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STAT 703/J703 
April 7th, 2005

-Lecture 24-

Instructor:  Brian Habing
Department of Statistics

LeConte 203
Telephone:  803-777-3578
E-mail: habing@stat.sc.edu
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Today

Methods Based on the CDF cont…
• The Nonparametric Bootstrap
• Relation to Survival Functions

Remembering Bayes Theorem
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The empirical distribution function (or 
empirical cumulative distribution 
function) is defined as:
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Notes:
• supx|Fn(x ) → F(x )| → 0 as   n→∞
• For each x, Fn(x ) is binomial with 

mean F(x ) and variance            
(F(x )(1- F(x ) )/n
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Nonparametric Bootstrap

We previously examined the 
parametric bootstrap for the case 
when we assumed the data came 
from some distribution F (θ) with 
unknown parameter θ. 
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Estimating θ, we then generated 
“bootstrap samples” from the 
distribution         .   The statistic        
is then calculated for each sample.

We then use the analogy that the 
sampling distribution of      is to θ
sampling distribution of      is to    . 
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The nonparametric bootstrap uses 
the same basic analogy… except 
that we don’t have a specific 
distribution in mind for F.  

Because of this we the parameter θ
that we are focusing on is usually 
something like the mean, variance, 
or median that is “universally 
defined.”
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Example:  Estimate the variance and 
bias of the sample standard 
deviation s for the sample:

3.95  3.79  3.75  2.71  5.52
6.12  1.74  6.05  3.92  5.69

Generated using x<-10*rbeta(10,3,4) 
so the population has mean 
30/7≈4.29 and  variance         
150/49 ≈3.06 (sd ≈ 1.75).
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sdboot<-function(x,nboots=10000){
sampsize<-length(x)
bootsamps<-
matrix(sample(x,sampsize*nboots, 
replace=T),ncol=sampsize)

bootstats<-apply(bootsamps,1,sd)
est.bias<-mean(bootstats)-sd(x)
est.se<-sd(bootstats)
c(est.bias,est.se)
}
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How well does it work?
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When can it have trouble?

• Small sample sizes (but doesn’t 
everything?)

• Statistic is not smooth
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Section 10.2,2: Survival Functions
Let T=the survival time
S(t )=P(T>t )=1-F(t)
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Hazard Function: The probability that 
an individual alive at time t will die 
in the time interval (t, t + ε)
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For next time… Recall the
Law of Total Probability:
Let B1, B2, …, Bn be disjoint and

exhaustive so that  ∪i=1 to n Bi = Ω,  
Bi∩Bj = ⌽ for i≠j.  

Then for any A, 
P(A) = P(A|B1) P(B1) + P(A|B2) P(B2) + 

… + P(A|Bn) P(Bn).
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Bayes’ Rule:  Let B1,…, Bn be disjoint and 
exhaustive (∪Bi=Ω).  Let A be any 
event.  For any j=1, …, n

P(Bj|A)= P(A|Bj) P(Bj)
P(A|B1) P(B1) +…+P(A|Bn) P(Bn)


