Sections 7.1 and 7.2

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 205: Elementary Statistics for the Biological and Life Sciences

Hypothesis testing

- Often scientists wish to test a hypothesis, or statement of fact.
- Example 7.2.1 scientists wish to test the hypothesis that norepinephrine (NE) levels are different in rats exposed to toluene (glue) and those that aren't.
- The scientist designs a controlled experiment in which $n_1 = 6$ rats are exposed to toluene and $n_2 = 5$ rats are not. NE levels are measured in the rats' brains.
- The scientists wish to show that the population NE levels are different among rats exposed and non-exposed to toluene.
- This is encapsulated in the mathematical statement $H_A: \mu_1 \neq \mu_2$, the *mean* NE levels differ across exposed and non-exposed.

Hypothesis testing

- A hypothesis test is a proof by contradiction.
- We assume the null $H_0: \mu_1 = \mu_2$ is true, then the data shows us something that is absurd, casting doubt on what we assumed, namely $H_0: \mu_1 = \mu_2$.
- So we have to conclude the opposite, H_A : $\mu_1 \neq \mu_2$.
- The **null hypothesis** is what we are trying to disprove, $H_0: \mu_1 = \mu_2$.
- The alternative hypothesis is what we're trying to show is true, $H_A: \mu_1 \neq \mu_2$.

Hypothesis testing

 Recall from Chapter 6, that if data are normal in both populations then

$$t_s = rac{ar{Y}_1 - ar{Y}_2 - (\mu_1 - \mu_2)}{SE_{ar{Y}_1 - ar{Y}_2}}$$

has a t distribution with df given by the Satterthwaite-Welch formula.

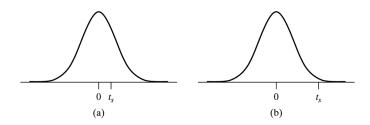
• In the hypothesis test, we are assuming $\mu_1 - \mu_2 = 0$, so

$$t_s = \frac{\bar{Y}_1 - \bar{Y}_2}{SE_{\bar{Y}_1 - \bar{Y}_2}}$$

has a t distribution, which is centered at zero.

- If t_s is really far away from zero in either direction, we have evidence that $H_0: \mu_1 = \mu_2$ is not true.
- $|t_s|$ measures how far apart \bar{Y}_1 and \bar{Y}_2 are, i.e. how many $SE_{\bar{Y}_1-\bar{Y}_2}$'s apart.

t test schematic



(a) Data compatible with H_0 (so no evidence toward H_A), (b) data not compatible with H_0 (in favor of H_A).

Example 7.2.1 Parallel dotplots NE concentration

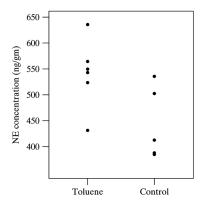


Figure 7.2.1 Parallel dotplots of NE concentration

Normality okay? Does there appear to be a mean difference?

Example 7.2.2 NE concentration (ng/gm)

Table 7.2.1 NE concentration (ng/gm)						
	Toluene (Group 1)	Control (Group 2)				
	543	535				
523		385				
	431	502				
	635	412				
	564	387				
	549					
n	6	5				
\bar{y}	540.8	444.2				
s	66.1	69.6				
SE	27	31				

$$t_s = \frac{\bar{y}_1 - \bar{y}_2}{SE_{\bar{Y}_1 - \bar{Y}_2}} = \frac{540.8 - 444.2}{\sqrt{\frac{66.1^2}{6} + \frac{69.6^2}{5}}} = 2.34.$$

 \bar{y}_1 is 2.34 SE's away from \bar{y}_2 . This is big, but how big?

P-values

- The P-value for a hypothesis test is the probability of the test statistic being at least as extreme as the observed test statistic, assuming H₀ is true.
- P-value answers the question "how big is big?" for $|t_s|$.

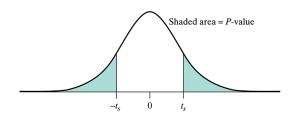
P-value for two-sample problem

- For the two-sample problem, P-value is the probability of seeing sample means \bar{Y}_1 and \bar{Y}_2 even further apart than what we saw, if $H_0: \mu_1 = \mu_2$ is true.
- This is a standard probability calculation due to W.S. Gosset

$$\begin{array}{lll} \text{P-value} &=& \Pr\{|\bar{Y}_1-\bar{Y}_2|>|\bar{y}_1-\bar{y}_2||H_0 \text{ true}\}\\ \\ &=& \Pr\left\{\left|\frac{\bar{Y}_1-\bar{Y}_2}{SE_{\bar{Y}_1-\bar{Y}_2}}\right|>\left|\frac{\bar{y}_1-\bar{y}_2}{SE_{\bar{Y}_1-\bar{Y}_2}}\right||H_0 \text{ true}\right\}\\ \\ &=& \Pr\left\{|T_{df}|>|t_s|\right\} \end{array}$$

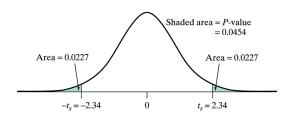
where T_{df} is a t random variable with df given by the Satterthwaite-Welch formula.

Two-tailed *p*-value for the *t* test



- The P-value is computed in R using t.test(data1,data2).
- It is the area in the tails of the t distribution with Satterthwaite-Welch *df* .

Example 7.2.3 Two-tailed *P*-value toluene data



```
> toluene=c(543,523,431,635,564,549)
```

- > control=c(535,385,502,412,387)
- > t.test(toluene,control)

Welch Two Sample t-test

```
data: toluene and control
t = 2.3447, df = 8.451, p-value = 0.04543
```

alternative hypothesis: true difference in means is not equal to 0

Note that $t_s = 2.34$, just as we computed by hand. What df are being used?

What do we decide based on the P-value?

- $|t_s|$ is "big" when the P-value is "small." But how small is small?
- We compare the P-value to a cutoff value denoted α .
- α is called the **significance level** of the hypothesis test; it is almost always $\alpha = 0.05$.
- If P-value $< \alpha$ then we **reject** H_0 at significance level α .
- If P-value $> \alpha$ then we **accept** H_0 at significance level α .
- Some books demand that you say "do not reject H_0 " instead of "accept H_0 ."
- ullet α has an interpretation that we'll talk about next time.

Example 7.2.4 NE concentration data

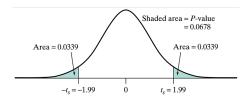
```
> toluene=c(543,523,431,635,564,549)
> control=c(535,385,502,412,387)
> t.test(toluene,control)

Welch Two Sample t-test

data: toluene and control
t = 2.3447, df = 8.451, p-value = 0.04543
alternative hypothesis: true difference in means is not equal to 0
```

We reject $H_0: \mu_1 = \mu_2$ at the 5% significance level because P-value = $0.0454 < 0.05 = \alpha$. There is statistically significant evidence that the mean norepinephrine levels are different in toluene-exposed vs. non-exposed rats.

Example 7.2.5 Two-week height of control & ancy plants



```
> control=c(10.0,13.2,19.8,19.3,21.2,13.9,20.3,9.6)
> ancy=c(13.2,19.5,11.0,5.8,12.8,7.1,7.7)
> t.test(control,ancy)

t = 1.9939, df = 12.783, p-value = 0.06795
alternative hypothesis: true difference in means is not equal to 0
```

As P-value = $0.068 > 0.05 = \alpha$, we accept $H_0: \mu_1 = \mu_2$ at the 5% level. There is no evidence that the mean heights are different in control vs. ancy populations.

Assumptions behind two-sample t test

- If the sample sizes are large enough ($n_1 > 30$ and $n_2 > 30$, say) the t-test works okay because of the central limit theorem.
- If the sample sizes are small, data from each population needs to be normal for the procedure to work okay. If not, we can't trust the t-test P-value.
- When sample sizes are small and data are not normal, there is an alternative method to compute the P-value that doesn't assume anything about the population shapes.
- This approach is called a randomized test or permutation test, and uses resampling methods.
- Resampling methods are a powerful approach to statistics and include permutation tests and bootstrapping.

Example 7.1.1

- An exercise science researcher studied the trunk flexion flexibility (cm) of $n_1 = 4$ women in an aerobics class, and $n_3 = 3$ women who were dancers.
- Among aerobics class participants we have 38, 45, 58, and 64 cm.
- Among dancers we have 48, 59, and 61 cm.
- Is there a difference in μ_1 = population mean stretching of aerobics vs. μ_2 = population mean stretching of dancers?
- If there truly is no difference, then all 7 observations came from the same population distribution.
- If there truly is no difference, then all arrangements of $n_1 = 3$ observations and $n_2 = 4$ observations are equally likely.

Permutation test of H_0 : $\mu_1 = \mu_2$

- Compute the observed test statistic $d_s = \bar{y}_1 \bar{y}_2$.
- Consider all possible arrangements of $n_1=4$ and $n_2=3$ and compute the mean differences d from these. The histogram from this is called the **permutation density**. This is the distribution of the test statistic assuming $H_0: \mu_1=\mu_2$ is true.
- The P-value for $H_0: \mu_1 = \mu_2$ vs. $H_A: \mu_1 \neq \mu_2$ is the proportion of |d|'s bigger than $|d_s|$.

Permutation samples

Table 7.1.2					
Sample 1 ("aerobics")	Sample 2 ("dance")	Mean of sample 1	Mean of sample 2	Difference in means	
38 45 58 64	48 59 61	51.25	56.00	-4.75	
38 45 58 48	64 59 61	47.25	61.33	-14.08	
38 45 58 59	64 48 61	50.00	57.67	−7.67	
38 45 58 61	64 48 59	50.50	57.00	-6.50	
38 45 64 48	58 59 61	48.75	59.33	-10.58	
38 45 64 59	58 48 61	51.50	55.67	-4.17	
38 45 64 61	58 48 59	52.00	55.00	-3.00	
38 45 48 59	58 64 61	47.50	61.00	-13.50	
38 45 48 61	58 64 59	48.00	60.33	-12.33	
38 45 59 61	58 64 48	50.75	56.67	-5.92	
38 58 64 48	45 59 61	52.00	55.00	-3.00	
38 58 64 59	45 48 61	54.75	51.33	3.42	
38 58 64 61	45 48 59	55.25	50.67	4.58	
38 58 48 59	45 64 61	50.75	56.67	-5.92	
38 58 48 61	45 64 59	51.25	56.00	-4.75	

(Continues on next page)

10 |d|'s are bigger than $|d_s| = 4.75$ out of the first 15 possible combinations.

Permutation samples cont'd

Table 7.1.2 (Continued)					
Sample 1 ("aerobics")	Sample 2 ("dance")	Mean of sample 1	Mean of sample 2	Difference in means	
38 58 59 61	45 64 48	54.00	52.33	1.67	
38 64 48 59	45 58 61	52.25	54.67	-2.42	
38 64 48 61	45 58 59	52.75	54.00	-1.25	
38 64 59 61	45 58 48	55.50	50.33	5.17	
38 48 59 61	45 58 64	51.50	55.67	-4.17	
45 58 64 48	38 59 61	53.75	52.67	1.08	
45 58 64 59	38 48 61	56.50	49.00	7.50	
45 58 64 61	38 48 59	57.00	48.33	8.67	
45 58 48 59	38 64 61	52.50	54.33	-1.83	
45 58 48 61	38 64 59	53.00	53.67	-0.67	
45 58 59 61	38 64 48	55.75	50.00	5.75	
45 64 48 59	38 58 61	54.00	52.33	1.67	
45 64 48 61	38 58 59	54.50	51.67	2.83	
45 64 59 61	38 58 48	57.25	48.00	9.25	
45 48 59 61	38 58 64	53.25	53.33	-0.08	
58 64 48 59	38 45 61	57.25	48.00	9.25	
58 64 48 61	38 45 59	57.75	47.33	10.42	
58 64 59 61	38 45 48	60.50	43.67	16.83	
58 48 59 61	38 45 64	56.50	49.00	7.50	
64 48 59 61	38 45 58	58.00	47.00	11.00	

10 |d|'s are bigger than $|d_s| = 4.75$ out of the last 20 possible combinations.

Final P-value

There are 20 |d|'s bigger than $|d_s|$ out of 35 possible combinations. The P-value is $\frac{20}{35} = 0.57$.

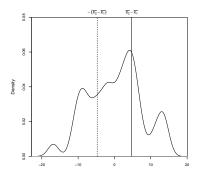
We accept $H_0: \mu_1 = \mu_2$ at the 5% level because P-value $= 0.54 > 0.05 = \alpha$. There is no evidence that the mean trunk flexion is different between dancers and aerobics participants.

DAAG package in R

- Many people have written specialized R code to carry out non-standard analyses.
- The DAAG (Data Analysis And Graphics data and functions) package has a function to do a two-sample permutation test as described in the book.
- The function works the same as t.test, e.g. twot.permutation(data1,data2).
- You will get a P-value and an estimate of the permutation density (based on an approximation).
- In R click Packages, then Install package(s)..., then
 pick a mirror (a place to download from any will work), then
 scroll down until you find DAAG and install it.
- After installing it, you need to load it. Under Packages pick Load package..., then pick out DAAG.

Trunk flexion in R

```
> aerobics=c(38,45,58,64)
> dance=c(48,59,61)
> twot.permutation(aerobics,dance)
[1] 0.572
```



The P-value is the area outside of $-d_s$ an d_s .

Comparing permutation test to t-test

```
> control=c(10.0,13.2,19.8,19.3,21.2,13.9,20.3,9.6)
> ancy=c(13.2,19.5,11.0,5.8,12.8,7.1,7.7)
> twot.permutation(control,ancy)
[1] 0.08
> t.test(control,ancy)
t = 1.9939, df = 12.783, p-value = 0.06795
> aerobics=c(38,45,58,64)
> dance=c(48,59,61)
> twot.permutation(aerobics,dance)
[1] 0.572
> t.test(aerobics,dance)
t = -0.6615, df = 4.86, p-value = 0.5384
```

The permutation-test and t-test P-values are similar in both cases. **Remember**: the permutation test *can always be used*, even in small samples with non-normal data.

Ingredients of a two-sided hypothesis test H_0 : $\mu_1=\mu_2$

- Clearly define the population means μ_1 and μ_2 . Choose a significance level α (usually $\alpha = 0.05$).
- State the null hypothesis H_0 : $\mu_1 = \mu_2$ and the alternative hypothesis H_A : $\mu_1 \neq \mu_2$.
- If $n_1 < 30$ or $n_2 < 30$ then check if data are normal using normal probability plots and/or dotplots. If data are approximately normal then do t-test, otherwise do permutation-test (or Mann-Whitney-Wilcoxin test, later...)
- R computes t_s , df, and the P-value from \bar{y}_1 , \bar{y}_2 , s_1 , s_2 , n_1 , and n_2 using the t.test function. For small sample sizes and non-normal data use twot.permutation or wilcox.test.
- All tests give a P-value. Compare P-value to α ; if P-value $< \alpha$ then reject $H_0: \mu_1 = \mu_2$, otherwise accept H_0 .
- State conclusion; e.g. "P-value = $0.068 > 0.05 = \alpha$, accept $H_0: \mu_1 = \mu_2$ at the 5% level. There is no evidence that mean heights are different in control vs. ancy populations."