
\qquad
\qquad
\qquad

Today

- Practice Problems
- Introducing Bayesian Statistics
\qquad

Chapter 8:

1) It can be shown (pg. 376) that the variance of the sample median of a continuous random variable with
\qquad median γ is approximately $1 / 4 n f^{2}(\gamma)$. The variance of the sample mean on
\qquad the other hand is always σ^{2} / n.
a) Consider trying to estimate the center \qquad of a normal distribution with mean μ and variance σ^{2}. What is the \qquad efficiency of the mean relative to the median?

STAT 703//703 B.Habing Univ. of SC
\qquad
\qquad
b) What condition must a distribution satisfy for the median to be more efficient than the mean for estimating the center?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2a) Show that the gamma distribution \qquad is an exponential family.
b) Find the sufficient statistic for (α, β) for a gamma distribution.
\qquad

Chapter 10: The given code estimates the F distribution using MoM , the gamma using both MoM and MLE, and the log-normal by transforming to a normal and using the standard estimates. It then \qquad calculates the Kolmogorov-Smirnov test statistic and p-value \qquad
\qquad

STAT 703/J703 B.Habing Univ. of SC \qquad

1) Imagine that we just used the part of the code for the MoM estimator for the gamma and its test. Why isn't the p-value testing the null
\qquad hypothesis "the distribution of the data is gamma"? \qquad
\qquad
\qquad

> whichdist (x)	par1	par2	D	pval
f distribution	0.100	0.100	0.482	0.000
gamma (moments)	3.039	4.984	0.024	0.611
gamma (mle)	3.095	5.075	0.021	0.753
lognormal	-0.665	0.613	0.055	0.005

2) What is with looking at the four tests here and concluding "we accept the null hypothesis that the data comes from an
\qquad gamma distribution with parameters 3.095 and 5.075 with a p-value of 0.753."

STAT 703//703 B.Habing Univ. of SC
3) If you try this with an F distribution, say using $x<-r f(1000,3,5)$, several times you will find that the F doesn't always seem to work well. On one run I got:
> whichdist(x) par1 par2 D pval
f distribution 4.0405 .5940 .0490 .017
gamma (moments) 0.4220 .2710 .2160 .000
gamma (mle) 0.9720 .6240 .0550 .005
lognormal -0.154 1.176 0.047 0.023
Any idea what could be going on with the part that checks the F? (Yes, the formula for the MoM estimator is correct).

STAT 703//703 B.Habing Univ. of SC \qquad
4) For a sample of size 5 I got that \qquad all 4 distributions were accepted! What is going on here?
> whichdist(x)
par1 par2 D pval
f distribution 17.1285 .7570 .3730 .123
gamma (moments) 0.8000 .5220 .1750 .919
gamma (mle) 0.6070 .3960 .1250 .998
lognormal -0.590 1.809 0.154 0.971
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
5) If the sample size is really huge
\qquad and you are using it on real data, why does it make sense to simply ignore the p-values and take the \qquad one with the smallest D ?
\qquad

Concepts for Bayes...

1) A player recently promoted to the major leagues has had 1 hit in his \qquad first 25 at bats. What do you estimate his batting average to be? (Batting average $=\%$ of times a hit \qquad is gotten in an at bat).
\qquad
\qquad
2) Consider your answer in 1. You \qquad are then told that the batting averages of professional major league players has a mean of around 0.266 and a standard deviation of around 0.026. What do you think about your estimate in 1 now?
3) Bayes Rule can be written \qquad

$$
f(\theta \mid x)=\frac{f(x \mid \theta) g(\theta)}{\int f(x \mid \theta) g(\theta) d \theta}
$$

Imagine that we knew $f(x \mid \theta)$ and $g(\theta)$ and wanted to find the maximum likelihood estimate of $f(\theta \mid x)$. Why can we just find the value of θ that maximizes $f x \mid \theta) g(\theta)$ and not have to worry about the integral in the
\qquad bottom? \qquad
\qquad
\qquad
\qquad
\qquad

