1) If a fair die is rolled five times and the outcomes are 44444 , then the probability that 4 appears on the next roll is:
B) $1 / 6=16.67 \%$
2) The "Departed" was given 3 to 2 odds against winning the best picture Academy Award. This means the estimated probability of it winning was:
B) $2 / 5=40 \%$
3) The probability distribution of for the color of M\&M's in a standard bag is:

Color:	Brown	Red	Yellow	Green	Orange	Blue
Probability:	0.13	0.13	0.14	0.16	0.20	$?$

To make this a valid distribution, the probability of a blue M\&M must be:
D) 0.24

Questions 4-6 are based on the following questions: 70% of students in a class are from in-state and 60% of students in a class are female. 45% of the student in a class are females from in-state.
4) What percent of students are from out-of state?
B) 30%
5) What percent of students are in-state but not female?
A) 25%
6) What percent of students are either in-state or female?
E) 85%

Questions 7-9 are based on the following set-up. The probability that the first dart thrown hits bullseye is 20%. If the first is a hit, the probability the second is a hit is 50%. If the first is a miss, the probability the second is a hit is 25%.
7) What is the probability that both darts hit the bullseye?
B) 10%
8) What is the probability that at least one dart hits the bullseye?
D) 40%
9) Getting a bullseye on the first toss and getting a bullseye on the second toss are:
D) Neither of the above
10) Consider a game where there is a 1% chance of winning $\$ 100$, a 50% chance of winning $\$ 1$, and a 49% chance of winning nothing. What amount do you expect to win with a ticket?
C) $\$ 1.50$
11) A psychological exam's scores are approximately normally distributed with mean 20 and standard deviation 2. About what percent of the population should have scores between 20 and 24 ?
D) 47.5%

Questions 12-16 are based on the following set-up. A candidate needs more than 30% of the vote to force a run-off election. A random sample of 400 likely voters is selected to see if there is significant evidence that they can force a run-off. Of the sample, 123 favor the candidate.
12) The observed proportion favoring the candidate is:
D) $123 / 400=0.3075=30.75 \%$
13) If the true percentage supporting the candidate is 30%, then the standard deviation of \hat{p} is:
A) $\sqrt{\frac{0.3(1-0.3)}{400}} \approx 0.023=2.3 \%$
14) What null hypothesis should the candidate be testing?
B) $\mathrm{p}=0.3$
15) What alternate hypothesis should the candidate be testing?
E) $p>0.3$
16) This hypothesis test results in a p-value of 0.3925 . If $\alpha=0.05$, the candidate should:
B) Conclude there is not enough evidence to reject the null hypotheses
17) If H_{0} is the mean $=5$ and H_{A} is the mean <5, then rejecting H_{0} means that:
B) We conclude the mean is less than 5

