Chapter 12: Linear regression II

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 205: Elementary Statistics for the Biological and Life Sciences

12.4 The regression model

- We assume the underlying model with Greek letters (as usual)

$$
y=\beta_{0}+\beta_{1} x+\epsilon
$$

- For each subject i we see x_{i} and $y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}$.
- β_{0} is the population intercept.
- β_{1} is the population slope.
- ϵ_{i} is the i th error, we assume these are $N\left(0, \sigma_{e}\right)$.
- We don't know any of β_{0}, β_{1}, or σ_{e}.

Visualizing the model

- $\mu_{y \mid x}=\beta_{0}+\beta_{1} x$ is mean response for everyone with covariate X.
- σ_{e} is constant variance. Variance doesn't change with x.
- Example 12.4.4, pretend we know that the mean weight $\mu_{y \mid x}$ given height x is

$$
\mu_{y \mid x}=-145+4.25 x \text { and } \sigma_{e}=20 .
$$

Table 12.4.1	Conditional means and SDs of weight given height in a population of young men	
Height (in) X	Mean weight (lb) $\mu_{Y \mid X}$	Standard deviation of weights (lb) $\sigma_{Y \mid X}$
64	127	20
68	144	20
72	161	20
76	178	20
"Note that all values of $\sigma_{Y \mid X}$ are the same; they equal $\sigma_{\varepsilon}=20$.		

Weight vs. height

Estimating β_{0}, β_{1}, and σ_{ϵ}

- b_{0} estimates β_{0}.
- b_{1} estimates β_{1}.
- s_{e} estimates σ_{e}.
- Example 12.4.5. For the snake data, $b_{0}=-301$ estimates β_{0}, $b_{1}=7.19$ estimates β_{1}, and $s_{e}=12.5$ estimates σ_{e}.
- We estimate the the mean weight \hat{y} of snakes with length x as

$$
\hat{y}=-301+7.19 x
$$

Example 12.4.6 Arsenic in rice

- If we believe the data follow a line, we can estimate the mean for any x we want.
- $b_{0}=197.17$ estimates $\beta_{0}, b_{1}=2.51$ estimates β_{1}, and $s_{e}=37.30$ estimates σ_{e}.
- For straw silicon concentration of $x=33 \mathrm{~g} / \mathrm{kg}$ we estimate a mean arsenic level of

$$
\hat{y}=197.17-2.51(33)=114.35 \mu \mathrm{gm} / \mathrm{kg} \text { with } s_{e}=37.30 \mu \mathrm{gm} / \mathrm{kg} .
$$

Arsenic in rice at $X=33 \mathrm{~g} / \mathrm{kg}$

$$
\begin{gathered}
\hat{y}=197.17-2.51 x \\
114.35=197.17-2.51(33)
\end{gathered}
$$

12.5 Inference for β_{1}

- Often people want a 95% confidence interval for β_{1} and want to test $H_{0}: \beta_{1}=0$.
- If we reject $H_{0}: \beta_{1}=0$, then y is significantly linearly assocatied with x. Same as testing $H_{0}: \rho=0$.
- A 95% confidence interval for β_{1} gives us a range for how the mean changes when x is increased by one unit.
- Everything comes from

$$
\frac{b_{1}-\beta_{0}}{S E_{b_{1}}} \sim t_{n-2}, \quad S E_{b_{1}}=\frac{s_{e}}{s_{x} \sqrt{n-1}}
$$

- R automatically gives a P -value for testing $H_{0}: \beta_{1}=0$.
- Need to ask R for 95% confidence interval for β_{1}.

R code

```
> amph=c(0,0,0,0,0,0,0,0,2.5,2.5,2.5,2.5,2.5,2.5,2.5,2.5,5.0,5.0,5.0,5.0,5.0,5.0,5.0,5.0)
> cons=c(112.6,102.1,90.2,81.5,105.6,93.0,106.6,108.3,73.3,84.8,67.3,55.3,
+ 80.7,90.0,75.5,77.1,38.5,81.3,57.1,62.3,51.5,48.3,42.7,57.9)
> fit=lm(cons~amph)
> summary(fit)
Coefficients:
\begin{tabular}{lrlll} 
& Estimate Std. Error t value \(\operatorname{Pr}(>|\mathrm{t}|)\) \\
(Intercept) & 99.331 & 3.680 & \(26.99<2 \mathrm{e}-16 * * *\) \\
amph & -9.007 & 1.140 & -7.90 & \(7.27 \mathrm{e}-08 * * *\)
\end{tabular}
--
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
> confint(fit)
    2.5% 97.5 %
(Intercept) 91.69979 106.962710
amph -11.37202 -6.642979
```

P-value for testing $H_{0}: \beta_{1}=0$ vs. $H_{A}: \beta_{1} \neq 0$ is 0.0000000727 , we reject at the 5% level. We are 95% confidence that true mean consumption is reduced by 6.6 to $11.4 \mathrm{~g} / \mathrm{kg}$ for every $\mathrm{mg} / \mathrm{kg}$ increase in amphetamine dose.

Multiple regression

- Often there are more than one predictors we are interested in, say we have two x_{1} and x_{2}.
- The model is easily extended to

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\epsilon
$$

- Example: Dwayne Portrait Studio is doing a sales analysis based on data from $n=21$ cities.
- $y=$ sales (thousands of dollars) for a city
- $x_{1}=$ number of people 16 years or younger (thousands)
- $x_{2}=$ per capita disposable income (thousands of dollars)

The data

x_{1}	x_{2}	y	x_{1}	x_{2}	y
68.5	16.7	174.4	45.2	16.8	164.4
91.3	18.2	244.2	47.8	16.3	154.6
46.9	17.3	181.6	66.1	18.2	207.5
49.5	15.9	152.8	52.0	17.2	163.2
48.9	16.6	145.4	38.4	16.0	137.2
87.9	18.3	241.9	72.8	17.1	191.1
88.4	17.4	232.0	42.9	15.8	145.3
52.5	17.8	161.1	85.7	18.4	209.7
41.3	16.5	146.4	51.7	16.3	144.0
89.6	18.1	232.6	82.7	19.1	224.1
52.3	16.0	166.5			

R code for multiple regression

```
> under16=c(68.5,45.2,91.3,47.8,46.9,66.1,49.5,52.0,48.9,38.4,87.9,72.8,88.4,42.9,52.5,
+ 85.7,41.3,51.7,89.6,82.7,52.3)
>
> income=c(16.7,16.8,18.2,16.3,17.3,18.2,15.9,17.2,16.6,16.0,18.3,17.1,17.4,15.8,17.8,
+ 18.4,16.5,16.3,18.1,19.1,16.0)
>
> sales=c(174.4,164.4,244.2,154.6,181.6,207.5,152.8,163.2,145.4,137.2,241.9,191.1,232.0,
+ 145.3,161.1,209.7,146.4,144.0,232.6,224.1,166.5)
> fit=lm(sales~under16+income)
> summary(fit)
```

Call:
lm (formula $=$ sales \sim under $16+$ income)
Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-18.4239	-6.2161	0.7449	9.4356	20.2151

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

(Intercept)	-68.8571	60.0170	-1.147	0.2663	
under16	1.4546	0.2118	6.868	$2 \mathrm{e}-06 \quad * *$	
income	9.3655	4.0640	2.305	0.0333^{*}	

Signif. codes: 0 *** 0.001 ** $0.01 * 0.05$. $0.1 \quad 1$
Residual standard error: 11.01 on 18 degrees of freedom Multiple R-squared: 0.9167, Adjusted R-squared: 0.9075 F-statistic: 99.1 on 2 and 18 DF , p-value: $1.921 \mathrm{e}-10$

Interpretation...

- The fitted regression surface is

$$
\text { sales }=-68.857+1.455(\text { under } 16)+9.366 \text { income. }
$$

- For every unit increase (1000 people) in those under 16 , average sales go up 1.455 thousand, $\$ 1,455$.
- For every unit increase (\$1000) in disposable income, average sales go up 9.366 thousand, $\$ 9,366$.
- 91.67% of the variability in sales is explained by those under 16 and disposable income.
- σ_{e} is estimated to be 11.01 .

Regression homework

- 12.2.5, 12.2.7, 12.3.1, 12.3.3, 12.3.5, 12.3.7, 12.3.8. Use R for all problems; i.e. don't do anything by hand.
- 12.4.3, 12.4.6, 12.4.8, 12.4.9, 12.5.1, 12.5.3, 12.5.5, 12.5.9(a). Use R for all problems; don't do anything by hand.

