Sections 4.3 and 4.4

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 205: Elementary Statistics for the Biological and Life Sciences

4.3 Areas under normal densities

- Every normal distribution is has two parameters μ and σ. These will be given to you in the homework problems.
- A normal random variable with $\mu=0$ and $\sigma=1$ is called the standard normal, and is denoted Z.
- There is a table of probabilities $\operatorname{Pr}\{Z \leq z\}$ for fixed values of z in Table 3, pp. 616-617.
- Important relationship between $Y \sim N(\mu, \sigma)$ and $Z \sim N(0,1)$: if Y is normal with mean $\mu \&$ standard deviation σ,

$$
Z=\frac{Y-\mu}{\sigma}
$$

is standard normal, i.e. normal with mean 0 and standard deviation 1.

Table of standard normal probabilities

- You can get probabilities for any $Y \sim N(\mu, \sigma)$ from Table 3 through "standardization."
- Standardizing Y eventually leads to finding probabilities like $\operatorname{Pr}\{Z \leq z\}$ in Table 3.
- However, computer packages such as R (and online applets) allow computing $\operatorname{Pr}\{Y \leq y\}$ directly, so this is the approach I want you to take in homework.
- I'll show you how standardation works anyway, in case you like using tables (and also to explain what the textbook is doing).
- First let's see how to get standard normal $Z \sim N(0,1)$ probabilities out of the table, and out of R .
- pnorm (y, μ, σ) gives $\operatorname{Pr}\{Y \leq y\}$ for any $Y \sim N(\mu, \sigma)$.

$\operatorname{Pr}\{Z \leq 1.53\}=0.9370$

Along the left side of Table 3 find 1.5, then across the top find the column with 0.03 . The intersection of the 1.5 row and the 0.03 column gives the probability 0.9370 .

R code:

```
> pnorm(1.53,0,1)
```

[1] 0.9369916

$\operatorname{Pr}\{Z>1.53\}$

Figure 4.3.3 Area under a standard normal curve above 1.53
R code:
> 1-pnorm $(1.53,0,1)$
[1] 0.06300836

$\operatorname{Pr}\{-1.2 \leq Z \leq 0.8\}$

$$
\begin{aligned}
\operatorname{Pr}\{-1.2 \leq Z \leq 0.8\} & =\operatorname{Pr}\{Z \leq 0.8\}-\operatorname{Pr}\{Z \leq-1.2\} \\
& =0.7881-0.1151 \\
& =0.6730
\end{aligned}
$$

Figure 4.3.4 Area under a standard normal curve between -1.2 and 0.8

```
> pnorm(0.8,0,1)-pnorm(-1.2,0,1)
```

[1] 0.6730749

$\operatorname{Pr}\{Y \leq a\}$ for $Y \sim N(\mu, \sigma)$

$$
\begin{aligned}
\operatorname{Pr}\{Y \leq a\} & =\operatorname{Pr}\{Y-\mu \leq a-\mu\} \\
& =\operatorname{Pr}\left\{\frac{Y-\mu}{\sigma} \leq \frac{a-\mu}{\sigma}\right\} \\
& =\operatorname{Pr}\{Z \leq \underbrace{\frac{a-\mu}{\sigma}}_{\text {"z-score"" }}\}
\end{aligned}
$$

Now use Table 3.
In R , pnorm (a, μ, σ) does the trick without standardizing.

$\operatorname{Pr}\{Y>a\}$ for $Y \sim N(\mu, \sigma)$

$$
\begin{aligned}
\operatorname{Pr}\{Y>a\} & =1-\operatorname{Pr}\{Y \leq a\} \\
& =1-\operatorname{Pr}\left\{Z \leq \frac{a-\mu}{\sigma}\right\}
\end{aligned}
$$

Now use Table 3.
In R, 1-pnorm (a, μ, σ).

Computing $\operatorname{Pr}\{a \leq Y \leq b\}$ from $\operatorname{Pr}\{Y \leq b\}$ \& $\operatorname{Pr}\{Y \leq a\}$

$$
\operatorname{Pr}\{a \leq Y \leq b\}=\operatorname{Pr}\{Y \leq b\}-\operatorname{Pr}\{Y \leq a\}
$$

$\operatorname{Pr}\{a \leq Y \leq b\}$ for $Y \sim N(\mu, \sigma)$

$$
\begin{aligned}
\operatorname{Pr}\{a \leq Y \leq b\} & =\operatorname{Pr}\{Y \leq b\}-\operatorname{Pr}\{Y \leq a\} \\
& =\operatorname{Pr}\left\{Z \leq \frac{b-\mu}{\sigma}\right\}-\operatorname{Pr}\left\{Z \leq \frac{a-\mu}{\sigma}\right\}
\end{aligned}
$$

Now use Table 3.
In R, pnorm (b, μ, σ)-pnorm (a, μ, σ).

"68/95/99.7" rule

For $Y \sim N(\mu, \sigma)$,

- $\operatorname{Pr}\{\mu-\sigma \leq Y \leq \mu+\sigma\}=0.68$
- $\operatorname{Pr}\{\mu-2 \sigma \leq Y \leq \mu+2 \sigma\}=0.95$
- $\operatorname{Pr}\{\mu-3 \sigma \leq Y \leq \mu+3 \sigma\}=0.997$

This is where the "empirical rule" came from in Chapter 2.

"68/95/99.7" rule for cholesterol in 12-14 year olds

Recall $\mu=162 \mathrm{mg} / \mathrm{dl}$ and $\sigma=28 \mathrm{mg} / \mathrm{dl}$.

Figure 4.3.6 The 68/95/99.7 rule and the serum cholesterol distribution

Example 4.3.1 Herring lengths

- In a population of herring the lengths of fish are normal with mean $\mu=54 \mathrm{~mm}$ and $\sigma=4.5 \mathrm{~mm}$. Let Y be the length of a randomly selected fish, then $Y \sim N(54,4.5)$.
- $\operatorname{Pr}\{Y \leq 60\}=\operatorname{Pr}\left\{Z \leq \frac{60-54}{4.5}\right\}=\operatorname{Pr}\{Z \leq 1.33\}$ (next slide).
- $\operatorname{Pr}\{Y>51\}=\operatorname{Pr}\left\{Z>\frac{51-54}{4.5}\right\}=\operatorname{Pr}\{Z>-0.67\}=$ $1-\operatorname{Pr}\{Z \leq-0.67\}$.
- $\operatorname{Pr}\{51 \leq Y \leq 60\}=\operatorname{Pr}\{-0.67 \leq Z \leq 1.33\}$.

Example 4.3.1(a), $\operatorname{Pr}\{Y \leq 60\}$


```
> pnorm(60,54,4.5) # using Y ~ N(54,4.5)
[1] 0.9087888
> pnorm(1.33,0,1) # using Z ~ N(0,1)
[1] 0.9082409
```


Example 4.3.1(b), $\operatorname{Pr}\{Y>51\}$

> 1-pnorm $(51,54,4.5)$ \# direct
[1] 0.7475075
> 1-pnorm (-0.67,0,1) \# using z-score
[1] 0.7485711

Example 4.3.1(c), $\operatorname{Pr}\{51 \leq Y \leq 60\}$


```
> pnorm(60,54,4.5)-pnorm(51,54,4.5) # direct
[1] 0.6562962
> pnorm(1.33,0,1)-pnorm(-0.67,0,1) # using z-scores
[1] 0.656812
```


Example 4.3.1(d), $\operatorname{Pr}\{58 \leq Y \leq 60\}$


```
> pnorm(60,54,4.5)-pnorm(58,54,4.5) # direct
[1] 0.09582018
> pnorm(1.33,0,1)-pnorm(0.89,0,1) # using z-scores
[1] 0.09497381
```


Upper percentile z_{α}

z_{α} is defined so that $\operatorname{Pr}\left\{Z>z_{\alpha}\right\}=\alpha$ where $Z \sim N(0,1)$. We'll use this later.

Figure 4.3.12 Area under the normal curve above α

$z_{0.025}$

Figure 4.3.II Area under the normal curve above 1.96

```
> qnorm(0.975,0,1)
[1] 1.959964
```


Percentiles

- For $Y \sim N(\mu, \sigma)$ the number y^{*} such that $\operatorname{Pr}\left\{Y \leq y^{*}\right\}=p$ is called the $p(100)$ th percentile.
- These numbers are often used in growth charts, or other biomedical applications where reference ranges are needed, i.e. ranges that are "normal."
- You can use Table 3 "in reverse" to get them, but it's easier in R .
- qnorm(p, μ, σ) gives y^{*}.

70th percentile for Herring size

$>$ qnorm $(0.7,54,4.5)$
[1] 56.3598
70% of all Herring are less than $y^{*}=56.4 \mathrm{~mm}$.

20th percentile for Herring

> qnorm($0.2,54,4.5$)
[1] 50.2127
20% of all Herring are less than $y^{*}=50.2 \mathrm{~mm} .80 \%$ of all Herring are larger than 50.2 mm .

4.4 Checking data are normal

- In many procedures coming up (t tests, confidence intervals, linear regression, \& ANOVA) the data are assumed to be normal.
- We'll need to check that assumption.
- Given some data Y_{1}, \ldots, Y_{n} we can make a histogram; it should be unimodal and roughly symmetric.
- Your book suggests seeing if data roughly follow the 68/95/99.7 rule. I've never heard of anyone else actually doing this.
- Another option is to make a (modified) boxplot. We expect to see one outlier out of every 150 observations from truly normal data. If we see three or four outliers from a sample of size $n=50$, the data are not normal.

Example 4.4.2 Moisture content in freshwater fruit

Moisture content was measured in $n=83$ freshwater fruit. Does the data appear to have come from a normal distribution? Why or why not?

Normal probability plots

- Another commonly used plot is a normal probability plot or "quantile-quantile" plot.
- $Y_{(1)}, Y_{(2)}, \ldots, Y_{(n)}$ is data sorted from smallest to largest.
- The normal probability plot plots the sorted Y_{i} 's against what we'd expect to see from "perfectly" normal data: the percentiles z_{1}, \ldots, z_{n} where $\operatorname{Pr}\left\{Z \leq z_{i}\right\}=\frac{i}{n+1}$ for $i=1, \ldots, n$.
- A computer simply makes a scatterplot of $\left(z_{1}, Y_{(1)}\right),\left(z_{2}, Y_{(2)}\right), \ldots,\left(z_{n}, Y_{(n)}\right)$.
- Your book goes into more detail if you're interested.
- These plots will never be perfectly straight due to sampling variability; we're just looking for them to be not totally curved.

Histogram of heights of $n=11$ women

Histogram with normal density using $\sigma=s=2.9$ inches and $\mu=\bar{y}=65.5$ inches. The plot looks okay, but the sample size is pretty small. Let's look at a normal probability plot...

Quantile-Quantile plot of 11 women

The plot is quite straight. The data matches what we'd expect from normal data.

Normal probability plots for normal data $(n=11)$

They're never perfect, but all reasonably straight.

Try it yourself...

In R type qqnorm (rnorm (11)) Enter \uparrow over and over again.
Try sample sizes of 50 and 100 too.
In general, if your data set is called, e.g. heights, just type qqnorm(heights) in R to get the normal probability plot.

If data are not normal, the plot will be non-linear. Let's see some examples.

Data that are skewed right

Data that are skewed left

Data with tails fatter than normal

