Analysis of Covariance

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 506: Introduction to Experimental Design

ANalysis of COVAriance

Add a continuous predictor to an ANOVA model $=$ ANCOVA.

- Mix continuous and discrete predictors.
- Useful for testing treatment effects in presence of continuous predictor(s) that may explain much variability.
- Continuous predictor may be concomitant (supplemental, uncontrolled) or controlled (e.g. drug dose in mg).
- Concomitant variable should be unaffected by treatments; i.e. they should be "independent." They are often measured before study takes place.
- Examples: prestudy attitude, age, SES, aptitude, baseline outcomes (e.g. seizure rate).
- Often the same types of variables one might block on in a RCBD.

Simplest ANCOVA model

One treatment and one covariate that enters model linearly. Have $i=1, \ldots, r$ treatment levels and $j=1, \ldots, n_{i}$ observations within level i. Model is

$$
y_{i j}=\mu+\tau_{i}+\gamma x_{i j}+\epsilon_{i j}
$$

This gives r parallel regression lines, one for each treatment level (a picture helps). Fixing x, the mean difference between group i and group j is

$$
\mu+\tau_{i}+\gamma x-\left(\mu+\tau_{j}+\gamma x\right)=\tau_{i}-\tau_{j}
$$

Can get from lsmeans, pairwise, etc.

ANOVA table

For the simple ANCOVA model, the ANOVA table will have a row for the concomitant variable and another row for the treatment effects.

The p-values test $H_{0}: \gamma=0$ (concomitant variable not important) and $H_{0}: \tau_{1}=\cdots=\tau_{r}=0$ (no treatment differences).

Cracker sales

- CRD where $N=15$ stores were randomly assigned one of three "promotion" treatment levels:
(1) $i=1$ sampling of product by customers in store and regular shelf space,
(2) $i=2$ additional shelf space,
(3) $i=3$ special display shelves at ends of aisle in addition to regular shelf space.
- $y_{i j}$ is number of cases sold during the promotional period.
- $x_{i j}$ is number of cases sold during the previous (non-promotional) period.
- Model fit in R is $y_{i j}=\mu+\tau_{i}+\gamma x_{i j}+\epsilon_{i j}$.

Cracker sales in SAS

```
library(cfcdae); library(lsmeans); library(car)
treatment=factor(c(1,1,1,1,1,2,2,2,2,2,3,3,3,3,3))
cases =c(38,39,36,45,33,43,38,38,27,34,24,32,31,21,28)
preceding=c (21,26,22,28,19,34,26,29,18,25,23,29,30,16,29)
d=data.frame(cases,preceding,treatment)
plot(cases~preceding,pch=19,col=c("green","blue","red")[treatment])
legend(17,45,legend=c("1","2","3"),col=c("green","blue","red"),pch=19)
f=lm(cases~preceding+treatment)
Anova(f,type=3)
lsmeans(f,"treatment")
pairs(lsmeans(f,"treatment"))
pairwise(f,treatment)
library(HH) # has a nice function
ancova(cases~ preceding+treatment,data=d)
```


Checking for non-constant slopes

The assumption of parallel slopes should be checked, via plots and/or Type III tests. A model that allows for slopes to change with treatment is

$$
y_{i j}=\left[\mu+\tau_{j}\right]+\left[\gamma+\gamma_{j}\right] x_{i j}+\epsilon_{i j}
$$

$\mathrm{f} 2=\operatorname{lm}$ (cases \sim preceding*treatment)
Anova(f2,type=3) \# p=0.4 so additive model okay
Diagnostics?

Generalizations

- Basic model is $y_{i j}=\mu+\tau_{i}+\gamma x_{i j}+\epsilon_{i j}$.
- Response mean is linear function of x for each treatment group: parallel lines.
- $i=1, \ldots, r$ levels of one treatment modeled.
- $\tau_{i}-\tau_{j}$ gives mean treatment differences for a given level of x.
- Similar, but simpler than a RCBD with x chopped up into categories like age group. Just treat age as continuous.
- Increased efficiency if age really is linear.
- Nonlinear mean, e.g. $y_{i j}=\mu+\tau_{i}+\gamma_{1} x_{i j}+\gamma_{2} x_{i j}^{2}+\epsilon_{i j}$.
- Mean response is parallel curves in x, one for each treatment level.
- Might be necessary if $e_{i j}$ vs $\hat{y}_{i j}$ shows a parabolic (or otherwise nonlinear) shape.
- $\tau_{i}-\tau_{j}$ again gives mean treatment differences for a given level of x.

Generalizations

- More factors, e.g. $y_{i j k}=\mu+\alpha_{i}+\beta_{j}+(\alpha \beta)_{i j}+\gamma x_{i j k}+\epsilon_{i j k}$.
- Here $i=1, \ldots$, a levels of $\mathrm{A}, j=1, \ldots, b$ levels of B, and $k=1, \ldots, n_{i j}$ replicates in $A=i$ and $B=j$.
- If this fits, should see approximately parallel curves in scatterplot stratified by (i, j).
- If $H_{0}:(\alpha \beta)_{i j}=0$ then analysis simplifies; can look at differences in main effects. Pairwise difference, e.g. $\beta_{3}-\beta_{1}$ do not change with either i or x.
- More concomitant variables, e.g.
$y_{i j k}=\mu+\tau_{i}+\gamma_{1} x_{i 1 k}+\gamma_{2} x_{i 2 k}+\epsilon_{i j k}$ where $x_{i j k}$ is variable j on k th subject with treatment i.
- Mean response is parallel surfaces in $\left(x_{1}, x_{2}\right)$.
- Here we are assuming parallel planes, one for each level of i.
- Factor A is flower variety: $i=1 \mathrm{LP}, i=2 \mathrm{WB}$.
- Factor B is moisture level: $j=1$ low, $j=2$ high.
- $N=24$ plots total; $n_{i j}=6$ replications of each pairing (i, j).
- $y_{i j k}$ is number of flowers horticulturist can sell.
- $x_{i j k}$ is plot size; expect $\gamma>0$.
- Model is $y_{i j k}=\mu+\alpha_{i}+\beta_{j}+(\alpha \beta)_{i j}+\gamma x_{i j k}+\epsilon_{i j k}$.
- CRD with factorial treatment structure.

Salable flowers in SAS

```
variety= factor(c(1,1,1,1,1,1,2,2,2,2,2,2,1,1,1,1,1,1,2,2,2,2,2,2))
moisture=factor(c(1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2))
yield= c(98,60,77,80,95,64,55,60,75,65,87,78,71,80,86,82,46,55,76,68,43,47,62,70)
plotsize=c(15, 4, 7, 9,14, 5, 4, 5, 8, 7,13,11,10,12,14,13, 2, 3,11,10, 2, 3, 7, 9)
d=data.frame(yield,plotsize,variety,moisture)
plot(yield~plotsize,col=rep(1:4,each=6),main="yield by plotsize & variety:moisture",pch=19)
legend(3,90,legend=c("1:1","2:1","1:2","2:2"),col=1:4,pch=19)
f1=lm(yield~plotsize+variety*moisture,data=d)
Anova(f,type=3)
f2=lm(yield~plotsize+variety+moisture,data=d)
pairs(lsmeans(f2,"variety"))
pairs(lsmeans(f2,"moisture"))
```


Let's look at diagnostics...

