Sections 5.1 and 5.2

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 205: Elementary Statistics for the Biological and Life Sciences

Sampling variability

- A random sample is exactly that: random.
- You can collect a sample of n observations and compute the mean \$\overline{Y}\$. Before you do it, \$\overline{Y}\$ is random.
- If you you randomly sample a population two different times, taking, e.g. n = 5 each time, the two sample means \bar{Y}_1 and \bar{Y}_2 will be different.
- Example: sampling n = 5 ages from Stat 205.
- Variability among random samples is called **sampling variability**.
- Variability is assessed through a hypothetical "mind experiment" called a **meta-study**.

Study and meta-study

Example 5.1.1 Rat blood pressure

- Study is measuring change in blood pressure in n = 10 rats after giving them a drug, and computing a mean change \bar{Y} from Y_1, \ldots, Y_{10} .
- Meta study (which takes place in our mind) is simply repeating this study over and over again on different samples of n = 10 rats and computing a mean each time \$\overline{Y}_1, \overline{Y}_2, \overline{Y}_3, \ldots\$
- Because the sample is random each time, the means will be different.
- A (hypothetical) histogram of the $\bar{Y}_1, \bar{Y}_2, \bar{Y}_3, \ldots$ would give the **sampling distribution** of \bar{Y} , and smoothed version would give the density of \bar{Y} .
- Restated: the sample mean *from one randomly drawn sample of size n* = 10 has a density.

The density of \bar{Y}

- \overline{Y} estimates $\mu_Y = E(Y_i)$, the mean of all the observations in the population.
- We'll first look at a picture of where the sampling distribution of \bar{Y} comes from.
- Then we'll discuss a Theorem that tells us about the mean $\mu_{\bar{Y}}$, standard deviation $\sigma_{\bar{Y}}$, and shape of the density for \bar{Y} .

Sections 5.1 & 5.2 Sampling distribution for \bar{Y}

Sampling distribution of \bar{Y}

"Meta-experiment..."

Sampling distribution of \bar{Y}

– Theorem 5.2.1: The Sampling Distribution of \overline{Y}

1. Mean The mean of the sampling distribution of \overline{Y} is equal to the population mean. In symbols,

$$\mu_{\overline{Y}} = \mu$$

2. Standard deviation The standard deviation of the sampling distribution of \overline{Y} is equal to the population standard deviation divided by the square root of the sample size. In symbols,

$$\sigma_{\overline{Y}} = \frac{\sigma}{\sqrt{n}}$$

- 3. Shape
 - (a) If the population distribution of Y is normal, then the sampling distribution of \overline{Y} is normal, regardless of the sample size *n*.
 - (b) Central Limit Theorem If n is large, then the sampling distribution of \overline{Y} is approximately normal, even if the population distribution of Y is not normal.

Sampling distribution of \overline{Y} from normal data

If data Y_1, Y_2, \ldots, Y_n are normal, then \overline{Y} is *also normal*, centered at the same place as the data, but with smaller spread.

(a) population distribution of normal data Y_1, \ldots, Y_n , and (b) sampling distribution of \overline{Y} .

Example 5.2.2 Seed weights

- The population of weights of the princess bean is *normal* with $\mu = 500 \text{ mg}$ and $\sigma = 120 \text{ mg}$. We intend to take a samplle of n = 4 seeds and compute the (random!) sample mean \overline{Y} .
- E(Y
 ^γ) = μ_Ȳ = μ = 500 mg. On average, the sample mean gets it right.
- $\sigma_{\bar{Y}} = \frac{\sigma}{\sqrt{n}} = \frac{120}{\sqrt{4}} = 60$ mg. 68% of the time, \bar{Y} will be within 60 mg of $\mu = 120$ mg.

Sampling distribution for \overline{Y} for Example 5.2.2

 $\mu_{\bar{Y}} = 500 \text{ mg}$ and $\sigma_{\bar{Y}} = 60 \text{ mg}$.

$\Pr{\{\bar{Y} > 550\}}$ for n = 4

Recall for n = 4 that $\mu_{\bar{Y}} = 500$ mg and $\sigma_{\bar{Y}} = 60$ mg.

> 1-pnorm(550,500,60) [1] 0.2023284

What happens when n is increased?

- As *n* gets bigger, $\sigma_{\bar{Y}} = \frac{\sigma}{\sqrt{n}}$ gets smaller. The density of \bar{Y} gets more focused around μ .
- If Y_1, \ldots, Y_n come from a normal density, then so does \overline{Y} , regardless of the sample size.
- Even if Y₁,..., Y_n do not come from a normal density, the Central Limit Theorem guarantees that the density of \$\vec{Y}\$ will look more and more like a normal distribution as n gets bigger.
- This is in Section 5.3; have a look if you're interested.

Sections 5.1 & 5.2 Sampling distribution for \bar{Y}

Sampling dist'n for \overline{Y} from different sample sizes n

