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12.4 The regression model

We assume the underlying model with Greek letters (as usual)

y = β0 + β1x + ε

For each subject i we see xi and yi = β0 + β1xi + εi .

β0 is the population intercept.

β1 is the population slope.

εi is the ith error, we assume these are N(0, σe).

We don’t know any of β0, β1, or σe .
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Visualizing the model

µy |x = β0 + β1x is mean response for everyone with covariate
x .

σe is constant variance. Variance doesn’t change with x .

Example 12.4.4, pretend we know that the mean weight µy |x
given height x is

µy |x = −145 + 4.25x and σe = 20.
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Weight vs. height
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Estimating β0, β1, and σε

b0 estimates β0.

b1 estimates β1.

se estimates σe .

Example 12.4.5. For the snake data, b0 = −301 estimates β0,
b1 = 7.19 estimates β1, and se = 12.5 estimates σe .

We estimate the the mean weight ŷ of snakes with length x as

ŷ = −301 + 7.19x
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Example 12.4.6 Arsenic in rice

If we believe the data follow a line, we can estimate the mean
for any x we want.

b0 = 197.17 estimates β0, b1 = 2.51 estimates β1, and
se = 37.30 estimates σe .

For straw silicon concentration of x = 33 g/kg we estimate a
mean arsenic level of

ŷ = 197.17−2.51(33) = 114.35 µgm/kg with se = 37.30 µgm/kg.
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Arsenic in rice at X = 33 g/kg

ŷ = 197.17− 2.51x

114.35 = 197.17− 2.51(33)
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12.5 Inference for β1

Often people want a 95% confidence interval for β1 and want
to test H0 : β1 = 0.

If we reject H0 : β1 = 0, then y is significantly linearly
assocatied with x . Same as testing H0 : ρ = 0.

A 95% confidence interval for β1 gives us a range for how the
mean changes when x is increased by one unit.

Everything comes from

b1 − β0

SEb1

∼ tn−2, SEb1 =
se

sx
√

n − 1
.

R automatically gives a P-value for testing H0 : β1 = 0.

Need to ask R for 95% confidence interval for β1.
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R code

> amph=c(0,0,0,0,0,0,0,0,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5,5.0,5.0,5.0,5.0,5.0,5.0,5.0,5.0)

> cons=c(112.6,102.1,90.2,81.5,105.6,93.0,106.6,108.3,73.3,84.8,67.3,55.3,

+ 80.7,90.0,75.5,77.1,38.5,81.3,57.1,62.3,51.5,48.3,42.7,57.9)

> fit=lm(cons~amph)

> summary(fit)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 99.331 3.680 26.99 < 2e-16 ***

amph -9.007 1.140 -7.90 7.27e-08 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> confint(fit)

2.5 % 97.5 %

(Intercept) 91.69979 106.962710

amph -11.37202 -6.642979

P-value for testing H0 : β1 = 0 vs. HA : β1 6= 0 is 0.0000000727,
we reject at the 5% level. We are 95% confidence that true mean
consumption is reduced by 6.6 to 11.4 g/kg for every mg/kg
increase in amphetamine dose.
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Multiple regression

Often there are more than one predictors we are interested in,
say we have two x1 and x2.

The model is easily extended to

y = β0 + β1x1 + β2x2 + ε

Example: Dwayne Portrait Studio is doing a sales analysis
based on data from n = 21 cities.

y = sales (thousands of dollars) for a city
x1 = number of people 16 years or younger (thousands)
x2 = per capita disposable income (thousands of dollars)
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The data

x1 x2 y x1 x2 y

68.5 16.7 174.4 45.2 16.8 164.4
91.3 18.2 244.2 47.8 16.3 154.6
46.9 17.3 181.6 66.1 18.2 207.5
49.5 15.9 152.8 52.0 17.2 163.2
48.9 16.6 145.4 38.4 16.0 137.2
87.9 18.3 241.9 72.8 17.1 191.1
88.4 17.4 232.0 42.9 15.8 145.3
52.5 17.8 161.1 85.7 18.4 209.7
41.3 16.5 146.4 51.7 16.3 144.0
89.6 18.1 232.6 82.7 19.1 224.1
52.3 16.0 166.5
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R code for multiple regression

> under16=c(68.5,45.2,91.3,47.8,46.9,66.1,49.5,52.0,48.9,38.4,87.9,72.8,88.4,42.9,52.5,

+ 85.7,41.3,51.7,89.6,82.7,52.3)

>

> income=c(16.7,16.8,18.2,16.3,17.3,18.2,15.9,17.2,16.6,16.0,18.3,17.1,17.4,15.8,17.8,

+ 18.4,16.5,16.3,18.1,19.1,16.0)

>

> sales=c(174.4,164.4,244.2,154.6,181.6,207.5,152.8,163.2,145.4,137.2,241.9,191.1,232.0,

+ 145.3,161.1,209.7,146.4,144.0,232.6,224.1,166.5)

> fit=lm(sales~under16+income)

> summary(fit)

Call:

lm(formula = sales ~ under16 + income)

Residuals:

Min 1Q Median 3Q Max

-18.4239 -6.2161 0.7449 9.4356 20.2151

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -68.8571 60.0170 -1.147 0.2663

under16 1.4546 0.2118 6.868 2e-06 ***

income 9.3655 4.0640 2.305 0.0333 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 11.01 on 18 degrees of freedom

Multiple R-squared: 0.9167, Adjusted R-squared: 0.9075

F-statistic: 99.1 on 2 and 18 DF, p-value: 1.921e-10
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Interpretation...

The fitted regression surface is

sales = −68.857 + 1.455 (under 16) + 9.366 income.

For every unit increase (1000 people) in those under 16,
average sales go up 1.455 thousand, $1,455.

For every unit increase ($1000) in disposable income, average
sales go up 9.366 thousand, $9,366.

91.67% of the variability in sales is explained by those under
16 and disposable income.

σe is estimated to be 11.01.
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Regression homework

12.2.5, 12.2.7, 12.3.1, 12.3.3, 12.3.5, 12.3.7, 12.3.8. Use R
for all problems; i.e. don’t do anything by hand.

12.4.3, 12.4.6, 12.4.8, 12.4.9, 12.5.1, 12.5.3, 12.5.5,
12.5.9(a). Use R for all problems; don’t do anything by hand.
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