Sections 3.6, 4.1, and 4.2

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 205: Elementary Statistics for the Biological and Life Sciences

3.6 Binomial random variable

- Independent-trials model A series of n independent trials is conducted. Each trial results in success or failure. The probability of success is equal to p for each trial, regardless of the outcomes of the other trials.
- The binomial distribution defines a discrete random variable Y that counts the number, out of the n trials, exhibiting a certain trait with probability p in the "independent trials model."

Example 3.6.1 Albinism

- If both parents carry the gene for being albino, each kid they have has a $p=0.25$ chance of being albino. Each child has the same chance of being albino independent of whether the other children are albino.
- Let Y count the number of kids out of two that are albino. Y can be 0,1 , or 2 .

Probability tree for albinism

Probability tree for albinism among two children of carriers of the gene for albinism.

Albino example, cont'd

- Let the four possible experimental outcomes for the first/second child be albino/albino, albino/not, not/albino, not/not.
- $Y=0$ corresponds to not/not, $Y=1$ corresponds to either albino/not or not/albino, and $Y=2$ corresponds to albino/albino.
- $\operatorname{Pr}\{Y=0\}=\operatorname{Pr}\{$ not $/$ not $\}=\frac{9}{16}$.
- $\operatorname{Pr}\{Y=1\}=\operatorname{Pr}\{$ albino $/$ not $\}+\operatorname{Pr}\{$ not $/$ albino $\}=\frac{3}{16}+\frac{3}{16}=$ $\frac{6}{16}$.
- $\operatorname{Pr}\{Y=2\}=\operatorname{Pr}\{$ albino/albino $\}=\frac{3}{16}+\frac{3}{16}=\frac{1}{16}$.

Probability distribution in tabular form

Table 3.6.1	Probability distribution for number of albino children	
Number of		
Albino	Nonalbino	Probability
0	2	$\frac{9}{16}$
1	1	$\frac{6}{16}$
2	0	$\frac{1}{16}$

Y is binomial with $p=0.25$ and $n=2$.

Binomial distribution formula

def'n A binomial random variable Y with probability p and number of trials n has the probability of j successes (and $n-j$ failures) given by

$$
\operatorname{Pr}\{j \text { successes }\}=\operatorname{Pr}\{Y=j\}={ }_{n} C_{j} p^{j}(1-p)^{n-j}
$$

The binomial coefficient ${ }_{n} C_{j}$ counts the number of ways to order j "successes" and $n-j$ failures. For example, if $n=4$ and $j=2$ then ${ }_{4} C_{2}=6$ because there's 6 orderings

SSFF SFSF SFFS FSSF FSFS FFSS

Binomial coefficient, formal definition

The binomial coefficient is

$$
{ }_{n} C_{j}=\frac{n!}{j!(n-j)!}
$$

where x ! is read " x factorial" given by

$$
x!=x(x-1)(x-2) \cdots(3)(2)(1)
$$

The first few are

$$
\begin{aligned}
& 0!=1 \\
& 1!=1 \\
& 2!=(2)(1)=2 \\
& 3!=(3)(2)(1)=6 \\
& 4!=(4)(3)(2)(1)=24 \\
& 5!=120
\end{aligned}
$$

Binomial probabilities

- There are a lot of formulas on the previous slide.
- It's possible to compute probabilities like $\operatorname{Pr}\{Y=2\}$ by hand using the formulas and Table 2 on p .615.
- For Y binomial with n trials and probability p, R computes $\operatorname{Pr}\{Y=j\}$ easily using dbinom ($j, \mathrm{n}, \mathrm{p}$)
- Use R for your homework!

Example 3.6.4 Mutant cats!

- Study in Omaha, Nebraska found $p=0.37$ have a mutant trait.
- Randomly draw $n=5$ cats and count Y, the number of mutants.
- Y is binomial with $p=0.37$ and $n=5$. Let's have R find the probability of $Y=0, Y=1, Y=2, Y=3, Y=4, Y=5$:
> dbinom(0,5,0.37)
[1] 0.09924365
> dbinom(1,5,0.37)
[1] 0.2914298
> dbinom (2,5,0.37)
[1] 0.3423143
> dbinom $(3,5,0.37)$
[1] 0.2010418
> dbinom $(4,5,0.37)$
[1] 0.05903607
> dbinom(5,5,0.37)
[1] 0.006934396

Probability distribution for $n=5$ and $p=0.37$

Table 3.6.3	Binomial distribution with $n=5$ and $p=0.37$	
Number of		
Mutants	Nonmutants	Probability
0	5	0.10
1	4	0.29
2	3	0.34
3	2	0.20
4	1	0.06
5	0	$\underline{0.01}$
		1.00

Questions What is $\operatorname{Pr}\{Y \leq 2\} ? \operatorname{Pr}\{Y>2\} ? \operatorname{Pr}\{2 \leq Y \leq 4\} ?$

Mean and standard deviation of binomial random variable

Let Y be binomial with n trials and probability p.

$$
\begin{gathered}
\mu_{Y}=n p \\
\sigma_{Y}=\sqrt{n p(1-p)}
\end{gathered}
$$

Example: for mutant cats, $\mu_{Y}=5(0.37)=1.85$ cats and $\sigma_{Y}=\sqrt{5(0.37)(0.63)}=1.08$ cats.

Coming up: normal distribution

- The binomial disribution is discrete. Since it is discrete, a binomial distribution is described with a simple table of probabilities.
- There are other widely used discrete distributions, including the Poisson and geometric random variables.
- The next random variable we will talk about is the most widely used of all random variables: the normal distribution.
- Unlike the binomial, the normal distribution is continuous, and therefore has a density.

Section 4.1 Normal curves

- "Bell-shaped curve"
- The normal density curve defines a continuous random variable Y.
- Normal curves approximate lots of real data densities (examples coming up).
- A normal curve is defined by the mean μ and standard deviation σ.
- We will also find that sample means \bar{Y} are approximately normal in Chapter 5. So are sample proportions \hat{p} (more later).
- Let's look at some real data examples...

Serum cholesterol in $n=727$ 12-14 year-old children

Figure 4.I.I Distribution of serum cholesterol in 727 12- to 14 -year-old children

Normal fit to cholesterol data with $\mu=162 \mathrm{mg} / \mathrm{dl}$ and $\sigma=28 \mathrm{mg} / \mathrm{dl}$.

Figure 4.l. 2 Normal distribution of serum cholesterol, with $\mu=162 \mathrm{mg} / \mathrm{dl}$ and $\sigma=28 \mathrm{mg} / \mathrm{dl}$

Normal distribution of eggshell thickness

Shell thicknesses of White Leghorn hens. $\mu=0.38 \mathrm{~mm}$ \& $\sigma=0.03 \mathrm{~mm}$

4.2 Normal density functions

- The density function is given by

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

- All normal curves have the same shape. They have a mode at μ and are more spread out - flatter - the larger σ is.
- Almost all of the probability is contained between $\mu-3 \sigma$ and $\mu+3 \sigma$.
- The area under every normal density is one.
- If Y has a normal density with mean μ and standard deviation σ, we can write $Y \sim N(\mu, \sigma)$.

Normal curve with mean μ and standard deviation σ

Three normal curves with different means and standard deviations

Discussion

- Introduced two random variables, binomial and normal. binomial is discrete, normal continuous.
- Binomial has a probability table with $\operatorname{Pr}\{Y=j\}$ for $j=0,1, \ldots, n$, normal has density function $f(x)$.
- Binomial sometimes written $Y \sim \operatorname{bin}(n, p)$
- Normal sometimes written $Y \sim N(\mu, \sigma)$.
- R computes probabilities for both.
- Next lecture we'll discuss how to get probabilities for normal random variables.

