4.3.3

Let $\mathrm{Y} \sim \mathrm{N}(1400,100)$ be the weight (gm) of a randomly selected Swedish male's brain.
R code:
> pnorm(1200,1400,100)
[1] 0.02275013
$>\operatorname{pnorm}(1325,1400,100)$
[1] 0.2266274
$>$ pnorm $(1475,1400,100)$
[1] 0.7733726
> pnorm $(1500,1400,100)$
[1] 0.8413447
> pnorm $(1600,1400,100)$
[1] 0.9772499
(a) $\operatorname{Pr}\{Y \leq 1500\}=0.841$
(b) $\operatorname{Pr}\{1325 \leq Y \leq 1500\}=0.841-0.227=0.614$
(c) $\operatorname{Pr}\{Y \geq 1325\}=1-0.227=0.773$
(d) $\operatorname{Pr}\{Y \geq 1475\}=1-0.773=0.227$
(e) $\operatorname{Pr}\{1475 \leq \mathrm{Y} \leq 1600\}=0.977-0.773=0.204$
(f) $\operatorname{Pr}\{1200 \leq \mathrm{Y} \leq 1325\}=0.227-0.023=0.204$

4.3.8

Let $\mathrm{Y} \sim \mathrm{N}(88,7)$ be the yield (lb) of wheat from a randomly selected plot.
The $65^{\text {th }}$ percentile for wheat is given in R by
> qnorm $(0.65,88,7)$
[1] 90.69724
The $35^{\text {th }}$ percentile is given in R by
$>$ qnorm($0.35,88,7$)
[1] 85.30276
That is, $\operatorname{Pr}\{\mathrm{Y}<90.7\}=0.65$ and $\operatorname{Pr}\{\mathrm{Y}<85.3\}=0.35$.
4.4.2

The plots on the lower half of p. 137 help a lot. Histogram I is skewed right, and so will have plot (a). II looks "normal" and so will have plot (c). III is skewed left and so will have plot (b).

