STAT 110 - Exam 3 - Seventeen Extra Practice Questions

1) If a fair die is rolled five times and the outcomes are 44444, then the probability that 4 appears on the next roll is:

A) $0 = 0\%$	D) 5/6 = 83.33%
B) 1/6 = 16.67%	E) 1 = 100%
(2) 1/2 50.00/	

C) 1/2 = 50.0%

2) The "Departed" was given 3 to 2 odds against winning the best picture Academy Award. This means the estimated probability of it winning was:

A) 1/3 = 33.3%	D) $3/5 = 60\%$
B) $2/5 = 40\%$	E) $2/3 = 66.7\%$
C) $1/2 = 50\%$	

3) The probab Color:	ality distribution	n of for the c Red	volor of M&M' Yellow	s in a standard bag Green	g 1s: Orange	Blue
Probability:	0.13	0.13	0.14	0.16	0.20	?
To make this a	valid distributi	on, the prob	ability of a blue	M&M must be:		
A) 0.04				D)	0.24	
B) 0.12				E)	1.00	
C) 0.14						

Questions 4-6 are based on the following questions: 70% of students in a class are from in-state and 60% of students in a class are female. 45% of the student in a class are females from in-state.

4) What percent of students are from out-of state?	
A) 25%	D) 42%
B) 30%	E) 85%
C) 35%	
5) What percent of students are in-state but not female?	
A) 25%	D) 42%
B) 30%	E) 85%
C) 35%	
6) What percent of students are either in-state or female?	
A) 25%	D) 42%
B) 30%	E) 85%
C) 35%	

Questions 7-9 are based on the following set-up. The probability that the first dart thrown hits bullseye is 20%. If the first is a hit, the probability the second is a hit is 50%. If the first is a miss, the probability the second is a hit is 25%.

7) What is the probability that both darts hit the bullseye?		
A) 1%	D)	40%
B) 10%	E)	70%
C) 15%		
8) What is the probability that at least one dart hits the bullseye?		
A) 1%	D)	40%
B) 10%	E)	70%
C) 15%	,	
,		

9) Getting a bullseye on the first toss and getting a bullseye on the second toss:

A) Are independent

B) Cannot both happen

D) Neither of the above

E) Can't tell from what is given

C) Both of the above

10) Consider a game where there is a 1% chance of winning \$100, a	50% chance of winning \$1, and a 49% chance of winning
nothing. What amount do you expect to win with a ticket?	
A) \$0.50	D) \$101
B) \$1.00	E) \$150
C) \$1.50	

11) A psychological exam's scores are approximately normally distributed with mean 20 and standard deviation 2. About what percent of the population should have scores between 20 and 24?

A)	2.5%	D) 47.5%
B)	16%	E) 95%
\mathbf{a}	2001	

C) 32%

Questions 12-16 are based on the following set-up. A candidate needs more than 30% of the vote to force a run-off election. A random sample of 400 likely voters is selected to see if there is significant evidence that they can force a run-off. Of the sample, 123 favor the candidate.

12) The observed proportion favoring the candidate is:

400

A)
$$\sqrt{\frac{0.3(1-0.3)}{400}} \approx 0.023 = 2.3\%$$

B) $\sqrt{\frac{0.3075(1-0.3075)}{400}} \approx 0.023 = 2.3\%$
C) $0.3 = 30\%$
D) $123/400 = 0.3075 = 30.75\%$
E) $(400-123)/400 = 0.6925 = 69.25\%$

13) If the true percentage supporting the candidate is 30%, then the standard deviation of \hat{p} is:

A)
$$\sqrt{\frac{0.3(1-0.3)}{400}} \approx 0.023 = 2.3\%$$

 $\sqrt{0.3 = 30\%}$
D) $123/400 = 0.3075 = 30.75\%$
E) $(400-123)/400 = 0.6925 = 69.25\%$

B)
$$\sqrt{\frac{0.3075(1-0.3075)}{400}} \approx 0.023 = 2.3\%$$

14) What null hypothesis should the candidate be testing?

14) what num hypothesis should the candidate be testing:	
A) $\hat{p} < 0.3$	D) p=0.3075
B) p=0.3	E) $p > 0.3$
C) $\hat{p} = 0.3075$	

15) What alternate hypothesis should the candidate be testing?	
A) $\hat{p} < 0.3$	D) p=0.3075
B) p=0.3	E) $p > 0.3$

- C) $\hat{p} = 0.3075$
- 16) This hypothesis test results in a p-value of 0.3925. If α =0.05, the candidate should:
- A) Conclude there is not enough evidence to reject the alternate hypothesis
- B) Conclude there is not enough evidence to reject the null hypotheses
- C) Reject the alternate hypothesis
- D) Reject the null hypothesis

17) If H_0 is the mean=5 and H_A is the mean < 5, then rejecting H_0 means that:

- A) We conclude the mean is 5
- B) We conclude the mean is less than 5
- C) We don't have enough evidence to conclude the mean is 5
- D) We don't have enough evidence to conclude that the mean is less than 5