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3.6 Binomial random variable

Independent-trials model A series of n independent trials is
conducted. Each trial results in success or failure. The
probability of success is equal to p for each trial, regardless of
the outcomes of the other trials.

The binomial distribution defines a discrete random variable
Y that counts the number, out of the n trials, exhibiting a
certain trait with probability p in the “independent trials
model.”
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Example 3.6.1 Albinism

If both parents carry the gene for being albino, each kid they
have has a p = 0.25 chance of being albino. Each child has
the same chance of being albino independent of whether the
other children are albino.

Let Y count the number of kids out of two that are albino. Y
can be 0, 1, or 2.
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Probability tree for albinism

Probability tree for albinism among two children of carriers of the
gene for albinism.
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Albino example, cont’d

Let the four possible experimental outcomes for the
first/second child be albino/albino, albino/not, not/albino,
not/not.

Y = 0 corresponds to not/not, Y = 1 corresponds to either
albino/not or not/albino, and Y = 2 corresponds to
albino/albino.

Pr{Y = 0} = Pr{not/not} = 9
16 .

Pr{Y = 1} = Pr{albino/not}+ Pr{not/albino} = 3
16 + 3

16 =
6
16 .

Pr{Y = 2} = Pr{albino/albino} = 3
16 + 3

16 = 1
16 .
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Probability distribution in tabular form

Y is binomial with p = 0.25 and n = 2.
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Binomial distribution formula

def’n A binomial random variable Y with probability p and
number of trials n has the probability of j successes (and n − j
failures) given by

Pr{j successes} = Pr{Y = j} = nCj pj (1− p)n−j .

The binomial coefficient nCj counts the number of ways to order
j “successes” and n − j failures. For example, if n = 4 and j = 2
then 4C2 = 6 because there’s 6 orderings

SSFF SFSF SFFS FSSF FSFS FFSS
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Binomial coefficient, formal definition

The binomial coefficient is

nCj =
n!

j!(n − j)!

where x! is read “x factorial” given by

x! = x(x − 1)(x − 2) · · · (3)(2)(1).

The first few are

0! = 1

1! = 1

2! = (2)(1) = 2

3! = (3)(2)(1) = 6

4! = (4)(3)(2)(1) = 24

5! = 120
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Binomial probabilities

There are a lot of formulas on the previous slide.

It’s possible to compute probabilities like Pr{Y = 2} by hand
using the formulas and Table 2 on p. 615.

For Y binomial with n trials and probability p, R computes
Pr{Y = j} easily using dbinom(j,n,p)

Use R for your homework!
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Example 3.6.4 Mutant cats!

Study in Omaha, Nebraska found p = 0.37 have a mutant
trait.

Randomly draw n = 5 cats and count Y , the number of
mutants.

Y is binomial with p = 0.37 and n = 5. Let’s have R find the
probability of Y = 0, Y = 1, Y = 2, Y = 3, Y = 4, Y = 5:

> dbinom(0,5,0.37)

[1] 0.09924365

> dbinom(1,5,0.37)

[1] 0.2914298

> dbinom(2,5,0.37)

[1] 0.3423143

> dbinom(3,5,0.37)

[1] 0.2010418

> dbinom(4,5,0.37)

[1] 0.05903607

> dbinom(5,5,0.37)

[1] 0.006934396
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Probability distribution for n = 5 and p = 0.37

Questions What is Pr{Y ≤ 2}? Pr{Y > 2}? Pr{2 ≤ Y ≤ 4}?
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Mean and standard deviation of binomial random variable

Let Y be binomial with n trials and probability p.

µY = n p

σY =
√

n p (1− p)

Example: for mutant cats, µY = 5(0.37) = 1.85 cats and
σY =

√
5(0.37)(0.63) = 1.08 cats.
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Coming up: normal distribution

The binomial disribution is discrete. Since it is discrete, a
binomial distribution is described with a simple table of
probabilities.

There are other widely used discrete distributions, including
the Poisson and geometric random variables.

The next random variable we will talk about is the most
widely used of all random variables: the normal distribution.

Unlike the binomial, the normal distribution is continuous,
and therefore has a density.
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Section 4.1 Normal curves

“Bell-shaped curve”

The normal density curve defines a continuous random
variable Y .

Normal curves approximate lots of real data densities
(examples coming up).

A normal curve is defined by the mean µ and standard
deviation σ.

We will also find that sample means Ȳ are approximately
normal in Chapter 5. So are sample proportions p̂ (more
later).

Let’s look at some real data examples...
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Serum cholesterol in n = 727 12–14 year-old children
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Normal fit to cholesterol data with µ = 162 mg/dl and
σ = 28 mg/dl.
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Normal distribution of eggshell thickness

Shell thicknesses of White Leghorn hens. µ = 0.38 mm &
σ = 0.03 mm
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4.2 Normal density functions

The density function is given by

f (x) =
1

σ
√

2π
exp

(
−(x − µ)2

2σ2

)
All normal curves have the same shape. They have a mode at
µ and are more spread out – flatter – the larger σ is.

Almost all of the probability is contained between µ− 3σ and
µ+ 3σ.

The area under every normal density is one.

If Y has a normal density with mean µ and standard deviation
σ, we can write Y ∼ N(µ, σ).
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Normal curve with mean µ and standard deviation σ
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Three normal curves with different means and standard
deviations
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Discussion

Introduced two random variables, binomial and normal.
binomial is discrete, normal continuous.

Binomial has a probability table with Pr{Y = j} for
j = 0, 1, . . . , n, normal has density function f (x).

Binomial sometimes written Y ∼ bin(n, p)

Normal sometimes written Y ∼ N(µ, σ).

R computes probabilities for both.

Next lecture we’ll discuss how to get probabilities for normal
random variables.
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