

LeConte 203 Telephone: 803-777-3578 E-mail: habing@stat.sc.edu

STAT 703/J703 B.Habing Univ. of SC

<u>Theorem A pg.310</u>: Under smoothness conditions on the pdf, the <u>null distribution</u> of $-2ln\Lambda$ has an approximate chi-square distribution with d.f.=dim Ω -dim ω_0 for large n.

STAT 703/J703 B.Habing Univ. of SC

STAT 703/J703 B.Habing Univ. of SC

Example:Consider a data set that
could have come from a binomial
distribution with n=5, but may also
have come from a hypergeometric
or some other distribution.X012345#obs921161040Test H₀: X is binomial vs. H_A: it isn't

9.4 The Duality of Confidence Intervals and Hypothesis Tests

There is a duality between confidence intervals and hypothesis tests. A confidence interval is found by "inverting" a two-sided test (and vice-versa).

8

STAT 703/J703 B.Habing Univ. of SC

<u>Theorem A, pg. 307:</u> Suppose there is a test of level α for H₀: $\theta = \theta_0$, and let A(θ_0)=acceptance region

Then the set C={ θ : $\underline{X} \in A(\theta)$ } is a 100(1- α)% confidence region for θ .

<u>Theorem B, pg. 307:</u> Let $C(\underline{X})$ be a 100(1- α)% confidence region for θ_{0} .

Then A(θ_0)={X: $\theta_0 \in C(X)$ } is an acceptance region for a test of level α for H₀: θ = θ_0

10

11

STAT 703/J703 B.Habing Univ. of SC

Example cont.: Consider the random sample from a normal distribution with unknown mean and unknown variance.

STAT 703/J703 B.Habing Univ. of SC