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Estimating population parameters

Take a random sample of data Y1, . . . ,Yn from the population; ȳ
estimates µ and s estimates σ.
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Example 6.1.1 Butterfly wings

n = 14 male Monarch butterflies were measured for wing area
(Oceano Dunes State Park, California).

ȳ = 32.81 cm2 and s = 2.48 cm2 estimate µ and σ, the mean and
standard deviation of all Monarch butterfly wing areas from
Oceano Dunes.

How good are these estimates? Can we provide a plausible range
for µ?
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6.2 Standard error of Ȳ

Recall on p. 151 that σȲ = σ√
n

.

We will usually not know σ (if we don’t know µ, how can we
know σ?)

Simply plug in s for σ.

The standard error of the mean is

SEȲ =
s√
n
.

For the butterfly wings, SEȲ = s√
n

= 2.48√
14

= 0.66 cm2.

The standard error SEȲ gives the variability of Ȳ ; the
standard deviation s gives the variability in the data itself.
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Example 6.2.2

Geneticist weighs n = 28 female Rambouillet lambs at birth, all
born in April, all single births.

ȳ = 5.17 kg estimates µ, the population mean.

s = 0.65 kg estimates the spread in the sample.

SEȲ = s√
n

= 0.65√
28

= 0.12 kg estimates how variable ȳ is, i.e.

how “close” we can expect ȳ to be to µ.
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Birthweight of n = 28 lambs
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Increasing n sampling from lamb birthweight population
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Example 6.2.4 MOA data using SE ’s across groups

MOA levels vs. schizophrenia diagnosis (I, II, III) and healthy male
and female controls (IV and V).

ȳ ± SE using (a) an interval plot, and (b) a bargraph with
standard error bars. Gets at how variable the sample means are.
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Example 6.2.4 MOA data using s’s across groups

MOA levels vs. schizophrenia diagnosis (I, II, III) and healthy male
and female controls (IV and V).

ȳ ± s using (a) an interval plot, and (b) a bargraph with standard
deviation bars. Gets at how variable the data are.
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Example 6.2.4 MOA data table with all information
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Confidence interval in one minute...

ȳ provides an estimate of µ, but often we’d like a plausible
range for µ.

Theorem 5.2.1 (p. 151) tells us Ȳ is N(µ, σ√
n

). This holds

perfectly when the data Y1, . . . ,Yn are normal, otherwise it’s
approximate.

We can estimate σ√
n

by SEȲ .

The 68/95/99.7 rule says that any normal random variable is
within 2 standard deviations of its mean 95% of the time.

Therefore Ȳ is within 2SEȲ of µ 95% of the time.

Restated µ is within 2SEȲ of Ȳ 95% of the time.

A quick, rough confidence interval for µ is
(Ȳ − 2 SEȲ , Ȳ + 2 SEȲ ).
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Section 6.3 Confidence interval for µ

Confidence interval, known σ, formal derivation

Say we know σ (for now) and the data are normal. Then

Ȳ ∼ N (µ, σȲ ) = N

(
µ,

σ√
n

)
.

We can standardize Ȳ to get

Z =
Ȳ − µ
σ/
√

n
.

We can show Pr{−1.96 ≤ Z ≤ 1.96} = 0.95. Then

0.95 = Pr{−1.96 ≤ Z ≤ 1.96}

= Pr

{
−1.96 ≤

Ȳ − µ
σ/
√

n
≤ 1.96

}
= Pr

{
−1.96

σ
√

n
≤ Ȳ − µ ≤ 1.96

σ
√

n

}
= Pr

{
Ȳ − 1.96

σ
√

n
≤ µ ≤ Ȳ + 1.96

σ
√

n

}
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Confidence interval

Ȳ ± 1.96 σ√
n

is a 95% probability interval for µ.

Once we go out and see Ȳ = ȳ , e.g. ȳ = 32.8 cm2, there is
no probability. Either the interval includes µ or not (more in a
minute...)

We don’t actually know σȲ = σ√
n

, but we do know

SEȲ = s√
n

.

William Sealy Gosset figured out what Ȳ−µ
SEȲ

is distributed as.
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William Sealy Gosset, brewer & statistician

“Mmmmmmmmmm...Guinness.”

The t distribution was published by Gosset in 1908 & related to
quality control at Guinness brewery.
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Estimating σ by s gives a t distribution

Instead of normal, Ȳ−µ
SEȲ

has a Student’s t distribution with

n − 1 degrees of freedom.

The students t distribution looks like a standard normal, but
has fatter tails to account for extra variability in estimating
σȲ = σ√

n
by SEȲ = s√

n
.

However, the confidence interval is computed the same
‘formal’ way, replacing σȲ by SEȲ and using a t distribution
rather than a normal.

R takes care of the details for us! t.test(data) gives a 95% CI
for µ.

For small sample sizes (n < 30, say), data need to be
approximately normal, otherwise the central limit theorem
kicks in.
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Section 6.3 Confidence interval for µ

Two student’s t curves (df=3 & 10), and normal curve

t distributions have slightly fatter tails to account for estimating σ
by s.
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Definition of critical value t0.025

We replace “1.96” (from a normal) by the equivalent t distribution
value, denoted t0.025. Table of these on back inside cover.
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Example 6.3.1 butterfly data

Wing area of n = 14 male Monarch butterly wings at Oceano
Dunes in California.

This is a small sample size (n < 30). We need to check if the data
are normal to trust the confidence interval; the histogram looks
roughly bell-shaped and the normal probability plot looks
reasonably straight.
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Confidence interval in R using t.test

> butterfly=c(33.9,33.0,30.6,36.6,36.5,34.0,36.1,32.0,28.0,32.0,32.2,32.3,32.3,30.0)

> par(mfrow=c(1,2))

> hist(butterfly)

> qqnorm(butterfly)

> t.test(butterfly)

One Sample t-test

data: butterfly

t = 49.6405, df = 13, p-value = 3.292e-16

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

31.39303 34.24983

sample estimates:

mean of x

32.82143

The part we care about right now is just

95 percent confidence interval:

31.39303 34.24983

We are 95% confident that the true population mean wing area is
between 31.4 and 34.2 cm2.
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Other confidence levels

Sometimes people want a 90% CI or a 99% CI. As confidence
goes up, the interval must become wider. To be more
confident that the mean is in the interval, we need to include
more plausible values.

The corresponding multipliers are t0.05, t0.025, and t0.005 for
90%, 95%, and 99% CI’s, respectively. These are in the table
on the inside cover of the back of your book if you construct a
CI by hand.

In R, use t.test(data,conf.level=0.90) for a 90% test CI
t.test(data,conf.level=0.99) for 99% CI.

> t.test(butterfly,conf.level=0.9)

90 percent confidence interval:

31.65052 33.99234

> t.test(butterfly)

95 percent confidence interval:

31.39303 34.24983

> t.test(butterfly,conf.level=0.99)

99 percent confidence interval:

30.82976 34.81309
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Interpretation of CI

The CI Ȳ ± t0.025SEȲ is random until we see Ȳ = ȳ .

Then the CI either covers µ or not, and we don’t know which!

After we compute the observed CI, we talk about
“confidence” not “probability” (bottom, p. 181).

If we did a meta-experiment and collected samples of size n
repeatedly and formed 95% CI’s, approximately 95 in 100
would cover µ.

Increasing n only makes the intervals smaller; still 95% of the
CI’s would cover µ.

However, we only get to see one of these intervals, because we
only take one sample.
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Eggshell thickness n = 5

Meta-experiment for eggshell thickness where µ = 0.38 mm &
σ = 0.03 mm.
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Eggshell thickness n = 20

Meta-experiment for eggshell thickness where µ = 0.38 mm &
σ = 0.03 mm.

23 / 25



Section 6.2 Standard error of Ȳ
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Invisible man walking his dog

A confidence interval is like an invisible man walking his dog.

We can see see the dog (ȳ) one time (one sample) and know that
the dog is within two standard errors of the mean 2SEȲ of the
invisible man µ with 95% probability at any given time. So we’re
pretty confident that the invisible man is within 2SEȲ of the dog.
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Review

A confidence interval provides a plausible range for µ.

Since Ȳ is normal, the 68/95/99.7 rule says µ is within
Ȳ ± 2SEȲ 95% of the time.

This interval is too small; Gosset introduced the t distribution
to make the interval more accurate Ȳ ± t0.025SEȲ ;
t.test(sample) in R takes care of the details.

For n < 30 the data must be normal; check this with normal
probability plot. For n ≥ 30 don’t worry about it.

Interpretation is important. “With 95% confidence the true
mean of population characterstic is between a and b

units .”
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