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Sampling variability

A random sample is exactly that: random.

You can collect a sample of n observations and compute the
mean Ȳ . Before you do it, Ȳ is random.

If you you randomly sample a population two different times,
taking, e.g. n = 5 each time, the two sample means Ȳ1 and
Ȳ2 will be different.

Example: sampling n = 5 ages from Stat 205.

Variability among random samples is called sampling
variability.

Variability is assessed through a hypothetical “mind
experiment” called a meta-study.
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Study and meta-study
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Example 5.1.1 Rat blood pressure

Study is measuring change in blood pressure in n = 10 rats
after giving them a drug, and computing a mean change Ȳ
from Y1, . . . ,Y10.

Meta study (which takes place in our mind) is simply
repeating this study over and over again on different samples
of n = 10 rats and computing a mean each time
Ȳ1, Ȳ2, Ȳ3, . . .

Because the sample is random each time, the means will be
different.

A (hypothetical) histogram of the Ȳ1, Ȳ2, Ȳ3, . . . would give
the sampling distribution of Ȳ , and smoothed version would
give the density of Ȳ .

Restated: the sample mean from one randomly drawn sample
of size n = 10 has a density.
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The density of Ȳ

Ȳ estimates µY = E (Yi ), the mean of all the observations in
the population.

We’ll first look at a picture of where the sampling
distribution of Ȳ comes from.

Then we’ll discuss a Theorem that tells us about the mean
µȲ , standard deviation σȲ , and shape of the density for Ȳ .
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Sampling distribution of Ȳ

“Meta-experiment...”
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Sampling distribution of Ȳ
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Sampling distribution of Ȳ from normal data

If data Y1,Y2, . . . ,Yn are normal, then Ȳ is also normal, centered
at the same place as the data, but with smaller spread.

(a) population distribution of normal data Y1, . . . ,Yn, and (b)
sampling distribution of Ȳ .
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Example 5.2.2 Seed weights

The population of weights of the princess bean is normal with
µ = 500 mg and σ = 120 mg. We intend to take a samplle of
n = 4 seeds and compute the (random!) sample mean Ȳ .

E (Ȳ ) = µȲ = µ = 500 mg. On average, the sample mean
gets it right.

σȲ = σ√
n

= 120√
4

= 60 mg. 68% of the time, Ȳ will be within

60 mg of µ = 120 mg.
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Sampling distribution for Ȳ for Example 5.2.2

µȲ = 500 mg and σȲ = 60 mg.
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Pr{Ȳ > 550} for n = 4

Recall for n = 4 that µȲ = 500 mg and σȲ = 60 mg.

> 1-pnorm(550,500,60)

[1] 0.2023284
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What happens when n is increased?

As n gets bigger, σȲ = σ√
n

gets smaller. The density of Ȳ

gets more focused around µ .

If Y1, . . . ,Yn come from a normal density, then so does Ȳ ,
regardless of the sample size.

Even if Y1, . . . ,Yn do not come from a normal density, the
Central Limit Theorem guarantees that the density of Ȳ will
look more and more like a normal distribution as n gets bigger.

This is in Section 5.3; have a look if you’re interested.
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Sampling dist’n for Ȳ from different sample sizes n
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