# Sections 3.2 and 3.3 

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 205: Elementary Statistics for the Biological and Life Sciences

## Section 3.3 Probability rules

(1) Rule (1) $0 \leq \operatorname{Pr}\{E\} \leq 1$ for any event $E$.
(2) Rule (2) If $E_{1}, E_{2}, \ldots, E_{k}$ are all possible experimental outcomes (smallest events possible), then

$$
\sum_{i=1}^{k} \operatorname{Pr}\left\{E_{i}\right\}=\operatorname{Pr}\left\{E_{1}\right\}+\operatorname{Pr}\left\{E_{2}\right\}+\cdots+\operatorname{Pr}\left\{E_{k}\right\}=1
$$

(3) Rule (3) The probability that an event does not happen, $E^{C}$ is $\operatorname{Pr}\left\{E^{C}\right\}=1-\operatorname{Pr}\{E\}$.

## Probability of any event

- Let all experimental outcomes be listed as the smallest events $E_{1}, E_{2}, E_{3}, \ldots, E_{k}$.
- We can make new events from these, e.g. $A=\left\{E_{2}, E_{4}\right\}$.
- The probability of any event is the sum of the probabilities of the experimental outcomes in the event

$$
\operatorname{Pr}\{A\}=\sum_{E_{i} \text { in } A} \operatorname{Pr}\left\{E_{i}\right\} .
$$

- Computing probabilities involves a lot of counting and summing.


## Example 3.3.1 Blood type

- The smallest events possible are the individual experimental outcomes $O, A, B$, and $A B$. The proportions in the U.S. are $\operatorname{Pr}\{O\}=0.44, \operatorname{Pr}\{A\}=0.42, \operatorname{Pr}\{B\}=0.10$, and $\operatorname{Pr}\{A B\}=0.04$.
- All of these are between 0 and 1 .
- $\operatorname{Pr}\{O\}+\operatorname{Pr}\{A\}+\operatorname{Pr}\{B\}+\operatorname{Pr}\{A B\}=1$.
- The probability that a randomly selected individual does not have type $A B$ is $\operatorname{Pr}\left\{A B^{C}\right\}=1-\operatorname{Pr}\{A B\}=1-0.04=0.96$.
- The probability of either $A$ or $A B$ is

$$
\operatorname{Pr}\{A, A B\}=\operatorname{Pr}\{A\}+\operatorname{Pr}\{A B\}=0.42+0.04=0.46
$$

## Union \& intersection

- We can make a new event by taking the union or intersection of two events $E_{1} \& E_{2}$.
- The union of two events combines the experimental outcomes in both, written $E_{1}$ or $E_{2}$ (either can happen).
- The union happens if either $E_{1}$ or $E_{2}$ or both occur.
- The intersection of two events are the experimental outcomes that are only in both at the same time, written $E_{1}$ and $E_{2}$ (both must happen).
- The intersection of two events is the event that both occur.


## Rolling a 6 -sided die

- The experimental outcomes (smallest events possible) are 1 , $2,3,4,5$, and 6 . Each has probability $\frac{1}{6}$.
- Let $E_{1}=\{1,3,5\}$ be the event that an odd number is rolled. Let $E_{2}=\{1,2,3\}$ be the event that the roll is 3 or less.
- Union: $E_{1}$ or $E_{2}=\{1,2,3,5\}$.
- Intersection: $E_{1}$ and $E_{2}=\{1,3\}$.
- $\operatorname{Pr}\left\{E_{1}\right.$ or $\left.E_{2}\right\}=\frac{4}{6}$.
- $\operatorname{Pr}\left\{E_{1}\right.$ and $\left.E_{2}\right\}=\frac{2}{6}$.


## Disjoint events

- If two events have no experimental outcomes in common, they are said to be disjoint.
- For the 6 -sided die, $E_{1}=\{1,3,5\}$ and $E_{2}=\{2,4,6\}$ are disjoint.
- Question if $E_{1}$ and $E_{2}$ are disjoint, what is their intersection?
- Next slide is a Venn diagram for disjoint events...


## Disjoint events



Figure 3.3.1 Venn diagram showing two disjoint events

## Union and intersection



Figure 3.3.2 Venn diagram showing union (total shaded area) and intersection (middle area) of two events

## Addition rules

- Rule (4) If $E_{1}$ and $E_{2}$ are disjoint then

$$
\operatorname{Pr}\left\{E_{1} \text { or } E_{2}\right\}=\operatorname{Pr}\left\{E_{1}\right\}+\operatorname{Pr}\left\{E_{2}\right\}
$$

- Rule (5) For any two events (disjoint or not)

$$
\operatorname{Pr}\left\{E_{1} \text { or } E_{2}\right\}=\operatorname{Pr}\left\{E_{1}\right\}+\operatorname{Pr}\left\{E_{2}\right\}-\operatorname{Pr}\left\{E_{1} \text { and } E_{2}\right\} .
$$

## Hair and eye color



Relationship between hair and eye color for 1770 German men.

|  |  | Hair color |  |  |  |
| :--- | :--- | ---: | ---: | ---: | ---: |
|  |  | Brown | Black | Red | Total |
| Eye color | Brown | 400 | 300 | 20 |  |
|  | Blue | 800 | 200 | 50 |  |
|  | Total |  |  |  | 1770 |

$$
\operatorname{Pr}\{\text { Black hair }\}=\frac{300+200}{1770}=\frac{500}{1770}=0.28 .
$$

|  |  | Hair color |  |  |  |
| :--- | :--- | ---: | ---: | ---: | :---: |
|  |  | Brown | Black | Red | Total |
| Eye colorBrown <br>  <br>  <br> Blue$\| 800$ | 200 | 50 |  |  |  |
| Total |  |  |  |  |  |
| Pr $\{$ Blue eyes $\}=\frac{800+200+50}{1770}=\frac{1050}{1770}=0.59$. |  |  |  |  |  |


|  |  | Hair color |  |  |  |
| :--- | :--- | ---: | ---: | ---: | ---: |
|  |  | Brown | Black | Red | Total |
| Eye color | Brown | 400 | 300 | 20 |  |
|  | Blue | 800 | 200 | 50 |  |
|  | Total |  |  |  | 1770 |

$$
\operatorname{Pr}\{\text { Black hair and blue eyes }\}=\frac{200}{1770}=0.11
$$

|  |  | Hair color |  |  |  |
| :--- | :--- | ---: | ---: | ---: | ---: |
|  |  | Brown | Black | Red | Total |
| Eye color | Brown | 400 | 300 | 20 |  |
|  | Blue | 800 | 200 | 50 |  |
|  | Total |  |  |  | 1770 |

$\operatorname{Pr}\{$ Black hair or blue eyes $\}=\frac{800+200+50+300}{1770}=\frac{1350}{1770}=0.76$.

## Using Rule 5

Rule (5) gives
$\operatorname{Pr}\{$ Black hair or blue eyes $\}=\operatorname{Pr}\{$ Black hair $\}+\operatorname{Pr}\{$ blue eyes $\}$
$-\operatorname{Pr}\{$ Black hair and blue eyes $\}$
$=\frac{500}{1770}+\frac{1050}{1770}-\frac{200}{1770}$
$=\frac{1350}{1770}$
$=0.76$.

## Conditional probability

- Sometimes we have information before we compute a probability.
- For example we might know an individual from the table has blue eyes.
- Knowing this fact reduces the population to only those who have blue eyes.
- This can change the probability of having black hair.
- The conditional probability of $E_{2}$ given $E_{1}$ is defined to be

$$
\operatorname{Pr}\left\{E_{2} \mid E_{1}\right\}=\frac{\operatorname{Pr}\left\{E_{2} \text { and } E_{1}\right\}}{\operatorname{Pr}\left\{E_{1}\right\}}
$$

- In terms of computing conditional probabilities from a table, it's easiest just to ignore the part of the table that didn't happen!


## Bayes' Theorem

- Named after the Reverend Thomas Bayes. Published after his death.
- The conditional probability of $E_{2}$ given $E_{1}$ is defined to be

$$
\operatorname{Pr}\left\{E_{2} \mid E_{1}\right\}=\frac{\operatorname{Pr}\left\{E_{1} \mid E_{2}\right\} \operatorname{Pr}\left\{E_{2}\right\}}{\operatorname{Pr}\left\{E_{1}\right\}}
$$

- It is the cornerstone of the statistical methods known as 'Bayesian Statistics'.

|  |  | Hair color |  |  |  |
| :--- | :--- | ---: | ---: | ---: | :---: |
| Eye color | Brown <br> Blue | 800 | 200 | 50 | 1050 |
|  | Total |  |  |  |  |

$$
\operatorname{Pr}\{\text { Black hair } \mid \text { blue eyes }\}=\frac{200}{1050}=0.19 .
$$

|  |  | Hair color |  |  |  |
| :--- | :--- | :--- | :--- | ---: | :--- |
|  |  | Brown | Black | Red | Total |
| Eye color | Brown |  |  | 20 |  |
|  | Blue |  | 50 |  |  |
|  | Total |  | 70 |  |  |

$$
\operatorname{Pr}\{\text { Blue eyes } \mid \text { red hair }\}=\frac{50}{70}=0.76
$$

$$
\begin{aligned}
& \text { Pr Not red hair|brown eyes }\}=\frac{400+300}{720}=\frac{700}{720}=0.97 .
\end{aligned}
$$

## In biological sciences

- The hair/eyes example is not that interesting (to us at least).
- More relavent examples might be
- $\operatorname{Pr}\{$ heart attack this year|cholesterol $>190\}$
- Pr\{cavities|don't floss\}
- $\operatorname{Pr}\{$ low stress|exercise $\}$
- $\operatorname{Pr}\{$ pertussis|vaccinated $\}$


## Independent events

Two events $E_{1}$ and $E_{2}$ are independent if knowing one has occured does not change the probability of the other,

$$
\operatorname{Pr}\left\{E_{1} \mid E_{2}\right\}=\operatorname{Pr}\left\{E_{1}\right\}
$$

Recall that $\operatorname{Pr}\{$ Black hair $\}=0.28$ and $\operatorname{Pr}\{$ Black hair $\mid$ blue eyes $\}=0.19$. Are "black hair" and "blue eyes" independent events?

## Section 3.2 Probability trees

- The probabilities from probability trees are given by

$$
\operatorname{Pr}\left\{E_{1} \text { and } E_{2}\right\}=\operatorname{Pr}\left\{E_{1}\right\} \operatorname{Pr}\left\{E_{2} \mid E_{1}\right\} .
$$

- This is the definition of conditional probability with both sides multiplied by $\operatorname{Pr}\left\{E_{1}\right\}$.
- Probability trees are used in the previous Section 3.2...


## Probability trees

- If our event $E$ is the result of two (or more) smaller experiments, probability trees provide a convenient way to find the probability of all possible outcomes.
- The first experiment results in either $A$ or $B$.
- After the first experiment, a second experiment is carried out resulting in either $C$ or $D$.
- The four possible events are $A C, A D, B C$, or $B D$ and their probabilities are obtained from a probability tree by multiplying numbers going down the appropriate branch.


## Example 3.2.7 Two fair coin tosses



$$
\begin{aligned}
& \operatorname{Pr}\{\text { Heads, Heads }\}=0.5(0.5)=0.25 \quad \operatorname{Pr}\{\text { Heads,Tails }\}=0.5(0.5)=0.25 \\
& \operatorname{Pr}\{\text { Tails,Heads }\}=0.5(0.5)=0.25 \quad \operatorname{Pr}\{\text { Tails,Tails }\}=0.5(0.5)=0.25
\end{aligned}
$$

What is the probability of obtaining "heads" on both coin flips?

## Example 3.2.8 sampling two flies



$$
\begin{aligned}
\operatorname{Pr}\{\text { Black,Black }\} & =0.3(0.3)=0.09 \\
\operatorname{Pr}\{\text { Gray }, \text { Black }\} & =0.7(0.3)=0.21
\end{aligned} \quad \operatorname{Pr}\{\text { Gay }, \text { Gray }\}=0.7(0.75)=0.49
$$

What is the probability of sampling the same color both times?

## Example 3.2.9 nitric oxide example



What is the probability of a negative outcome?

## Example 3.2.10 medical testing example



What is the probability of testing positive?

## Example 3.2.11 A more relavent question...

- Given that my test comes up positive, what is the probability that I have the disease?
- The definition of conditional probability is

$$
\begin{aligned}
\operatorname{Pr}\{\text { disease } \mid \text { test positive }\} & =\frac{\operatorname{Pr}\{\text { disease and test positive }\}}{\operatorname{Pr}\{\text { test positive }\}} \\
& =\frac{0.076}{0.168} \\
& =0.452 .
\end{aligned}
$$

