference, e.g. 53 — 31 do
not change with either / or x.
@ More concomitant variables, e.g.
Yijk = [+ Ti +71Xi1k + Y2Xi2k + €jjk where X;j is variable j on
kth subject with treatment i.

o Mean response is parallel surfaces in (x1, x2).
e Here we are assuming parallel planes, one for each level of /.



Salable flowers

Factor A is flower variety: i =1 LP, i =2 WB.

Factor B is moisture level: j =1 low, j = 2 high.

N = 24 plots total; njj = 6 replications of each pairing (i, ).
Yijk i1s number of flowers horticulturist can sell.

Xjjk is plot size; expect v > 0.

Model is yjix = i + o + Bj + (a8)ij + YXjjk + €iji-

CRD with factorial treatment structure.
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Salable flowers in SAS

variety= factor(c(1,1,1,1,1,1,2,2,2,2,2,2,1,1,1,1,1,1,2,2,2,2,2,2))
moisture=factor(c(1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2))
yield=  ¢(98,60,77,80,95,64,55,60,75,65,87,78,71,80,86,82,46,55,76,68,43,47,62,70)
plotsize=c(15, 4, 7, 9,14, 5, 4, 5, 8, 7,13,11,10,12,14,13, 2, 3,11,10, 2, 3, 7, 9)

d=data.frame(yield,plotsize,variety,moisture)
plot(yield~plotsize,col=rep(1:4,each=6),main="yield by plotsize & variety:moisture",pch=19)
legend(3,90,legend=c("1:1","2:1","1:2","2:2") ,col=1:4,pch=19)

f1=1m(yield"plotsize+variety*moisture,data=d)
Anova(f,type=3)
f2=1m(yield"plotsize+variety+moisture,data=d)
pairs(lsmeans(£f2,"variety"))
pairs(1lsmeans(f2,"moisture"))

Let's look at diagnostics...
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