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Today

• The End!

• 9.5: Contingency Table 
Example

• 9.4: Duality Between Tests and 
Confidence Intervals
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9.5 Generalized LRT
Observe X1,…, Xn from f(x|θ).  
Test H0: θ ∈ω0 ω0 ⊂ Ω
vs. HA: θ ∈ ω1 (ω0 ∪ ω1= Ω).
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Reject H0 if Λ≤λ0, where λ0 is
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Theorem A pg.310:  Under 
smoothness conditions on the pdf, 
the null distribution of –2lnΛ has an 
approximate chi-square distribution 
with d.f.=dimΩ-dimω0 for large n.
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Example: Consider a data set that 
could have come from a binomial 
distribution with n=5, but may also 
have come from a hypergeometric 
or some other distribution.

X 0 1 2 3 4 5
#obs 9 21 16 10 4 0

Test H0: X is binomial vs. HA: it isn’t
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So in general we get

Page 311-312 demonstrates that this 
is asymptotically the same as the 
classic 
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Note: You must be careful what 
estimates you use for the 
parameters!!!
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9.4 The Duality of Confidence 
Intervals and Hypothesis Tests

There is a duality between 
confidence intervals and hypothesis 
tests.  A confidence interval is 
found by “inverting” a two-sided test 
(and vice-versa).
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Theorem A, pg. 307: Suppose there 
is a test of level α for H0: θ= θ0, and 
let A(θ0)=acceptance region 

Then the set C={θ: X∈A(θ)} is a 
100(1- α)% confidence region for θ.
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Theorem B, pg. 307: Let C(X) be a          
100(1- α)% confidence region for 
θ0.  

Then A(θ0)={X: θ0∈C(X)} is an 
acceptance region for a test of level 
α for H0: θ= θ0
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Example cont.: Consider the random 
sample from a normal distribution 
with unknown mean and unknown 
variance.


