12.2 .7

```
> # Exercise 12.2.7
> mass=c(49.3,59.3,68.3,48.1,57.6,78.1,76.1)
> energy=c(1894,2050,2353,1838,1948,2528,2568)
> cor.test(mass,energy)
Pearson's product-moment correlation
data: mass and energy
t = 11.427, df = 5, p-value = 8.988e-05
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
    0.8749612 0.9973570
sample estimates:
    cor
0.9813868
```

(a) Since p-value=0.00009<0.05=alpha we reject H0: rho=0 at the 5\% level.
(b) Observational study. In an experiment the researchers would somehow fix mass.
(c) One can only show association between the two variables; energy expenditure might increase, but it is not clear that one causes the other.

12.3 .5

```
> fit=lm(energy~mass)
> plot(mass,energy)
> abline(fit)
> summary(fit)
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 607.703 138.765 4.379 0.00716 **
mass 25.012 2.189 11.427 8.99e-05 ***
---
Signif. codes: 0 '***' 0.001 `**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 64.85 on 5 degrees of freedom
Multiple R-squared: 0.9631, Adjusted R-squared: 0.9557
```


(a) The fitted line is energy $=607.7+25.0$ (mass).
(b) The line fits quite well.
(c) For every kg increase in mass, energy typically goes up 25.0 kcal.
(d) s_e is given by R, it's 64.85 kcal.

12.4 .6

$607.7+25(55)=1983 \mathrm{kcal}$.

12.5 .5

> confint(fit)

$$
2.5 \% \quad 97.5 \%
$$

(Intercept) 250.99778964 .40909
mass $19.38506 \quad 30.63818$
> confint(fit,level=0.9)
$5 \% \quad 95 \%$
(Intercept) 328.08614887 .32073
mass 20.6010329 .42221

A 95\% CI for betal is (19.3, 30.6). For every kg increase in mass, energy expenditure typically goes up by as little as 20 kcal to as much as 29 kcal (with 95\% confidence).

A 90\% CI for betal is (20.6, 29.4).

