Question number is for forms $\mathrm{a} / \mathrm{b} / \mathrm{c}$ in that order
Answer choice is for forms $\mathrm{a} / \mathrm{b} / \mathrm{c}$ in that order
1/1/2) A psychologist says that scores on one test for "authoritarian personality" can't be trusted because the test counts having any religious beliefs as authoritarian. The psychologist is attacking the test's:
b/a/b) Validity
2/2/3) A psychologist says that scores on a second test for "authoritarian personality" can't be trusted because the same person scores very differently every time they take the test. The psychologist is attacking the test's:
a/b/a) Reliability
$3 / 3 / 1$) Adding more questions to an exam generally makes the final score have less random error. This would make the test be:

c/d/c) More Reliable

4/4/4) A student is making a pictogram where the population of each state is represented by a square. If the population of Iowa (approximately 3 million) is represented by a 1 centimeter x 1 centimeter square, then how big should the square representing Illinois (approximately 12 million) be?

$$
\mathrm{c} / \mathrm{a} / \mathrm{c}) 2 \mathrm{~cm} \times 2 \mathrm{~cm}
$$

Questions 5-7 concerns the following distribution of educational attainment among people age 30 to 34 in the United States. The data was coded in a spread-sheet so that educational level $1=$ "Less than a high school diploma", 2 = "High School Graduate", 3 = "Some College", 4 = "Bachelor’s Degree", and 5 = "Advanced Degree".

Educational Level	Column A	Column B
1	2.554 million	12.4
2	5.942 million	29.0
3	5.559 million	27.1
4	4.589 million	22.4
5	1.878 million	9.2
Total	20.521 million	100.0

5/5/9) Column B is the:
c/d/c) Relative Frequency

6/6/10) The third bar in the bar graph to the right corresponds to an educational level of:
d/d/d) 4
7/7/11) The educational level used in this data set is:

a/a/a) Categorical

Questions 8-10 refer to the stem plot to the right.
8/8/12) The largest observation is:
d/d/d) 7.9
9/9/13) This data set is:
c/d/c) Skewed Right

```
00000000000000111111111111122223344444444
    55555566667777788889999
    0000111123344
    5677788899
    0000111234
    556677899
    00011344
    6777888
    07778
    56668
    0111234
    557
002
1
```

10/10/14) The best measures of center and spread for this distribution are the:
d/b/d) Median and IQR
Questions 11 and 12 refer to the histogram to the right:
11/11/15) This data set is: c/d/c) Skewed Right
$12 / 12 / 16$) The median of this data set is: $\mathrm{c} / \mathrm{a} / \mathrm{c}$) Less than the mean

Questions 13-15 use the side-by-side boxplots shown below:
$13 / 13 / 5$) Which of the variables has the largest median? c/c/c) Z

14/14/6) Which of the variables has the largest inter-quartile range (IQR)?

b/b/b) Y
$15 / 15 / 7$) Which of the variables is skewed left?
c/c/c) Z
$16 / 16 / 8$) A data set has $\mathrm{Q}_{1}=3$, Median=15, and $\mathrm{Q}_{3}=17$. How large would an observation need to be considered an outlier?
c/c/c) 38

Questions 17-19 are based on the data set: $\begin{array}{lllllll}12 & 8 & 9 & 2 & 5\end{array}$
17/17/19) The mean is:
b/b/b) 7.2
$18 / 18 / 17$) The median is:
d/d/d) 8.0
$19 / 19 / 18$) The first quartile $\left(\mathrm{Q}_{1}\right)$ is:
b/b/b) 3.5
20/20/20) Most of the houses in a large neighborhood have very similar prices. However there are one or two very expensive ones, and one or two very inexpensive ones.
$\mathrm{a} / \mathrm{c} / \mathrm{a}$) The IQR would be small and the standard deviation would be large

Questions 21-22 refer to the density curve to the right.
$21 / 21 / 21$) The area under the density curve that is shaded in is approximately:
b/b/b) $0.15=15 \%$
22) This density curve is:
a/c/a) Skewed Left

Questions 23-24 refer to the normal distribution plotted below.

23/23/23) The mean of the above normal distribution is:
d/d/d) 13
24/24/24) The standard deviation of the above normal distribution is:
b/b/b) 2
25/25/25) The heights of American women are approximately normal with a mean of 65 inches and a standard deviation of 2.5 inches. Approximately what percentage of women are between 60 inches and 65 inches?
d/d/d) 47.5\%

