- 1. For "well-behaved" data sets the empirical rule says that certain percentages of observations are within 1, 2, and 3 standard deviations of the mean. These percentages are
  - (a) 65%, 95%, and 99%.
  - (b) 68%, 90%, and 99%
- 2. Which of the following is correct?
  - (a) The mean is pulled further in the direction of skew than the median.
  - (b) The median is pulled further in the direction of skew than the mean.
- (c) 68%, 95%, and >99%.
- (d) None of the above.
- (c) The median is always larger than the third quartile.
- (d) The mean is a good measure of center for highly skewed data sets.

(c) This data set does not have outliers.

(d) 3, 7, and 10 are all outliers.

- 3. The five number summary for a data set is 3, 7, 8, 9, 10. That is, min = 3,  $Q_1 = 7$ ,  $\tilde{y} = 8$ ,  $Q_3 = 9$ , and max = 10. Which of the following is true?
  - (a) 3 and 10 are both outliers.
  - (b) 3 is an outlier.
- 4. The U.S. Office of Management and Budget collects data on race, which falls into one of five categories: White, Black or African American, American Indian or Alaska Native, Asian, and Native Hawaiian or Other Pacific Islander. Race is an example of what kind of variable?
  - (a) numeric discrete. (c) categorical ordinal. (d) cateogrical nominal. (b) numeric continuous.
- 5. Data on the number of major seizures suffered by n = 20 epilepsy patients over eight weeks are sorted from smallest to largest.

0 0 0 0 0 0 0 0 0 0 0 1 4 5 5 5 6 6 7 7 9.

Which of the following is correct?

(a) 
$$\bar{y} = 2.75$$
 and  $\tilde{y} = 0.5$ 

- (b) These data are skewed to the left.
- 6. A simple random sample is a sample where
  - (a) the mean is pulled larger than the median.
    - (b) each experimental unit is chosen in prespecified
- (c) The most common outcome was zero seizures. (d) Both (a) and (c) are correct.
- (c) we can expect bimodality.
- (d) each experimental unit has the same probability of being chosen.
- 7. A group of college students were surveyed to learn how many times they had visited a denstist in the previous year. Let Y be the number of dentist visits in a year for a randomly selected student; the study found  $Pr{Y =$ 0 = 0.15,  $Pr{Y = 1}$  = 0.50, and  $Pr{Y = 2}$  = 0.35. The mean of Y is
  - (a)  $\mu_Y = 1$  visit.
  - (b)  $\mu_Y = 0.33$  visit.
- 8. Which of the following is correct?
  - (a) A normal random variable is continuous.
  - (b) A binomial random variable is discrete.
- (c) For  $Y \sim bin(n, p), \mu_Y = np$ .
- (d) All of these are correct.

(c)  $\mu_Y = 2$  visits.

(d)  $\mu_{Y} = 1.2$  visits.

- proportions according to gender, race, etc.

The following table cross-classifies 6549 subjects living in Massachusetts according to health risk (stressed or not stressed) and income (low, medium, or high). Use this table to answer the next seven questions.

|              | Income |        |      |       |
|--------------|--------|--------|------|-------|
| Stress level | Low    | Medium | High | Total |
| Stressed     | 526    | 274    | 216  | 1016  |
| Not Stressed | 1954   | 1680   | 1899 | 5533  |
| Total        | 2480   | 1954   | 2115 | 6549  |

9. What is the probability that someone in this study is stressed?

| (a) | 0.298. | (c) | 0.102. |
|-----|--------|-----|--------|
| (b) | 0.925. | (d) | 0.155. |

10. Given that someone has high income, what is the probability that they are stressed, i.e. Pr{stressed|high income}?

| (a) | 0.298. | (c) | 0.102. |
|-----|--------|-----|--------|
| (b) | 0.925. | (d) | 0.155. |

11. Is income level independent of being stressed?

| (a) Yes. | (c) Cannot tell from the table. |
|----------|---------------------------------|
| (b) No.  | (d) Both (a) and (b).           |

12. What is the probability of someone having low income or being not stressed?

| (a) | 0.298. | (c) | 0.102. |
|-----|--------|-----|--------|
| (b) | 0.925. | (d) | 0.155. |

13. What is the probability of someone having low income and being not stressed?

| (a) | 0.298. | (c) | 0.102. |
|-----|--------|-----|--------|
| (b) | 0.925. | (d) | 0.155. |

14. Given that someone is not stressed, what is the probability that they have high income?

| (a) | 0.323. | (c) 0.343. |
|-----|--------|------------|
| (b) | 0.213. | (d) 0.845. |

15. In this study, income is what type of variable?

| (a) numeric discrete.   | (c) categorical ordinal. |
|-------------------------|--------------------------|
| (b) numeric continuous. | (d) cateogrical nominal  |

An experiment was carried out to see how long it takes toddlers aged 2–3 years to knock over a pile of blocks (in seconds). Use the boxplot for this data set, below, to answer the next five questions.



16. The interquartile range for these data is

- (a) 35 seconds.
- (b) 45 seconds.
- 17. 75% of the observations are less than
  - (a) 35 seconds.
  - (b) 45 seconds.
- 18. 75% of the observations are greater than
  - (a) 0 seconds.
  - (b) 10 seconds.
- 19. The upper fence for these data is
  - (a) 45 seconds.
  - (b) 25 seconds.
- 20. Which of the following is true?
  - (a) There was at least one child who knocked the blocks over immediately.
  - (b) There was at least one child who took over a minute to knock over the blocks.

## (c) 25 seconds.

- (d) not computable from the boxplot.
- (c) 25 seconds.
- (d) not computable from the boxplot.
- (c) 30 seconds.
- (d) not computable from the boxplot.
- (c) -27.5 seconds.

## (d) 72.5 seconds.

- (c) The children typically took 10 seconds to knock over the blocks.
- (d) None of these are correct.

The brain weights of a population of adult Swedish males is normal with mean 1400 gm and standard deviation 100 gm. Use the following R code to answer the next three questions.

```
> pnorm(1325,1400,100)
[1] 0.2266274
> pnorm(1475,1400,100)
[1] 0.7733726
> qnorm(0.1,1400,100)
[1] 1271.845
> qnorm(0.9,1400,100)
[1] 1528.155
```

21. What proportion of brain weights are greater than 1325 grams?

| (a) | 0.227. | (c) | 0.546.    |
|-----|--------|-----|-----------|
| (b) | 0.773. | (d) | 1271.8 gm |

22. What proportion of brain weights are between 1325 and 1475 grams?

| (a) 0.227.                                | (c) 0.546.     |
|-------------------------------------------|----------------|
| (b) 0.773.                                | (d) 1271.8 gm. |
|                                           |                |
| 23. 10% of brain weights are greater than |                |

| (a) | 0.462. | (c) | 1271.8 grams. |
|-----|--------|-----|---------------|
| (b) | 0.125. | (d) | 1528.2 grams. |

Bell (2007) notes that the percentage of eggs cracked after sizing and packing is 1.2% in a certain population, or p = 0.012. Say you buy a dozen eggs, n = 12 and let Y count the number of eggs (out of 12) that are cracked. Use the following R code to answer the next four questions.

> dbinom(0,12,0.012)
[1] 0.8651339
> dbinom(1,12,0.012)
[1] 0.1260924
> dbinom(2,12,0.012)
[1] 0.008423176

24. What is the probability that no eggs are cracked,  $Pr{Y = 0}$ ?

| (a) 0.865. | (c) 0.008. |
|------------|------------|
| (b) 0.126. | (d) 0.135. |

25. What is the probability that *at least* one egg is cracked?

| (a) | 0.865. | (c) | 0.008. |
|-----|--------|-----|--------|
| (b) | 0.126. | (d) | 0.135. |

26. The mean number of cracked eggs  $\mu_Y$  is

| (a) ( | ).144 egg. | (c) | 6 eggs.            |
|-------|------------|-----|--------------------|
| (b) 1 | l egg.     | (d) | none of the above. |

- 27. *Y* is an example of a
  - (a) normal random variable.

(b) geometric random variable.

- (c) Poisson random variable.
- (d) binomial random variable.